Numerical Solution of Poisson Equation Using Fuzzy Data by Finite Difference

Mhassin A. A.
Faculty of Education For Pure Science, Al-Anbar University, Iraq
ali_mhassin@hotmail.com

ABSTRACT
In this paper, we have discussed fuzzification of elliptic partial differential equation taking Poisson Equation in two dimensions are discussed. The interval of fuzzy interval can be determined. Finite difference method applied of two different grids using five points, first for initial values and the second to solve Poisson equation numerically.

Keywords: Fuzzy membership function (f.m.f.), interval of confidence, triangular fuzzy number (t.f.n.), \(\alpha \) – cuts, five points finite difference, Poisson Equation.

1 – Introduction
The concept of Fuzzy differential equation was first introduced by Chang Zadeh [10]. Dubois and Prade[5] has given extension principle. Raphael and Mhassin [8,9], used five points in regular domain. Here implementing five-points for finite difference method to solve Poisson equation in two variables numerically, then fuzzified.

2- Definitions
A triangular Fuzzy number \(\mu \) is defined by three real numbers with base as the interval \([a, c] \) and b as the vertex of triangle. The membership function are defined as follows [8,]:

\[
\mu(x) = \begin{cases}
\frac{x-a}{b-a} ; & \text{where } a \leq x \leq b \\
\frac{x-c}{b-c} ; & \text{where } b \leq x \leq c \\
0 ; & \text{otherwise}
\end{cases}
\]

The \(\alpha \) – cuts are defined by \(\Delta_L(\alpha) = a + \alpha(b-a) \) and \(\Delta_R(\alpha) = c + \alpha(b-c) \).

A triangular Fuzzy number \(\mu_f \) is defined by three real numbers with base as the interval \([f_a, f_c] \) and \(f_b \) as the vertex of triangle. The membership function are defined as follows:

\[
\mu_f(x) = \begin{cases}
\frac{x-f_a}{f_b-f_a} ; & \text{where } f_a \leq x \leq f_b \\
\frac{x-f_c}{f_b-f_c} ; & \text{where } f_b \leq x \leq f_c \\
0 ; & \text{otherwise}
\end{cases}
\]

The \(\alpha \) – cuts are for the function defined by \(\Delta_L(\alpha) = f_a + \alpha(f_b - f_a) \) and \(\Delta_R(\alpha) = f_c + \alpha(f_b - f_c) \).
2.1 Finite difference using to solve Poisson equation

Poisson equation in two variables is defined by

\[u_{xx}(x, y) + u_{yy}(x, y) = f(x, y) \] \hspace{1cm} (1)

This equation is encountered in many application, fluid mechanics, study state, electrostatics, mass transfer, and for other areas of mechanics and physics. Replacing \(u_{xx} \) and \(u_{yy} \) by the central difference formula the value of \(u(x_j, x_j) \) at any mesh point is the arithmetic mean of the values at four neighboring mesh to the left, right, above and below which is called standard five points formula Fig.1, use for finding the initial data respectively as follows, replacing \(u_{xx} \) and \(u_{yy} \) by finite difference method

\[u_{xx} = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} \quad \text{and} \quad u_{yy} = \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{k^2} \]

Then (1) becomes

\[\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{k^2} = f_{ij} \] \hspace{1cm} (2)

Here we will take \(h = k \) in the square mesh, the value of \(u_{i,j} \) at any point is the arithmetic mean of its values at the four neighboring mesh points to the left, right, above, and below, then

\[u_{ij} = \frac{1}{4} \left[u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - h^2 f_{ij} \right] \] \hspace{1cm} (3)

Which is called Standard Five Points Formula (SFPF) as in Fig.1. Or

\[u_{ij} = \frac{1}{4} \left[u_{i+1,j+1} + u_{i+1,j-1} + u_{i-1,j+1} + u_{i-1,j-1} - 2h^2 f_{ij} \right] \] \hspace{1cm} (4)

Which is called Diagonally Five Points Formula (DFPF) as in Fig.2.[young], we will use (4) wherever necessary.

3. Application of Fuzzy interval in Poisson Equation
From \(c_1 \) to \(c_{16} \) represents the boundary conditions of the square mesh with fuzzy interval as in table 1.

Table 1

<table>
<thead>
<tr>
<th>(c_1) = ([l_{1,1} ; l_{1,2} ; l_{1,3}])</th>
<th>(c_2) = ([l_{2,1} ; l_{2,2} ; l_{2,3}])</th>
<th>(c_3) = ([l_{3,1} ; l_{3,2} ; l_{3,3}])</th>
<th>(c_4) = ([l_{4,1} ; l_{4,2} ; l_{4,3}])</th>
<th>(c_5) = ([l_{5,1} ; l_{5,2} ; l_{5,3}])</th>
<th>(c_6) = ([l_{6,1} ; l_{6,2} ; l_{6,3}])</th>
<th>(c_7) = ([l_{7,1} ; l_{7,2} ; l_{7,3}])</th>
<th>(c_8) = ([l_{8,1} ; l_{8,2} ; l_{8,3}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_9) = ([l_{9,1} ; l_{9,2} ; l_{9,3}])</td>
<td>(c_{10}) = ([l_{1,1} ; l_{1,2} ; l_{1,3}])</td>
<td>(c_{11}) = ([l_{1,1} ; l_{1,2} ; l_{1,3}])</td>
<td>(c_{12}) = ([l_{1,1} ; l_{1,2} ; l_{1,3}])</td>
<td>(c_{13}) = ([l_{1,1} ; l_{1,2} ; l_{1,3}])</td>
<td>(c_{14}) = ([l_{1,1} ; l_{1,2} ; l_{1,3}])</td>
<td>(c_{15}) = ([l_{1,1} ; l_{1,2} ; l_{1,3}])</td>
<td>(c_{16}) = ([l_{1,1} ; l_{1,2} ; l_{1,3}])</td>
</tr>
</tbody>
</table>

The interior points due to the square grid are \(u_3 \) to \(u_9 \).

Now to find the initial value of \(u_5^{(0)} \) using standard five-points formula (4) as

\[
u_5^{(0)} = \frac{1}{4} [c_3 (+) c_5 (+) c_{14} (+) c_{16} (-) h^2 (f_i)] \tag{5}\n
We can write equation (4) in some details as

\[
\left[u_5^{(0)} \right]^{(0)} = \left[\frac{l_{1,1} + l_{1,2} + l_{1,3} + l_{2,1} + l_{2,2} + l_{2,3} - h^2 f_{31}}{4}, \frac{l_{3,2} + l_{3,3} + l_{4,2} + l_{4,3} - h^2 f_{52}}{4}, \frac{l_{3,3} + l_{5,3} + l_{6,3}}{4} \right] \tag{6}

Fuzzy membership functions (f.m.f) are respective \(\alpha \) -cuts of \(c_1, c_2, c_3, c_4, c_5, c_6, c_{14}, c_{15} \) and \(c_{16} \) are respectively as

\[
\mu_{c_i}(x) = \begin{cases}
\frac{x - l_{i,1}}{l_{i,2} - l_{i,1}} ; & \text{where } l_{i,1} \leq x \leq l_{i,2} \\
\frac{x - l_{i,2}}{l_{i,3} - l_{i,2}} ; & \text{where } l_{i,2} \leq x \leq l_{i,3} \\
0 ; & \text{otherwise}
\end{cases}
\]

Hence the \(\alpha \) -cuts of \(c_i \) is given by

\[
[c_i]^{\alpha}(x) = \begin{cases}
l_{i,1} + \alpha(l_{i,2} - l_{i,1}), & l_{i,1} \leq x \leq l_{i,2} \\
l_{i,3} + \alpha(l_{i,2} - l_{i,3}), & l_{i,2} \leq x \leq l_{i,3}
\end{cases}
\]

Where \(i = 1, 2, \ldots, 16 \). Then from equation (6) we have
\[
\mu_{\omega}(\alpha)=\left\{ \frac{(l_{1,11} - l_{1,1}) + (l_{1,2} - l_{1,1}) + (l_{1,12} - l_{1,1}) + (l_{1,5,2} - l_{1,5,3}) - h^2 (f_{1,2} - h^2 f_{1,3})}{4} \alpha + \frac{(l_{1,11} + l_{1,12} + l_{1,11} + l_{1,5,4} - h^2 f_{1,4})}{4} \right\} \]

or

\[
\mu_{\omega}(\alpha)=\left\{ \frac{H_{5,2} - H_{5,1} \alpha + H_{5,1}}{4} \right\}
\]

Where

\[
\begin{align*}
H_{5,1} &= l_{1,1} + l_{1,2} + l_{1,11} + l_{1,5,1} - h^2 f_{1,1} \\
H_{5,2} &= l_{1,2} + l_{1,2} + l_{1,12} + l_{1,5,2} - h^2 f_{1,2} \\
H_{5,3} &= l_{1,3} + l_{1,3} + l_{1,13} + l_{1,5,3} - h^2 f_{1,3}
\end{align*}
\]
let
\[x_1 = \frac{H_{5,2} - H_{5,1}}{4} \alpha + \frac{H_{5,1}}{4} \]
and
\[x_2 = \frac{H_{5,2} - H_{5,3}}{4} \alpha + \frac{H_{5,3}}{4} \].
Solving for \(\alpha \), we have
\[\alpha = \frac{4x_1 - H_{5,1}}{H_{5,2} - H_{5,1}} \]
and
\[\alpha = \frac{4x_2 - H_{5,2}}{H_{5,2} - H_{5,3}} \]. Hence f.m.f. for \(u_s^{(0)} \) is
\[
\mu_{u_5}^{(0)}(x)(\alpha) = \begin{cases}
\frac{4x - H_{5,1}}{H_{5,2} - H_{5,1}}, & \frac{1}{4} \leq H_{5,1} \leq \frac{1}{4} \ H_{5,2} \\
\frac{4x - H_{5,2}}{H_{5,2} - H_{5,3}}, & \frac{1}{4} \leq H_{5,2} \leq \frac{1}{4} \ H_{5,3} \\
0, & \text{otherwise}
\end{cases}
\]
(7)
Where \(\alpha \in [0,1] \).

But to find the initial values of \(u_1, u_3, u_9 \) and \(u_\gamma \) using five points diagonally (DFPF) i.e. equation (4), and to find The initial values of \(u_2, u_6, u_8 \) and \(u_4 \) by (SFPF) i.e. equation (3). The initial value of \(u_1^{(0)} \) we use equation (4) the interval of confidence
\[
u_1^{(0)}(\alpha) = \frac{l_{11} + l_{12} + u_{31}^{(0)} + l_{13} - 2h^2 f_{11} + l_{21} + l_{12} + u_{32}^{(0)} + l_{13} - 2h^2 f_{12} + l_{31} + l_{12} + u_{33}^{(0)} + l_{13} - 2h^2 f_{13}}{4}
\]
(8)
Hence f.m.f. for \(c_1 \) is
\[
\mu_{c_1}(x)(\alpha) = \begin{cases}
x - l_{1,1}, & \text{where } l_{1,1} \leq x \leq l_{1,2} \\
\frac{x - l_{1,1}}{l_{1,2} - l_{1,1}}, & \text{where } l_{1,2} \leq x \leq l_{1,3} \\
0, & \text{otherwise}
\end{cases}
\]
Hence \(\alpha - \text{cuts} \) of \(c_1 \)
\[[c_1]^{(0)} = [l_{1,1} + \alpha(l_{1,2} - l_{1,1}), \ l_{1,3} + \alpha(l_{1,2} - l_{1,3})] . \]
As well, \(\alpha - \text{cuts} \) of \(c_3, c_{15} \), and \(u_5^{(0)} \) are
\[[c_3]^{(0)} = [l_{3,1} + \alpha(l_{3,2} - l_{3,1}), \ l_{3,3} + \alpha(l_{3,2} - l_{3,3})] \]
and
\[[c_{15}]^{(0)} = [l_{15,1} + \alpha(l_{15,2} - l_{15,1}), \ l_{15,3} + \alpha(l_{15,2} - l_{15,3})] \] and
\[[u_5]^{(0)} = [u_{5,1} + \alpha(u_{5,2} - u_{5,1}), \ u_{5,3} + \alpha(u_{5,2} - u_{5,3})] . \]
So the interval of confidence of \(u_1^{(0)} \) is

103
We get

\[
\begin{align*}
\mathcal{u}_1^{(0)}(x) &= \left\{ \begin{array}{ll}
X_{1,2} - X_{1,1} & \text{if } 1 < x < 4, \\
-\frac{X_{1,1} + X_{1,3}}{4} & \text{if } 4 < x < 8,
\end{array} \right.
\end{align*}
\]

where

\[
\begin{align*}
X_{1,1} &= l_{1,1} + l_{1,3} + l_{1,5,1} + u_{5,1}^{(0)} - 2h^2 f_{1,1}, \\
X_{1,2} &= l_{2,1} + l_{2,3} + l_{1,5,2} + u_{5,2}^{(0)} - 2h^2 f_{1,2}, \\
X_{1,3} &= l_{3,1} + l_{3,3} + l_{1,5,3} + u_{5,3}^{(0)} - 2h^2 f_{1,3}.
\end{align*}
\]

Let

\[
x_1 = \frac{X_{1,2} - X_{1,1}}{4} + \frac{X_{1,1}}{4}
\]

and

\[
x_2 = \frac{X_{1,2} - X_{1,3}}{4} + \frac{X_{1,3}}{4},
\]

solve for \(\alpha\)

\[
\alpha = \frac{4x_1 - X_{1,1}}{X_{1,2} - X_{1,1}} \quad \text{and} \quad \alpha = \frac{4x_2 - X_{1,3}}{X_{1,2} - X_{1,3}}.
\]

Hence f.m.f. for \(u_1^{(0)}\) is

\[
\mu^{(0)}_{u_1}(x)(=) \begin{cases}
\frac{4x - X_{1,1}}{X_{1,2} - X_{1,1}} & \text{where } 1 < x < 4, \\
\frac{4x - X_{1,3}}{X_{1,3} - X_{1,2}} & \text{where } 4 < x < 8, \\
0 & \text{otherwise}
\end{cases}
\]

This process also for \(u_3, u_5, u_7\) and \(u_1\). In a similar way we evaluate \(u_2, u_6, u_8, u_4\) for \(u_2^{(0)}\) we find the \(\alpha - \text{cuts}\) of \(c_3, u_3^{(0)}, u_5^{(0)}\) and \(u_1^{(0)}\) we get

\[
\mathcal{u}_2^{(0)}(x) = \left\{ \begin{array}{ll}
l_{1,1} + u_{3,1}^{(0)} + u_{5,1}^{(0)} - h^2 f_{2,1}, & l_{1,2} + u_{3,2}^{(0)} + u_{5,2}^{(0)} - h^2 f_{2,2}, \\
l_{1,3} + u_{3,3}^{(0)} + u_{5,3}^{(0)} - h^2 f_{2,3} & \end{array} \right.
\]

Next successive approximations with their f.m.f. as required be obtain from previous approximations and specified boundary conditions.

4. Numerical example

Let us consider the Poisson equation

\[
u_{xx}(x) + u_{yy}(y) = 2(\alpha^2 + \beta^2)e^{-\alpha}
\]
In the domain $0 \leq x \leq 4,0 \leq y \leq 4$ with boundary conditions corresponding to the points shown in table -2.-

<table>
<thead>
<tr>
<th>$c_1 = 0$</th>
<th>$c_2 = 0.293$</th>
<th>$c_3 = 1.172$</th>
<th>$c_4 = 2.637$</th>
<th>$c_5 = 4.688$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_{16} = 0$</td>
<td>u_1</td>
<td>u_2</td>
<td>u_3</td>
<td>$c_6 = 2.637$</td>
</tr>
<tr>
<td>$c_{15} = 0$</td>
<td>u_4</td>
<td>u_5</td>
<td>u_6</td>
<td>$c_7 = 1.172$</td>
</tr>
<tr>
<td>$c_{14} = 0$</td>
<td>u_7</td>
<td>u_8</td>
<td>u_9</td>
<td>$c_8 = 0.293$</td>
</tr>
<tr>
<td>$c_{13} = 0$</td>
<td>$c_{12} = 0$</td>
<td>$c_{11} = 0$</td>
<td>$c_{10} = 0$</td>
<td>$c_9 = 0$</td>
</tr>
</tbody>
</table>

Leibmann's process will be applied to solve equation (12).

Solution:

The boundary conditions are given, the initial values of $u_i = 1, 2, 3, \ldots, 9$ may be calculated with the help of standard five points and diagonal five points formulas, to get the approximate solution. From the equations (5) and (7) we have

$$u_5^{(0)}(x) = \frac{1}{4} \left[c_5 (+) c_7 (+) c_{14}(+) c_{15} (-) h^2 (f_5) \right] \text{ and}$$

$$\mu_{u_5}(x)(=) \begin{cases}
\frac{4x - H_{5,1}}{H_{5,2} - H_{5,1}}; & \frac{1}{4} H_{5,1} \leq x \leq \frac{1}{4} H_{5,2} \\
\frac{4x - H_{5,3}}{H_{5,2} - H_{5,3}}; & \frac{1}{4} H_{5,2} \leq x \leq \frac{1}{4} H_{5,3} \\
0 & \text{otherwise}
\end{cases}$$

Where

$$H_{5,1} = l_{i,1} + l_{i,1} + l_{i,1} + l_{i,1} - h^2 f_{5,1}$$

$$H_{5,2} = l_{i,2} + l_{i,2} + l_{i,2} + l_{i,2} - h^2 f_{5,2}$$

$$H_{5,3} = l_{i,3} + l_{i,3} + l_{i,3} + l_{i,3} - h^2 f_{5,3}$$

$$u_5^{(0)}(=) [0.292, 0.293, 0.294]$$

(12)

To find f.m.f. and respective interval of confidence these eight c_i's as follows:

$$\mu_{c_i}(x)(=) \begin{cases}
x + 0.001; & \text{where } 0.001 \leq x \leq 0 \\\nx - 0.001; & \text{where } 0 \leq x \leq 0.001 \\\n0; & \text{otherwise}
\end{cases}$$

\[\left[c_i \right]^{\alpha}(=) [0.001\alpha + 0.001, -0.001\alpha + 0.001]\]

for $i = 1, 9, 10, 11, 12, 13, 14, 15$ and c_{16} are the same f.m.f.
Using equation (7)

\[
\begin{align*}
\mu_{c_2}(x) &= \begin{cases}
\frac{x-0.292}{0.293-0.292} & ; \text{where } 0.292 \leq x \leq 0.293 \\
\frac{x-0.294}{0.293-0.294} & ; \text{where } 0.293 \leq x \leq 0.00294 \\
0 & ; \text{otherwise}
\end{cases},
\end{align*}
\]

\[
\begin{align*}
\mu_{c_3}(x) &= \begin{cases}
\frac{x-0.171}{0.172-0.171} & ; \text{where } 0.171 \leq x \leq 0.172 \\
\frac{x-0.173}{0.172-0.173} & ; \text{where } 0.172 \leq x \leq 0.173 \\
0 & ; \text{otherwise}
\end{cases},
\end{align*}
\]

\[
\begin{align*}
\mu_{c_4}(x) &= \begin{cases}
\frac{x-2.636}{2.637-2.636} & ; \text{where } 2.636 \leq x \leq 2.637 \\
\frac{x-2.638}{2.637-2.638} & ; \text{where } 2.637 \leq x \leq 2.638 \\
0 & ; \text{otherwise}
\end{cases},
\end{align*}
\]

\[
\begin{align*}
\mu_{c_5}(x) &= \begin{cases}
\frac{x-4.688}{4.689-4.688} & ; \text{where } 4.688 \leq x \leq 4.689 \\
\frac{x-4.690}{4.690-4.960} & ; \text{where } 4.689 \leq x \leq 4.690 \\
0 & ; \text{otherwise}
\end{cases},
\end{align*}
\]

\[
\begin{align*}
\left[c_2\right]^{\alpha}(\alpha) &= [0.001\alpha + 0.292, -0.001\alpha + 0.294], \\
\left[c_3\right]^{\alpha}(\alpha) &= [0.001\alpha + 0.171, -0.001\alpha + 0.173], \text{and} \\
\left[c_4\right]^{\alpha}(\alpha) &= [0.001\alpha + 2.636, -0.001\alpha + 2.638].
\end{align*}
\]

\[
\left[c_5\right]^{\alpha}(\alpha) &= [0.001\alpha + 0.292, -0.001\alpha + 0.294], \text{ with } \alpha \in [0,1]. \text{ To find } u_5^{(0)}, \text{ using equation (7)}
\]

Let \(0.001\alpha + 0.292 = x_1 \text{ and } -0.001\alpha + 0.294 = x_2, \text{ then solving for } \alpha \text{ we get}

\[
\alpha = \frac{x_1 - 0.292}{0.001} \text{ and } \alpha = \frac{x_2 - 0.294}{-0.001}, \text{ hence f.m.f. for } u_5^{(0)} \text{ is}
\]

\[
\mu_{c_5}(x) = \begin{cases}
\frac{x-0.292}{0.293-0.292} & ; \text{where } 0.292 \leq x \leq 0.293 \\
\frac{x-0.294}{0.293-0.294} & ; \text{where } 0.293 \leq x \leq 0.294 \\
0 & ; \text{otherwise}
\end{cases}
\]

In the same way we find f.m.f. for \(u_1^{(0)}, u_2^{(0)}, u_3^{(0)}, u_4^{(0)}, u_5^{(0)}, u_6^{(0)}, u_7^{(0)} \text{ and } u_8^{(0)} \text{ are respectively.}
\[\mu_{w_1}(x)(=) = \begin{cases} \frac{x-0.182}{0.183-0.182} & ; \text{ where } 0.182 \leq x \leq 0.183 \\ \frac{x-0.184}{0.183-0.184} & ; \text{ where } 0.183 \leq x \leq 0.184 \\ 0 & ; \text{ otherwise} \end{cases} \]

\[\mu_{w_2}(x)(=) = \begin{cases} \frac{x-1.50}{1.501-1.50} & ; \text{ where } 1.500 \leq x \leq 1.501 \\ \frac{x-1.502}{1.501-1.502} & ; \text{ where } 1.501 \leq x \leq 1.502 \\ 0 & ; \text{ otherwise} \end{cases} \]

\[\mu_{w_3}(x)(=) = \begin{cases} \frac{x-0.035}{0.036-0.035} & ; \text{ where } 0.035 \leq x \leq 0.036 \\ \frac{x-0.037}{0.036-0.037} & ; \text{ where } 0.036 \leq x \leq 0.037 \\ 0 & ; \text{ otherwise} \end{cases} \]

\[\mu_{w_4}(x)(=) = \begin{cases} \frac{x-0.183}{0.184-0.183} & ; \text{ where } 0.183 \leq x \leq 0.184 \\ \frac{x-0.185}{0.184-0.185} & ; \text{ where } 0.184 \leq x \leq 0.185 \\ 0 & ; \text{ otherwise} \end{cases} \]

\[\mu_{w_5}(x)(=) = \begin{cases} \frac{x-0.667}{0.668-0.667} & ; \text{ where } 0.667 \leq x \leq 0.668 \\ \frac{x-0.668}{0.667-0.668} & ; \text{ where } 0.667 \leq x \leq 0.668 \\ 0 & ; \text{ otherwise} \end{cases} \]

\[\mu_{w_6}(x)(=) = \begin{cases} \frac{x-0.081}{0.082-0.081} & ; \text{ where } 0.081 \leq x \leq 0.082 \\ \frac{x-0.083}{0.082-0.083} & ; \text{ where } 0.082 \leq x \leq 0.083 \\ 0 & ; \text{ otherwise} \end{cases} \]

\[\mu_{w_7}(x)(=) = \begin{cases} \frac{x-0.081}{0.082-0.081} & ; \text{ where } 0.081 \leq x \leq 0.082 \\ \frac{x-0.083}{0.082-0.083} & ; \text{ where } 0.082 \leq x \leq 0.083 \\ 0 & ; \text{ otherwise} \end{cases} \]

and

\[\mu_{w_8}(x)(=) = \begin{cases} \frac{x-0.081}{0.082-0.081} & ; \text{ where } 0.081 \leq x \leq 0.082 \\ \frac{x-0.083}{0.082-0.083} & ; \text{ where } 0.082 \leq x \leq 0.083 \\ 0 & ; \text{ otherwise} \end{cases} \]
In the following there are f.m.f of the fifth approximations using nine-points by the method of Leibmann’s iteration process applied to equation (4) have been found as

\[
\begin{align*}
\mu_{\omega_1}(x) &= \begin{cases}
 x - 0.1654236621554 &; where \ 0.1654236621554 \leq x \leq 0.1655236621554 \\
 0.1655236621554 - x &; otherwise \\
 0.1655236621554 - 2.06693458557129 &; otherwise \\
\end{cases} \\
\mu_{\omega_2}(x) &= \begin{cases}
 x - 0.6600579802214 &; where \ 0.6599579802214 \leq x \leq 0.6600579802214 \\
 0.6599579802214 - x &; otherwise \\
 0.6600579802214 - 0.6601579802214 &; otherwise \\
\end{cases} \\
\mu_{\omega_3}(x) &= \begin{cases}
 x - 1.4839162514350 &; where \ 1.4838162514350 \leq x \leq 1.4839162514350 \\
 1.4838162514350 - x &; otherwise \\
 1.4840162514350 - 1.4840162514350 &; otherwise \\
\end{cases} \\
\mu_{\omega_4}(x) &= \begin{cases}
 x - 0.0738575356564 &; where \ 0.0738575356564 \leq x \leq 0.0739575356564 \\
 0.0739575356564 - x &; otherwise \\
 0.0740575356564 - 0.0740575356564 &; otherwise \\
\end{cases} \\
\mu_{\omega_5}(x) &= \begin{cases}
 x - 0.293749250375 &; where \ 0.2936492250375 \leq x \leq 0.293749250375 \\
 0.2936492250375 - x &; otherwise \\
 0.2938492250375 - 0.2938492250375 &; otherwise \\
\end{cases} \\
\mu_{\omega_6}(x) &= \begin{cases}
 x - 0.6597130042601 &; where \ 0.6596130042601 \leq x \leq 0.6597130042601 \\
 0.6597130042601 - x &; otherwise \\
 0.6598130042601 - 0.6598130042601 &; otherwise \\
\end{cases} \\
\mu_{\omega_7}(x) &= \begin{cases}
 x - 0.0186651402525 &; where \ 0.018561402525 \leq x \leq 0.0186651402525 \\
 0.018561402525 - x &; otherwise \\
 0.0187651402525 - 0.0187651402525 &; otherwise \\
\end{cases}
\end{align*}
\]
\[\mu_{\mu_1}(x) = \begin{cases} \frac{x - 0.0736125597645}{0.0736125597645 - 0.0736125597645} & : \text{where } 0.0736125597645 \leq x \leq 0.0736125597645 \\ \frac{x - 0.0737125597645}{0.0737125597645 - 0.0737125597645} & : \text{where } 0.0736125597645 \leq x \leq 0.0737125597645 \\ 0 & : \text{otherwise} \end{cases} \]

\[\mu_{\mu_2}(x) = \begin{cases} \frac{x - 1.650157520562}{0.1650157520562 - 0.1650157520562} & : \text{where } 0.1649157520562 \leq x \leq 0.1650157520562 \\ \frac{x - 1.651157520562}{0.1651157520562 - 0.1651157520562} & : \text{where } 0.1650157520562 \leq x \leq 0.1651157520562 \\ 0 & : \text{otherwise} \end{cases} \]

5. CONCLUSION

For the given initial values the fourth approximations to solve the above example numerically is very significant results in comparison with example solved in [8] using five points only. However may increased the accuracy as desired if we take more iterations. As well, using nine-points is more accurate than five points.

6. REFERENCES

Mhassin A. A. Math. Department, Faculty of Education for Pure Science, Al-Anbar-University, Ramadi, Iraq, E-Mail ali_mhassin@hotmail.com, Tel: 00964-7818483667.
The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage: http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following page: http://www.iiste.org/journals/ All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar