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Abstract 

In this paper, we apply modified version of double Sumudu transform which is called double Elzaki 

transform to solve the general linear telegraph equation. The applicability of this new transform is 

demonstrated using some functions, which arise in the solution of general linear telegraph equation. 
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1. Introduction: 

Partial differential equations are very important in mathematical physic [7], the wave equation is known as 

one of the fundamental equations in mathematical physics is occur in many branches of physics, for 

example, in applied mathematics and engineering. 

A lot of problems have been solved by integral transforms such as Laplace [7], Fourier, Mellin, and 

Sumudu [9, 10]. Also these problems have been solved by differential transform method [13-20] and 

homotopy perturbation [22-25] an ingenious solution to visualizing the Elzaki transform was proposed 

originally by Tarig M. Elzaki [1-4], this new transform rivals Sumudu transform in problem solving. 

In this paper we derive, we believe for the first time and solve telegraph and wave equations by using 

modified of double Sumudu transform [8] "double Elzaki transform".  

We write that Laplace transform is defined by: 

                                              [ ]
0

( ) ( ) , 0stL f t e f t dt s

∞
−= >∫                           (1-1) 

Where that Elzaki transform is defined over the set of functions: 

1 2( ) : , , 0, ( ) , ( 1) [0, )j

t

k jA f t M k k f t Me t
  

= ∃ > > ∈ − Χ ∞ 
  
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By                                 

[ ] 1 2

0

( ) ( ) , ( , )
t

uE f t u f t e dt u k k

∞
−

= ∈∫ .                                              (1-2) 

By analogy with the double Laplace transform, we shall denote the double Elzaki transform. 

 

1.1 Double Elzaki Transform: 

The double Laplace transform of a function of two variables is given by: 

         [ ] ( )

2

0 0

( , ) ( , ) ( , ) px stL f x t F p s f x t e dxdt

∞ ∞
− += = ∫ ∫                             (1-3) 

Where  ,p s   are the transform variables for  ,x t  respectively. 

Definition: 

Let ( , ), ,f x t t x R +∈ , be a function which can be expressed as a convergent infinite series, then, its 

double Elzaki transform, given by 

         [ ]
( )

2

0 0

( , ), , ( , ) ( , ) , , 0
x t

u vE f x t u v T u v uv f x t e dxdt x t

∞ ∞
− +

= = >∫ ∫             (1-4) 

Where  ,u v  are complex values. To find the solution of telegraph and wave equations by double Elzaki 

transform, first we must find double Elzaki transform of partial derivatives as follows: 

Double Laplace transform of the first and second order partial derivatives are given by: 

2
2

2 2 2

2
2

2 2 2

2

2

(0, )
( , ) (0, ) ( , ) (0, )

( ,0)
( , ) ( ,0) ( , ) ( ,0)

( , ) ( ,0) (0, ) (0,0)

f f F s
L pF p s F s L p F p s pF s

x x x

f f F p
L sF p s F p L s F p s sF p

t t t

f
L psF p s pF p sF s F

x t

 ∂ ∂ ∂  = − = − −  ∂ ∂ ∂   

 ∂ ∂ ∂  = − = − −  ∂ ∂ ∂   

 ∂
= − − − ∂ ∂ 

 

Similarly double Elzaki transform for first and second partial derivatives are given by: 

2

2 2 2 2

2

2 2 2 2

2

2

1 1 (0, )
( , ) (0, ) ( , ) (0, )

1 1 ( ,0)
( , ) ( ,0) ( , ) ( ,0)

1
( , ) ( ,0) (0, ) (0,0)

f f T v
E T u v uT v E T u v T v u

x u x u x

f f T u
E T u v vT u E T u v T u v

t v t v t

f u
E T u v vT u T v uvT

x t v v

 ∂ ∂ ∂  = − = − −  ∂ ∂ ∂   

 ∂ ∂ ∂  = − = − −  ∂ ∂ ∂   

 ∂
= − − + ∂ ∂ 
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Proof: 

( )

2

0 0 0 0

( , ) ( , )
x t t x

u v v u
f

E uv e f x t dxdt v e u e f x t dx dt
x x x

∞ ∞ ∞ ∞
− + − − ∂ ∂ ∂  = =   ∂ ∂ ∂   

∫ ∫ ∫ ∫  

The inner integral gives: 
1

( , ) (0, )T u t uf t
u

− , and then: 

2

0 0

1
( , ) (0, ) ( , ) (0, )

t t

v v
f u

E e T u t dt uv e f t dt T u v uT v
x v u

∞ ∞
− −∂  = − = − ∂  ∫ ∫  

Also 
2

1
( , ) ( ,0)

f
E T u v vT u

t v

∂  = − ∂ 
 

We can prove another derivative easily by using the same method. 

  

2. Applications: 

In this section we establish the validity of the double Elzaki transform by applying it to solve the general 

linear telegraph equations. 

To solve partial differential equations by double Elzaki transform, we need the following steps. 

(i) Take the double Elzaki transform of partial differential equations. 

(ii) Take the single Elzaki transform of the conditions. 

(iii) Substitute (ii) in (i) and solve the algebraic equation. 

(iv) Take the double inverse of Elzaki transform to get the solution 

Here we need the main equation: 

2 2

2
(1 )(1 )

ax bt u v
E e

au bv

+  =  − −
 

Consider the general linear telegraph equation in the form:   

                      
2

tt t xxU aU bU c U+ + =                                      (2-1)                                

With the boundary conditions: 

1 1(0, ) ( ) , (0, ) ( )xU t f t U t g t= =  

And the initial conditions: 

2 2( ,0) ( ) , ( ,0) ( )tU x f x U x g x= =  

Solution: 

Take the double Elzaki transform of equation (2-1) and single Elzaki transform of conditions, and then we 

have: 
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2

2
2 2

2

1 ( ,0)
( , ) ( ,0) ( , ) ( ,0) ( , )

(0, )
( , ) (0, ) 0

T u a
T u v T u v T u v avT u bT u v

v t v

c T v
T u v c T v c u

u x

∂
− − + − +

∂
∂

+ − − =
∂

       

(2-2)                    

And:  

                

1 1

2 2

(0, )
(0, ) ( ) , ( )

( ,0)
( ,0) ( ) , ( )

T v
T v F v G v

x

T u
T u F u G u

t

∂
= =

∂
∂

= =
∂

                      (2-3)                         

Substituting (2-3) in (2-2), we obtain: 

2 2 2 3 3 2 2 2 2 2 2 3

2 2 2 1 1

2 2 2 2 2

( ) ( ) ( ) ( ) ( )
( , ) ( , )

1

u v F u u v G u av u F u c v u F v c v u G v
T u v H u v

avu bv u c v

+ + + +
= =

+ + +
 

Take double inverse Elzaki transform to obtain the solution of general linear telegraph equation (2-1) in the 

form: 

[ ]1

2( , ) ( , ) ( , )U x t E H u v K x t−= =  

Assumed that the double inverse Elzaki transform is exists. 

 

Example 2.1: 

            Consider the telegraph equation 

                                            
xx tt tU U U U= + +                                                                                    (2-4) 

With the boundary conditions: 

                              (0, ) , (0, )t t

xU t e U t e− −= =                                                                (2-5) 

And the initial conditions: 

                              ( ,0) , ( ,0)x x

tU x e U x e= = −                                                                   (2-6)   

The exact solution is  ( , ) x tU x t e −=    

Solution 

Take the double Elzaki transform of equation (2-4), and single Elzaki transform of conditions (2-5), (2-6), 

and then we have: 
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2 2

1 (0, ) 1 ( ,0)
( , ) (0, ) ( , ) ( ,0)

1
( , ) ( ,0) ( , )

T v T u
T u v T v u T u v T u v

u x v t

T u v vT u T u v
v

∂ ∂
− − = − −

∂ ∂

+ − +

                            

(2-7) 

And,    

                             

2 2(0, )
(0, ) ,

1 1

v T v v
T v

v x v

∂
= =

+ ∂ +
                                                   (2-8) 

                             

2 2( ,0)
( ,0) ,

1 1

u T u u
T u

u t u

∂ −
= =

− ∂ −
                                                   (2-9) 

Substituting (2-8) and (2-9) in (2-7), we obtain: 

2 2 2 2 2

2 2

3 4 3 4 2 4 2 4 3 4
2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2

1 1 1

1 1 1 1 1

( )
1 1 1 1 1

( )
( , )

(1 )(1 )( ) (1 )(

v v u u v u
T u T T v T

u v v v u u v u

Or

v u v u v u u v u v
v u u v u v T

u u u v v

u v u vu v u v u v
And T u v

v u u vu v u v v

       
− − = − + + − =       + + − − −       

− − − = − − + +
− − − + +

− − + −
= =

+ − − − + − + 1 )u−

 

Inversion to find the solution of equation (2-4) in the form: 

( , ) .x t x tU x t e e e− −= =  

Example 2.2: 

 

Consider the telegraph equation 

                                     xx tt tU U U U= + −                                                                                         (2-10) 

With the boundary conditions: 

                         
2 2(0, ) , (0, )t t

xU t e U t e− −= =                                                                 (2-11) 

And the initial conditions: 

                           ( ,0) , ( ,0) 2x x

tU x e U x e= = −                                                                 (2-12)   

The exact solution is  
2( , ) x tU x t e −=    

Solution 

Take the double Elzaki transform of eq (2-10), and single Elzaki transform of conditions (2-11), (2-12), and 
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2 2

1 (0, ) 1 ( ,0)
( , ) (0, ) ( , ) ( ,0)

1
( , ) ( ,0) ( , )

T v T u
T u v T v u T u v T u v

u x v t

T u v vT u T u v
v

∂ ∂
− − = − −

∂ ∂

+ − −

                    (2-13)  

And 

                  

2 2(0, )
(0, ) ,

1 2 1 2

v T v v
T v

v x v

∂
= =

+ ∂ +
                  (2-14) 

 

                   

2 2( ,0) 2
( ,0) ,

1 1

u T u u
T u

u t u

∂ −
= =

− ∂ −
                   (2-15) 

Substituting (2-14) and (2-15) in (2-13), to find: 

3 4 3 4 2 4 2 4 3 4
2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2

2
( )

1 1 1 1 2 1 2

( )
( , )

(1 2 )(1 )( ) (1 2 )(1 )

v u v u v u u v u v
v u u v u v T

u u u v v

u v u vu v u v u v
And T u v

v u u vu v u v v u

− − + = − − + +
− − − + +

− − + +
= =

+ − − − + + + −
 

The inverse of the last equation gives the solution of equation (2-10) in the form:  
2( , ) x tU x t e −=  

Example 2.3: 

Let us the telegraph equation 

                                     4 4xx tt tU U U U= + +                                                                                    (2-16) 

With the boundary conditions: 

                           
2(0, ) 1 , (0, ) 2t

xU t e U t−= + =                                                             (2-17) 

And the initial conditions: 

                           
2( ,0) 1 , ( ,0) 2x

tU x e U x= + = −                                                              (2-18)   

The exact solution is    
2 2( , ) x tU x t e e −= +  

Solution 

Applying double Elzaki transform to eq (2-16), and single Elzaki transform to conditions (2-17), (2-18), we 

get: 
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2 2

1 (0, ) 1 ( ,0)
( , ) (0, ) ( , ) ( ,0)

4
( , ) 4 ( ,0) 4 ( , )

T v T u
T u v T v u T u v T u v

u x v t

T u v vT u T u v
v

∂ ∂
− − = − −

∂ ∂

+ − +

                       

(2-19) 

And the transform of conditions are, 

                     

2 3
22 2 (0, )

(0, ) , 2
1 2

v v T v
T v v

v x

+ ∂
= =

+ ∂
                                                 (2-20) 

                    

2 3
22 2 ( ,0)

( ,0) , 2
1 2

u u T u
T u u

u t

− ∂
= = −

− ∂
                                                (2-21) 

By the same method in examples (2-4) and (2-5), substituting (2-20) and (2-21) in (2-19) to find: 

                

2 2 2 2 2 22 2 )
( , )

(1 2 )(1 2 ) (1 2 ) 1 2

u vu v uv u v
T u v

v u u v

+ + −
= = +

+ − − +  

Take the double inverse of Elzaki transform to get the solution of equation (2-16) in the form:                   

2 2( , ) x tU x t e e −= +   

3. Conclusion: 

In this work, double Elzaki transform is applied to obtain the solution of general linear telegraph. It may be 

concluded that double Elzaki transform is very powerful and efficient in finding the analytical solution for a 

wide class of partial differential equations. 
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