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Abstract 

In this paper an endeavor has been put forward to finding a solution of singular nonlinear boundary value problems 

related to differential equations of second order by Taylor’s series method through basic recursive   relations of its 

coefficients exhibiting a sequential spectrums.      
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1. Introduction 

The singular nonlinear class of boundary value /initial value problem come across when several problems of many 

disciplines like mathematics, physics, engineering and interdisciplinary biological and social sciences are taken 

together and modelled for systemic study and analysis that to accustoming about scientific implications and specific 

behaviour eventually. Such phenomenon expressed mathematically challenge and motivate the world of science to 

explore a well-defined solution all over. However it is desirable and must to acknowledge that modelling particularly 

physical events and observations in Astrophysics, Electro hydrodynamics and Thermal explosions produce to have a 

general form of singular two point value problems of differential equation of second order[2,3,4,8,10,11,12,16,19] as 

follows 

 

                     (1.1) 

 

Subject to the boundary conditions  

 

 

Where p, q, r, f are continuous functions of x defined over [0, 1] and are real numbers. Determining a 

solution of such type of problems is very important as they have wide applications in scientific and engineering 

applications such as boundary value theory, flow networks of biology, control and optimization theory etc. Many 

scientists have discussed various methods for obtaining their numerical solutions that include B-splines [6, 7 , 26]. 

Divided difference method, perturbation methods [21].Adomian decomposition method [1].Modified decomposition 

method [29]. Projection method [27]. One of the important methods that has received attention in literature recently 

is He’s polynomial method [1, 6]. Ghorbani is one who for the first time introduced He’s polynomials [21]. The He’s 

polynomials are calculated using the He’s Homotopy perturbation method [23, 25]. 

 

2. Method of solution      

 One of the common techniques for solving singular boundary value problems is that the original differential 

equation is represented differently at singular point and at other points, i.e., non-singular points in the given interval 

in its original form. The basic purpose to write the differential equation in modified way is to handle singularity 
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involved that behaves viciously and unexpectedly. However, after proper and suitable treatment numerical method 

such as Newton’s divided difference or any other method can be applied to obtain a desired numerical solution. In 

this paper, we discuss a simple method for obtaining numerical solutions of the singular boundary value problems. 

The results may be compared with that to any of the henceforth described methods for example He’s polynomial 

method [1]. The proposed method provides solutions more accurate like any other good method available in 

literature. Consider the problem (1.1), which can be modified and rewritten as  

          (2.1) 

Subject to the boundary conditions 

  

We apply the Leibnitz rule for differentiating the product terms multiple times (say n) occurring in equation (2.1). 

The value of ’ n’ is determined by the order of accuracy of the desired results.  

  

=                                  (2.2) 

Eqn. (2.2) can also be written as 

  (2.3) 

We can write the above eqn. (2.3) as follows  

  

The above equation is defined for all values of x in [0, 1]. We take any point in this interval. Taking x=0, and n=0, 1, 

2 … we obtain  .some of these values may be unknown. Indeed, some of them are 

unknown and some others may depend on these unknown values. We can expand y(x) as a Taylor series in the 

neighbourhood of a point x=0 in the interval [0, 1] i.e. 

) . 

                         =                                                (2.4) 

Solution to such class of problems (1.1) exists and is unique [14,24,28].Therefore the well desired solution to the 

given boundary value problem (1.1) of second order non-singular differential equation can be felicitated by 
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   =  + ……………………………….. 

Using the given boundary conditions in above equation (2.4).Now every unknown value of the solution numerically 

or exact solution can be found depending upon the given problem. Once all values of the derivatives through 

recurrence relation are made known i.e. 

 are known after simplification, we can compute the numerical value of y at any point in 

the interval [0, 1] . 

3. Illustrative Examples  

In this section with regard to finding the solution of nonlinear singular value problems and to test the efficiency and 

efficacy of our proposed method after a sequence of Taylor series coefficient is procured successfully. As a derived 

outcome it is pleasing to have an exact solution in the end. 

3.1 Example 

Consider the nonlinear homogeneous boundary value problem[9,15] 

) =0                                      (3.1.1) 

Subject to boundary condition                                                         

 And  

Solution: 

Now we modify equation (3.1.1) to find its solution in the following manner  

) =0                                            (3.1.2) 

Now taking the limit as (xà0) 

We get,                                                                  (3.1.3) 

Differentiating eqn. (3.1.2) once and putting x=0 we have  

 =0                                                     (3.1.3) 

Differentiating (3.1.2) twice and then taking the limit as(xà0) 

We get,                                                                (3.1.4) 

Differentiating (3.1.2) thrice and taking limit as (xà0) we get  

                                             (3.1.5) 
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Differentiating (3.1.2) four times and taking limit as (xà0)  

We get,                                                                  (3.1.6) 

Differentiating (3.1.2) five times and taking limit as (xà0), we have 

                  (3.1.7) 

Differentiating (3.1.2) six times and taking limit as (xà0) 

We get,                                                                 (3.1.8) 

That we have upon differentiating seven times and taking limit as (xà0), 

  

                                            (3.1.9)                                             

Now it may be noted that all the odd derivatives appearing in the Taylors series vanishes at(x=0) 

However, these recurrence relations simplifies to give   

                                                 (3.1.10) 

                                        (3.1.11) 

                                                                   (3.1.12) 

][(  (3.1.13)

Therefore Taylor series solution of above differential equation is given by  

+2   
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           +  

           +……………………………………………………………………..            (3.1.14) 

Now strength of nonlinearity is mitigated and marginalised in the existing recurrence relations appearing for 

derivatives of solution function at origin by taking ,even so the solution shoots to satisfy the other extreme 

boundary condition ’ equivalently giving  .  

Thereby giving as a matter of fact,  as the desired solution to boundary value problem. 

3.2Example 

Consider the nonlinear differential equation[9,15] 

     ,      0                        (3.2.1)                

Subject to boundary conditions  And    

Solution: Modify (3.2.1) to adjust singularity at (x=0) as 

   ,    0                        (3.2.2) 

Taking limit as (xà0) 

We get,                                                                   (3.2.3) 

Now differentiating (3.2.2) with respect to ‘x’ and taking (xà0), we have  

9                                                    (3.2.4) 

Differentiating (3.2.2) with respect to respect to ‘x’ twice and taking (xà0)   

We get,                                                                 (3.2.5) 

Differentiating (3.2.2) with respect to respect to ‘x’ thrice and taking (xà0), we get  

                                             (3.2.6) 

Differentiating (3.2.2) with respect to respect to ‘x’ four times and taking (xà0)                                         
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We get,                                                                 (3.2.7) 

Differentiating (3.2.2) with respect to respect to ‘x’ five times and taking (xà0), we get 

13                          (3.2.8) 

Differentiating (3.2.2) with respect to respect to ‘x’ six times and taking (xà0) 

We get,                                                                 (3.2.9) 

Differentiating (3.2.2) with respect to respect to ‘x’ seven times and taking (xà0), we get 

15  = 28  (3.2.10) 

Now it is fair to observe that strength of nonlinearity in the henceforth deduced recurrence relations involving the 

various derivatives is minimised and simplified by choosing , so that  Without loss of 

generality and in view of an anticipated solution whatsoever that may, it is still possible to fulfils all other required 

criterion by the solution like that further shoots to satisfy the specified and given next extreme boundary condition.   

Under imposed circumstances, relations (3.2.4), (3.2.6), (3.2.8) and (3.2.10) simplifies to produce      

 , --------------------------------   (3.2.11) continuing similarly we may 

have eventually that 

 for all   n  and all the odd derivatives turn out to be zero.            Which in turn 

produces  as the required solution to the boundary value problem (3.2.1).   

3.3Example 

Consider a singular second order differential equation arising in astronomy modelling the equilibrium of isothermal 

gas sphere can be described by [25] 

                                              (3.3.1) 

Subject to conditions   

Solution: Now in order to deal with singularity at ‘x=0’ we modify (3.3.1) as follows 

                                                       (3.3.2) 
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It may be noted that (3.3.2) is well defined for all values in [0, 1]. Using  in (3.3.2), we have  , 

which is the first boundary condition. Now differentiating (3.3.2) with respect to ‘x’ and taking the limit as (xà0) we 

get   

                                                 (3.3.3) 

Differentiating (3.3.2) with respect to ‘x’ twice and taking the limit as (xà0)  

We get                                                                 (3.3.4) 

Again differentiating (3.3.2) with respect to ‘x’ thrice and taking the limit as (xà0) we get 

                                                   (3.3.5) 

Now differentiating (3.3.2) with respect to ‘x’ four times and taking limit as (xà0) we get  

                                                                       (3.3.6) 

Differentiating again (3.3.2) with respect to ‘x’ five times and taking limit as (xà0) we get 

       (3.3.7) 

Again differentiating (3.3.2) with respect to ‘x’ six times and taking limit as (xà0) we get 

                                                                       (3.3.8) 

Now differentiating (3.3.2) with respect to ‘x’ seven times and taking limit as (xà0) we get 

                 

Now, since putting  in these recurrence relations does not change the matching value of the solution at right 

boundary. Therefore doing so the relations are simplified to produce  

, ,  ,   , ,                                                                                                           

  For every n≥5  
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Thus Taylor series method yields exact solution to the given boundary value problem (3.4.1), as                                         

1+ (- ) +( ) +……. 

That is,  is the required solution of the boundary value problem (3.3.1). 

3.4Example 

Consider a singular second order differential equation arising in astronomy modelling the equilibrium of isothermal 

gas sphere can be described by[25] 

                                                         (3.4.1) 

Subject to conditions    

Solution: 

Now in order to deal with singularity at ‘x=0’ we modify (3.3.1) as follows 

                                                      (3.4.2) 

Now taking the limit as (xà0) implies that 

                                                                         Differentiating (3.4.2) with respect to ‘x’ and taking limit as 

(xà0) we get  

                                                               (3.4.3)                                          

Differentiating (3.4.2) with respect to ‘x’ twice and taking limit as (xà0) we get                 

                                                                      (3.4.4) 

Differentiating (3.4.2) with respect to ‘x’ thrice and taking limit as (xà0) we get 

                                                         (3.4.5) 

Differentiating (3.4.2) with respect to ‘x’ four times and taking limit as (xà0) we get 

                                                                      (3.4.6) 

Once again differentiating (3.4.2) with respect to ‘x’ five times and taking limit as (xà0) we get 
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                                      (3.4.7)                

Differentiating again (3.4.2) with respect to ‘x’ six times and taking limit as (xà0) we get 

                                                                      (3.4.8) 

Again differentiating (3.4.2) with respect to ‘x’ seven times and taking limit as (xà0) we get 

           (3.4.9) 

Now the recurrence relations interconnecting the derivatives are semi linearized and simplified by taking 

 without affecting the value of solution at the right boundary ( ) so as to produce after 

simultaneous simplifications of recurrence relations 

 , , , 75/27  (3.4.10)                                                       

 Therefore the solution of the boundary value problem by Taylor series method is given by  

 

                      (3.4.11) 

3.5Example                                                                                                       

  consider the boundary value problem  

   ,   0<                                        (3.5.1) 

Subject to conditions   and       

Solution: In order to solve (3.5.1) we modify the given relation equivalently as 

.                                                (3.5.2) 

Now (3.5.2) is well defined for all the values in the interval [0 1] 

Obviously (3.5.2) after taking limit as(xà0) implies and satisfies the first boundary condition  

Further, differentiating (3.5.2) with respect to ‘x’ and taking limit as(xà0) we get 

                                                             (3.5.3) 



Mathematical Theory and Modeling                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.2, No.5, 2012 

 

52 

Again, differentiating (3.5.2) with respect to ‘x’ twice and taking limit as(xà0) we get 

=                                                                   (3.5.4) 

Again, differentiating (3.5.2) with respect to ‘x’ thrice and taking limit as(xà0) we get 

                                                              (3.5.5) 

Again, differentiating (3.5.2) with respect to ‘x’ four times and taking limit as (xà0) we get 

                                                     (3.5.6) 

Again, differentiating (3.5.2) with respect to ‘x’ five times and taking limit as (xà0) we get  

                                         (3.5.7)  

Again, differentiating (3.5.2) with respect to ‘x’ six times and taking limit as (xà0) we get  

                                                   

(3.5.8) 

Now putting the value of derivatives of y at zero after being simplified from (3.5.3) , (3.5.4) , (3.5.5 ) , (3.5.6) , 

(3.5.7) ,and (3.5.8) in the Taylor series solution (2.4) and imposing the other extreme boundary condition y(1)=1, we 

get y(0)=0, thereby giving  y(x)=x as the exact solution to the problem (3.5.1).  

5. Conclusion 

It is noteworthy to observe that the Taylor series solution method is equally efficient and can be trusted as the other 

methods of solutions do, when eventually somehow a sequence of Taylor series coefficient are extracted properly. 

Over all as a matter of fact the proposed method may fair well if applied on some of the prime problems available 

throughout the literature successfully to have had generated even exact solution.  
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