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Abstract Haar wavelet is exceedingly simple and optimized completely for computers, so that it can be used for 

solving ordinary differential equations and partial differential equations without a hassle. In this paper, numerical 

solutions of Airy differential equations have been obtained by using the Haar Wavelet Method . Comparisons 

with exact solutions make clear that the Haar Wavelet Method is a powerful candidate for solving the Airy 

differential equation. Moreover the use of Haar wavelets is found to be accurate, uncomplicated, speedy, 

adaptable and convenient with very small computation costs and the extra perk of being computationally 

attractive. 

Key Words: Orthogonal Wavelet, Airy Equation, Function Approximation, Operational Matrix 

 

1. Introduction 

The significance of the Airy equation has been widely acknowledged by scientists all over the world 

since it constitutes a classical equation of mathematical physics. Even in this particular field, it has a 

wide range of applications, including but not restricted to modelling the defraction of light and optics 

problems. At some times, it also makes possible to transform the differential equation at hand into the 

well-analyzed and quite popular Airy equation. 

 

The Airy differential equation underlies the form of the intensity near a directional caustic, such as a 

rainbow. Looking back, this was the problem that led Airy [Airy (1838)] to develop the Airy function 

[Abramowitz and Stegun (1955)]. The Airy function also happens to be the solution to Schr¨odinger’s 

equation for a particle confined within a triangular potential well and for a particle in a 

one-dimensional constant force field [Vallee and Soares (2004)]. The solutions to a large number of 

problems may be expressed in terms of the Airy function. One such problem is the linearized 

Korteweg–de Vries equation [Vallee and Soares (2004)]. 

 

Since the Airy equation is linear in nature, its complete analytical solution is found using a Taylor 

series expansion at the origin. Fortunately, this Taylor series is convergent for all the points. In the case 

of a discrete Airy equation, the solution can be found exactly if an equidistant discretizationis allowed 

[Mickens (2001), Ehrhardt and Mickens (2004)]. Some other numerical and asymptotical methods 

follow [Grosjean and Meyer (1991) ,Vrahatis et al (1996), Amparo(2001), Lakshmi and Murty (2007)]. 

Liao in [Liao (1992)] proposed a new analytic method for highly nonlinear problems, namely the 

Homotopy Analysis Method. 

 

In the last two decades, the approximation of orthogonal functions has been playing an important role 

in the solution of problem such as parameter identification analysis and optimal control. The main 

characteristic of this technique is that it converts the differential equation that is being used to describe 

the problem into a set of algebraic equations. Chen and Hsiao [Chen and Hsiao (1997)] were the first to 

derive the approximation method via Walsh function. Subsequently, the set of orthogonal functions 

have been extensively applied to solve the parameter identification of linear lumped time invariant 

systems [Cheng and Hsu (1982)], bilinear systems [Cheng and Hsu (1982)]and multi-input multi-output 

systems [Hwang (1997)]. The pioneering work in system analysis via Haar wavelets was led by Chen 

and Hsiao [Chen and Hsiao (1997)] who first derived a Haar operational matrix for the integrals of the 

Haar function vector and paved the way for the Haar analysis of the dynamical systems. Later Hsiao 

[Hsiao (2008)] established the method to find solutions for time varying systems by introducing 

Kronecker product of matrices for avoiding singularities [Hsiao (1997)] and the timevarying singular 

bilinear systems [Hsiao and Wang, (2001)]. In this paper, we propose a wavelet method to solve the well 

known Airy differential equation. The method is based on the Haar wavelet operational matrix defined 

over the interval [0; 1].  
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The following strategy has been adopted and applied in the rest of this paper. In section 2 the basis of 

the Haar Wavelet Method is laid out. Application of the method in the Airy equation is discussed in 

section 3. Finally, conclusions are drawn in section 4. 

 

2. Mathematical Formation 
 

Among the different wavelet families which are defined by analytical expressions, the most simple in 

mathematical terms are the Haar wavelets. Due to the simplicity the Haar wavelets are very effective 

for solving ordinary differential and partial differential equations. In 1910, Alfred Haar[Haar (1910)] 

introduced the notion of wavelets in the form of a rectangular pulse pair function. His initial theory has 

been expanded recently into a wide variety of applications, but primarily, it allows for the 

representation of various functions by a combination of step functions and wavelets over specified 

interval widths. The Haar wavelet is the only real valued function which is symmetrical, orthogonal 

and has a compact support[Chui (1992)]. 

 

Definition 1. Let   RLh 2 . For Zk  , let    RLRL:Tk
22   be given by     kththTk   

and     RLRL:Dh
22   be given by     ththD j

j

j 22 2  where operators kT  and jD  are 

called translation and dilation operator. 

 

 

Definition 2. A function  RL2  is called an orthonormal wavelet for  RL2  if 

    Zn,k:nZn,k:TD Kkk
n

k  22 2  is an orthonormal basis for  RL2 . 

 

Definition 3. A set of closed subspace  Zj:V j   of  RL2  is called a Multiresolution Analysis 

(MRA) if the following properties hold. 

 . 1 jj VV , for all Zj  

 .    1 jj VDVD , for all Zj  

 .  RLV jZj
2   and  0  jZj V  

 . There is a scaling function  for oV  

 

By scaling function we mean that there exists a function oV such that  Zn:Tn   is an 

orthonormal basis for oV . The first curve  tho also known as scaling function is defined as 



 


otherwise

x
ho

0

101
 

and second curve 1h  is obtained after distributing the interval  10,  in  500 .,  and  150 ,. . 





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


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

otherwise
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h
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This is also called mother wavelet. In order to perform wavelet transform, Haar wavelet uses 

translations and dilations of the function, i.e. the transform make use of    kxx j  2  which 

represents shifting and scaling    xx j2  collectively. All other subsequent curves are generated 

from  th1 .  th2  is obtained from  th1  with dilation [Grossmann and Morlet (1984)].Another way 

that we can express Haar functions in a more compact form is 

  









j

j
n

k
xhxh

2
21  , kn j  2  , 0j  , jk 20   
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Here we observe that  th1  is compressed from the whole interval  10, to the half interval  210,  

to generate  th2 .  th3  is same as  th2  but shifted to right by 21 . In the same way  th2  is 

compressed from a half interval to generate  th4  which is shifted to right by 41 , 42 , 43  to 

generate  th5 ,  th6 ,  th7  respectively. It can be noticed that all the Haar wavelets are orthogonal 

to each other 













 li

li
dxhh

kjj

il
j

li
0

22
2

1

0

 

Moreover, for any square integrable function  xu , approximation can be made using the Haar 

functions as 

   xhaxu ii

M

i





2

1

                                                        (1) 

where mh are the Haar functions. Identifying the collocation points as 
m

l
xl

2

12 
 ; m,....,,l 21  we 

have         Tmom xh,.....,xh,xhxh 11   and thus we obtain the Haar functions as    0111814 ,,,h  , 

   0111834 ,,,h  ,    1011854 ,,,h  ,    1011854 ,,,h  and so on. So,  

        mmh,......,mh,mh,mhH mmmmm 212212321  . In general, if the interval  b,a  is under 

consideration, it is partitioned into M2 subintervals of equal length   Mabx 2 .Introducing the 

dilation parameter J,....,,,j 210 and translation parameter 1210  m,....,,,k  with J as maximal 

level of resolution. The wavelet number i is identified as 1 kmi and the tht haar wavelet is 

defined as 

    
    





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with   xkai1  2  ,   x)k(ai2  12    x)k(ai3  12  where mM . It can 

be seen that for 1i , scaling function 11 h for  b,ax  and   01 xh otherwise. Taking 
m

k
 , 

m

.k 50
 , 

m

k 1
  , for jm 2 , 1210  m,....,,,j , 1 kmi . While working with the 

integration of these Haar functions, integrals can be computed piecewise as  
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In particular when 1i , it will give 

 
 
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 


otherwise
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xh
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1  

 
 



 


otherwise

,xx
xp

0

10
1  

   
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
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,x
x

xq

0
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1  

and so on. In general, for mth order system, Haar matrix mH is defined by m Haar functions and we 

can calculate them as  11 H  













11

11
2H  




























1100

0011

1111
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4H  


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

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

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
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

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
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
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

11000000
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00001100

00000011

11110000
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8H  

and the operation matrix P with dimension mm is calculated likewise 
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
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In particular, we get  211 P , 
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and so on. Using these matrices and approximation of the form (1), we can solve the Airy Differential 

Equation. 

 

3. Numerical Solution of Airy Equation 

 

To illustrate the fundamentals of Haar Wavelet method, let us consider the homogeneous Airy equation, 

which is sometimes called the Strokes Equation 

0
2

2

 tu
dt

ud
                (2) 

Equation (2) is accompanied either with boundary condition,  

   00 iAu  ,   0u               (3) 

or with initial conditions  

   00 iBu    ,     00 iBu              (4) 

Together with these, the solutions of this second order Airy differential equation are called the first and 

second kind Airy functions  tAi  and  tBi  respectively. They play an important role in the theory 

of the asymptotic expansions of various special functions with the known initial values 

 
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
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


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2

3
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2
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
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
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1

3
0

6

1

iB  

From the property of the Haar Wavelet transformation,  xy   can be approximated by Haar wavelet 

function as 

        xhaxy,xy,xxy ii

M


2

1

                                      (5) 

       













  dxxhadxxhayxy ii

x

ii

M

0

1

0

2

1

0                              (6) 

Substituting the values in equation (2) from eq (3-6) and solving these equation for unknown ia , the 

approximate solution  xy  can be found out easily. 

 

In this section, solution obtained from the Haar Wavelet Method has been compared with those 

obtained from Airy functions. The error between the approximate and numerical solutions has been 

calculated. It can be seen that Haar wavelet with 64m shows excellent agreement with the other 

solution, ergo, approximation can be used to represents the exact solution. 
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x 
Numerical 

Solution 

Solution by Haar Wavelet  

         
     Error 

m=4 m=16 m=4 m=16 

0.00 1.0000000 1.0000000 1.0000000 0.0000000 0.0000000 

0.05 0.9999792 0.9998427 0.9999782 0.0001365 0.0000010 

0.10 0.9998333 0.9993706 0.9998312 0.0004627 0.0000021 

0.15 0.9994376 0.9985840 0.9994341 0.0008536 0.0000035 

0.20 0.9986670 0.9974826 0.9986615 0.0011844 0.0000055 

0.25 0.9973972 0.9960665 0.9973884 0.0013307 0.0000088 

0.30 0.9955040 0.9940162 0.9954894 0.0014879 0.0000146 

0.35 0.9928644 0.9910118 0.9928393 0.0018526 0.0000251 

0.40 0.9893561 0.9870535 0.9893128 0.0023026 0.0000433 

0.45 0.9848586 0.9821412 0.9847846 0.0027174 0.0000740 

0.50 0.9792533 0.9762749 0.9791295 0.0029784 0.0001238 

0.55 0.9724243 0.9691372 0.9722224 0.0032871 0.0002018 

0.60 0.9642584 0.9604107 0.9639380 0.0038477 0.0003205 

0.65 0.9546466 0.9500953 0.9541510 0.0045512 0.0004955 

0.70 0.9434838 0.9381912 0.9427365 0.0052927 0.0007474 

0.75 0.9306705 0.9246982 0.9295691 0.0059723 0.0011014 

0.80 0.9161127 0.9093049 0.9145238 0.0068078 0.0015889 

0.85 0.8997233 0.8916999 0.8974755 0.0080234 0.0022478 

0.90 0.8814227 0.8718831 0.8782992 0.0095396 0.0031235 

0.95 0.8611397 0.8498547 0.8568700 0.0112850 0.0042697 

1.00 0.8388123 0.8256145 0.8330632 0.0131979 0.0057491 

Table 1: Comparison between numerical and approximate solution of Airy 

Equation 

 

 

 

 
Fig 1: Graph of Approximate solution by Haar wavelet with m=4 and m=16 and 

numerical solution of Airy differential equation 
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4. Discussion and Results  

 

The theoretical elegance of the Haar Wavelet approach can be appreciated from the simple 

mathematical relations; their compact derivations and proofs. It has been well demonstrated that in 

applying the properties of Haar wavelets, the differential equations can be solved conveniently and 

accurately by its systematic use. The main goal of this paper is to apply the Haar wavelet method to 

the well-known Airy differential equation that appears frequently in many scientific applications. In 

comparison with existing numerical schemes that have been previously used to solve the Airy 

differential equation, the scheme in this paper is an improvement in terms of accuracy. It is worth 

mentioning that the Haar Solution provides good results even for small values of m (m =4 ). As the 

values of m increase (i.e., m = 64), the accuracy of the results becomes more and more reliable.  

 

References 

 

Airy, G .B. (1838) ,On the intensity of light in the neighbourhood of a caustic ,Trans. Camb. Phil. 

Soc.vol. 6, 379–402 

Abramowitz, M and Stegun, I.A. (1955), Handbook of  Mathematical Functions (New York: Dover) 

Vallee, O. and Soares, M. (2004) , Airy Functions and Applications to Physics (London: Imperial 

College Press) 

Mickens, R.E. (2001), Asymptotic solutions to a discrete airy equation, J. Diff. Eqns Appl.,vol 7, 851–8 

Ehrhardt, M. and Mickens, R.E. (2004), Solutions to the discrete airy equation: application to parabolic 

equation calculations, J. Comput. Appl. Math.,vol 172, 183–206 

Grosjean, C.C and Meyer, H. (1991), A two-point boundary problem for Airy functions ,SIAM Rev. vol 

33,477–9 

Vrahatis, M.N, Ragos, O., Zafiropoulos, F.A and Grapsa, T .N (1996), Locating and computing zeros of 

airy functions Z., Angew. Math. Mech.vol 76, 419–31 

Amparo, G., Javier, S. and Nico, T.M (2001), On nonoscillating integrals for computing inhomogeneous 

Airy functions, Math. Comput., vol 70 ,1183–94 

Lakshmi, B.S. and Murty, M.V.R.(2007), Airy function approximations to the Lorenz system ,Chaos 

Solitons Fractals, vol 33,1433–5 

Liao S J (1992), The proposed homotopy analysis technique for the solution of nonlinear problems PhD 

Thesis Shanghai Jiao Tong University, Shanghai 

Chen, C.F. and Hsiao, C.H.(1997), Haar wavelet method for solving lumped and distributed- 

parameter systems. IEEE Proc.: Part D, vol 144 (1),87-94. 

Cheng, B. and Hsu, H.S.(1982). Analysis and parameter estimation of bilinear systems via block pulse 

function. Int. J. Contr., vol 36 (1), 53-65.  

Hwang, C.C.(1997), Numerical Modeling of Lightning Based on the Traveling Wave Equations. IEEE 

trans. on Magnetics, Vol 33 (2),1520-23 

Hsiao, C.H.(2008), Wavelets approach to time-varying functional differential equations, Int. J. 

Computer Math., Vol 87 (3): 528-540.  

Hsiao, C.H.,(1997), State analysis of linear time delayed systems via Haar wavelets, Math. Comp. 

Simulat., vol 44, 457-470.  

Hsiao, C.H. and Wang, W.J.(2001), Haar wavelet approach to nonlinear stiff systems, Math.Comput. 

Simulat., vol 57, 347-353.  

Haar, A.,(1910), Zur theorie der orthogonalen Funktionsysteme, Math. Annal,vol 69: 331-371 

Chui, C.(1992), An Introduction to Wavelets, Academic Press, San Diego CA  

Grossmann.A, Morlet J.(1984), Decomposition of Hardy function into square integrable wavelets of 

constant shape, SIAM journal of Analysis, vol 15 ,723-736 

http://www.iiste.org/


The IISTE is a pioneer in the Open-Access hosting service and academic event 

management.  The aim of the firm is Accelerating Global Knowledge Sharing. 

 

More information about the firm can be found on the homepage:  

http://www.iiste.org 

 

CALL FOR JOURNAL PAPERS 

There are more than 30 peer-reviewed academic journals hosted under the hosting 

platform.   

Prospective authors of journals can find the submission instruction on the 

following page: http://www.iiste.org/journals/  All the journals articles are available 

online to the readers all over the world without financial, legal, or technical barriers 

other than those inseparable from gaining access to the internet itself.  Paper version 

of the journals is also available upon request of readers and authors.  

 

MORE RESOURCES 

Book publication information: http://www.iiste.org/book/ 

 

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/

