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ABSTRACT. 

Bayesian approach to mixture models makes use of Gibbs sampler, the most common of Markov Chain Monte 

Carlo (MCMC), for estimation of posterior density and subsequent classification of objects into components of 

mixture, especially for conjugate priors. In practice conjugacy may not exist and when it does, the time required 

calculating the posterior density will be far too high for the Bayesian approach to be applied in practice 

(McLachlan and Peel, 2000). Therefore, we developed a clustering procedure that is a result of using non-

conjugate prior distribution of product multinomial to obtain posterior distribution that is hypergeometric, for 

cross-classifying categorical data. The performance of the scheme was examined through a simulation study of 

observed tables of counts compared with expected generated by assuming product multinomial to obtain 

posterior distribution under variety of parameter distributions and loadings. We observed that the approach 

performed well when the component proportions are properly distinguishable. The approach was illustrated 

using real life data from social science. 
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1. INTROUDCTION. 

In some applications of mixture models, questions related to clustering may arise only after the mixture model 

has been fitted. The reason for fitting the model is to obtain adequate model for the distribution of data. If this 

were achieved then it may be of interest to consider the problem of identifying the components of the mixture 

with externally existing groups or subpopulations. 

The mixture model can only be used purely as a device for exposing any grouping that may underlie the data. 

This approach can be used for clustering where an initially specified number of groups are in various proportions 

(McLachlan and Peel, 2000). 

A parametric form is specified for each of component density and a probabilistic clustering of the data is 

obtained in terms of the fitted posterior probability of component parameters for the data. To estimate the 

parameters of the mixture models, numerical approach techniques such as Expected Maximization (EM) 

algorithm developed by Dumpster, Laid and Rubin (1977), the classical ones of scoring for parameters, and 

Newton-Raphson methods have been discussed in literature (Everitt and Hand, 1981; Woodward et.al ,1984; 

McLachlan and Peel ,2000), to tackle this problem. The estimation is straightforward using EM algorithm 

(McLachlan and Peel, 2000). In Bayesian approach to mixture models the estimation is feasible using posterior 

simulation through the development of Markov Chain Monte Carlo (MCMC) methods. The development of 

MCMC, the Gibbs Sampler, proposed by Tanner and Wong (1987), and Gelfand and Smith (1990) leads to 

application of Bayesian approach for mixtures in practice. The Gibbs sampler, the most common of MCMC 

algorithm can be implemented properly for conjugate prior. In many cases conjugacy may not exist in practice 

and as such the application of Gibbs sampler is not practicable. Damien et.al (1999) asserted that practitioner 

may turn to the Metropolis- Hastings Algorithms. However, the algorithms may be difficult to set up and in 

particular ‘tuning’ to achieved satisfactory performance (Bernett et.al 1996; Chib and Greenberg 1995). 

Alternatively, ‘black box’ random variate generation techniques such as the rejection algorithm 

(Devroye,1986),adaptive rejection sampling for log-concave densities (Gilks and Wild,1992) or the ratio-of-

uniform method(Wakefield et-al 1991) may be used. The use of such techniques may be daunting to those who 

are unfamiliar with their use (Damien et. al (1998).    

In mixture models, if the component densities belong to the same exponential family and allows conjugate priors 

for both component parameters and the mixing proportions to derive posterior density, the posterior expectation 

of these parameters, even though can be written in closed form, the time required to calculate the posterior 

density will be far too high for the Bayesian approach to be applied in practice, even for moderate sample sizes 

(McLachlan and Peel, 2000; Cheng and Curie, 2003) 

This article focuses on Bayesian approach to mixture models for non-conjugate prior where the central limit 

theorem is used to sample from posterior distribution for categorical data. This is a form of an adopted EM 

algorithm for the estimation and classification of objects into components of the mixture. 

 

 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.10, 2014 

 

92 

2. Model Fitting. 

Let N be the observations taken from an infinite population and cross-classified using two categorical variables, 

says X and Y having r and c outcomes respectively. Let 
ijn  denote the cell counts obtained in the cell 

(i,j),where i=1,…,r and j=1,…,c. Let ij  denotes the probability that an observation falls in that particular cell 

(i,j).Then  
ijn  has  a multinomial distribution which can be displayed in a r by c contingency table. But 

depending on the method of data collection, the underlying distribution for the table could be independent 

Poisson, full multinomial, product multinomial, or hypergeometric 

distribution,Birch(1963),Jolayemi(1982),Agresti(1990),Sanni and Jolayemi(1998) among many other authors. 

Furthermore, they all asserted that these distributions all have parameters that are fixed but unknown.  

Without loss of generality we assume product multinomial of dimension c, where c is unknown. A 

mixture model (MM) now says that the population having c outcomes actually contain k   mixtures. 

That is, if n  is an r x c matrix of observations. 
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where ),......,( 21 icii nnn are the multinomial observations generated as independent multinomial 

random variables with parameter vector k ,...., 21  for each i = (1,….k) and  1
j
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Here we assume that ij are known and having a distribution rather than fixed. Therefore, since 
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 where )/()( iiijr nandfp   are respectively the mixing proportion and component density. 

Therefore equation (2.03) becomes 
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after some manipulation we have 
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which is hypergeometric distribution. It can also be shown that the posterior distribution, 

hypergeometric, is obtained if any other conditional distribution is assumed. This posterior distribution 

is not from the same family as prior, therefore we are dealing with Bayesian non-conjugate prior. 

The special case of equation (2.01) is where r=c =2, the equation reduces to product binomial for 

counts }{ ijn and so )( 11nf  is given by 
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The equations (2.05) and (2.07) suggest hypergeometric sampling for classification into components of 

mixture model for general and special cases respectively. 

Therefore expected value of 11n from the product binomial denoted by E( 11n ) is given as 
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Also the variance of 11n is given as  
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3.  Design of Simulation Study. 

Illustration of Classification Procedure for objects into components of a mixture. 

(i) Specify the number of components in advance 

(ii) Give the Sample size or component loadings for each component. 

(iii)Estimate the expected and variance values }{ ijn  of product multinomial by 
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)( ijnE  = ijin . ……………………………………… ……………..(3.01) 

and 

Var( ijn ) = )1(. ijijin   ……………….……………………………..(3.02) 

     where  ij = 
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 (by MLE). 

(iv)Compute correlation coefficient between the cell counts. That is, 

Let ij  be the correlation between in and jn in a product multinomial. Then  
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(v) Generate a r x c contingency table to satisfy equations (3.01) to (3.03) 

This procedure is an adapted Expectation Maximization (EM) algorithm for assigning observation into 

components of a mixture and k denotes the number of components in a mixture. 

Since the posterior distribution of the product multinomial is hypergeometric, then this assumes fixed 

marginals. In this regard, it can be shown that   
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A r x c contingency table is generated using the formulas (3.04) and (3.05) as follows 
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where W is sampled from the standard normal variate.   

This procedure is an adopted (EM) algorithm for assigning observation into component of the mixture. 

To determine whether the conceived r-component mixture obtained through product multinomial and 

hypergeometric are compatible; a simulation of size 1000 was carried out for the two distributions and the 

generated two tables were compared using Pearson Chi-squared statistic. 

The empirical level of significance , attained by the statistic was computed as the proportion of the time the 

value of the test statistic exceeded the critical value  )1)(1(,  cr  for nominal value of  =0.05, where (r-1)(c-1) 

degrees of freedom. 

To determine whether the attained  was reasonably close to the normal value   we adopted Cochran’s(1952) 

suggestion that the attained level should below 60% at 5% level. 

4.0 Data Analysis and Result.  
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We considered the results of the simulation study when product multinomial and hypergeometric distributions 

were assumed for the observed and expected cell counts, respectively. The component parameters were fixed and 

arranged in symmetric or asymmetric in some cases. For example Table4.1, the component parameters were 

fixed at 11 =0.9, 21 =0.1 for the first component and 21 =0.1 , 22 =0.9 for the second component. The 

difference between the adjacent component parameter is 0.8 while the ratio of the loading was in 1:1. For each of 

the sets the loadings were varied between 1:1 and 1:4. A simulation of 1000 was carried out to validate the 

scheme. 

It is observed that the error of cross-classifying objects into components of a mixture using hypergeometric 

sampling distribution increased geometrically as a function of the sample size. For instance, in Table 4.1, the 

error rate of 0.003 was obtained for cross-classifying 20 objects into their components while an error of 0.029 

was committed for classifying 60 objects even when the loading remaining as 1:1. As earlier mentioned Cochran 

(1952) was used to determine unacceptable cross-classification table. The error rate became unpredictable 

beyond classification of 240 objects. In situation where error rate is not within the Cochran bound it is postulated 

that the sampling distribution may not provide a good fit. 

A close examination of Table4.2 depicts that each of the sets shows that the loading increases from 1:1 and 1:4, 

the error rate decreases and therefore the performance of the scheme for classification improves. In other words, 

as the component proportions are well distinguishable the scheme performs creditably. 

The performance of the scheme was also tested in higher dimension tables and the results were similar to what 

obtained under 2x2 contingency table. The example of this is given in Tabl4.3 

  A sample result of the simulation are Table4.4 and Table 4.5, for this, we assumed that the component 

(structural) parameters for two–component mixture are 11 =0.9and 12 =01 for the first component and 21 =0.2 

and 22 =0.8 for the second. The component loading are in the ratio 1:2(20:40). We generated the two tables 

from product binomial (i.e observed counts) and hypergeometric (i.e. expected counts) as explained in section 3 

above. 

A comparison of the two tables using X
2 

and G
2
 statistics gave values 3.27 and 3.69 respectively and the P-value 

exceed 0.1.Therefore the expected counts (Table4.5) compared favourably well with the observed counts 

presented in Table4.4.  

 The proposed model was illustrated using real life data collected from Ilorin and Yola Prison Services,Nigeria 

on age and offences by prison inmates between the period 2000 and 2004 (Table4.6 and Table 4.7). The 

assumption here is that the crime/offence pattern in Nigeria is identical. Thus, the loadings would be similar 

between Ilorin and Yola. However, assuming Ilorin offence pattern is sustained the proposed sampling scheme 

was used to predict the crime/offence by a distribution for Yola, especially when the age group distribution is 

assumed to be the only distribution available. 

The predicted crime/offence by group is found in Table4.8(X
2
=12.34 and P-value =0.250).  The result shows that 

the tables are compatible; hence the new approach is good for classification.  

SUMMARY AND CONCUSION  

In Bayesian approach to mixture models, Gibbs sampler, the most common MCMC,is used for estimation of 

posterior density for conjugate priors, and subsequent classification of objects into components of mixture. In 

practice conjugacy may not exist and when it does the time required calculating posterior density will be too 

high for Bayesian approach to be applied in practice Therefore, we developed a clustering procedure that is a 

result of using non-conjugate prior distribution of product multinomial to obtain posterior distribution that is 

hypergeometric, for classifying categorical data. 

We examine the accuracy of the approach through simulation study of observed tables of counts compared with 

expected generated by assuming product multinomial under a variety of parameters and loadings. 

We observed that the approach performed well when the component proportions are properly distinguishable. It 

was also found that higher number of objects to classify increases the possible errors committed. 

The performance of the scheme in higher dimension table is similar to what obtained under 2x2 contingency 

table. The real life data from social science used, shown that the approach fitted the data, showing that the 

distribution found in one environment was similar to another. 
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Table4.1: The distribution of sample size and error rate in a simulation of two-component 

mixture when the adjacent component parameters differed by 0.8 for loadings in ratio one to 

one. 

Sample Error  Sample Erro  Sample Error 

Size  Rate  Size  Rate  Size  Rate 

20  0.003  150  0.040  280  0.074 

30  0.004  160  0.041  290  0.082 

40  0.010  170  0.041  300  0.091 

50  0.024  180  0.041  310  0.103 

60  0.029  190  0.042  320  0.116 

70  0.033  200  0.042  330  0.124 

80  0.035  210  0.046  340  0.132 

90  0.037  220  0.050  350  0.135 

100  0.039  230  0.056  360  0.146 

110  0.039  240  0.059  370  0.152 

120  0.039  250  0.061  380  0.161 

130  0.040  260  0.046  390  0.168 

140  0.040  270  0.068        

Component parameters for 2x2: 








9.01.0

1.09.0
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Table4.2: The summary showing the distribution of error rate, and ratio of loadings for fixed 

sample sizes when the component parameters differed by 0.8. 

Ratios of loadings 

Sample 1:1  1:2  1:3  1:4  

 Size  .   .  . .  

 60  0.029  0.021  0.010  0.006 

 90  0.037  0.032  0.021  0.011 

 120  0.039  0.034  0.025  0.017 

 150  0.040  0.035  0.026  0.019 

 180  0.041  0.037  0.028  0.019 

 200  0.042  0.039  0.030  0.020 

 240  0.059  0.040  0.030  0.025 

 270  0.068  0.043  0.031  0.026 

 300  0.091  0.048  0.033  0.029 

  330  0.103  0.049  0.033  0.029 

  360  0.145  0.051  0.039  0.032 

 400  0.171  0.073  0.040  0.034 

 420  0.179  0.129  0.040  0.035 

480  0.317  0.206  0.042  0.038 

510  0.253  0.241  0.043  0.040 

570  0.304  0.293  0.046  0.040 

600  0.411  0.364  0.048  0.041 

   Component parameters for 2x2: 








9.01.0

1.09.0
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Table4.3: The distribution of sample size and error rate in a simulation of three – component 

model for loadings in ratio one to three. 

Sample Error   Sample Error  

Size  Rate  Size  Rate 

60  0.011  600  0.121 

90  0.023  660  0.142 

120  0.034  720  0.243 

180  0.042  780  0.350 

240  0.053  840  0.390 

300  0.058  900  0.456 

360  0.056  960  0.514 

420  0.054  1020  0.574 

480  0.063  1080  0.690 

540  0.084  1140  0.761   

Component parameters for 3x3:
















5.03.02.0

3.06.01.0

1.02.07.0
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Figure 1: Graph showing the distribution of sample size and error rate in a simulation of two-

component mixture when the adjacent component parameters differed by 0.8 for loadings in 

ratio one to one. 
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Table 4.4: A sample Configuration from Simulation of Two-component Mixture when 

Product binomial was assumed for the Count. 

Row Column 1 2 Loadings i  Total 

1 16 4 

3

1
 

20 

2 8 32 

3

2
 

40 

Total 24 36  60 

 

Table4.5; A Sample Configuration from Simulation of Two-Component Mixture when 

hypergeometric was assumed for the Counts. 

Row Column 1 2 Loadings i  Total 

1 18 2 

3

1
 

20 

2 6 34 

3

2
 

40 

Total 24 36  60 
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Table 4.6 Ilorin prison inmates Data for a period of 2000 – 2004 

        Age Group  

 

Offence 

25  26-30 31-35 36-40 40 and 

Above 

Total Loading 

i  

Armed 

Robbery 

76 15 14 10 6 121 0.12 

Theft 32 14 2 3 181 232 0.23 

Culpable 

Homicide 

31 6 2 4 28 71 0.07 

Indian Hemp 21 12 1 3 84 121 0.12 

Assult 1 4 1 1 43 50 0.05 

Others 171 63 67 35 76 412 0.41 

Total 332 114 87 56 418 1007 1 
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Table 4.7: Yola prison inmates Data for a period of 2000 – 2004 

        Age Group  

 

Offence 

25  26-30 31-35 36-40 40& 

Above 

Total 

ArmedRobbery 56 38 15 7 9 125 

Theft 145 53 23 4 26 251 

Culpable 

Homicide 

17 17 13 10 18 75 

Indian Hemp 68 36 13 8 5 130 

Assult 25 11 5 2 5 48 

Others 198 95 46 23 83 445 

Total 509 250 115 54 146 1074 
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Table 4.8:Predicted Yola prison inmates Data for a period of 2000 – 2004 

        Age Group  

 

Offence 

25  26-30 31-35 36-40 40 and 

Above 

Total 

Armed 

Robbery 

60 32 16 9 8 125 

Theft 139 55 22 5 30 251 

Culpable 

Homicide 

23 19 8 9 16 75 

Indian Hemp 64 33 15 10 7 130 

Assault 22 12 7 1 6 48 

Others 201 99 47 20 79 445 

Total 509 250 115 54 146 1074 

X
2
=12.34  P –value>0.250 
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