Characterization of Trees with Equal Total Edge Domination and Double Edge Domination Numbers

M.H.Muddebihal A.R.Sedamkar*

Department of Mathematics, Gulbarga University, Gulbarga-585106, Karnataka, INDIA

E-mail of the corresponding author: mhmuddebihal@yahoo.co.in

Abstract

A total edge dominating set of a graph G is a set D of edges of G such that the sub graph $\langle D \rangle$ has no isolated

edges. The total edge domination number of G denoted by $\gamma'_t(G)$, is the minimum cardinality of a total edge dominating set of G. Further, the set D is said to be double edge dominating set of graph G. If every edge of G is dominated by at least two edges of D. The double edge domination number of G, denoted by, $\gamma'_d(G)$, is the minimum cardinality of a double edge dominating set of G. In this paper, we provide a constructive characterization of trees with equal total edge domination and double edge domination numbers.

Key words: Trees, Total edge domination number, Double edge domination number.

1. Introduction:

In this paper, we follow the notations of [2]. All the graphs considered here are simple, finite, non-trivial, undirected and connected graph. As usual p = |V| and q = |E| denote the number of vertices and edges of a graph G, respectively.

In general, we use $\langle X \rangle$ to denote the sub graph induced by the set of vertices X and N(v) and N[v] denote the open and closed neighborhoods of a vertex v, respectively.

The degree of an edge e = uv of G is defined by $\deg e = \deg u + \deg v - 2$, is the number of edges adjacent to it. An edge e of degree one is called end edge and neighbor is called support edge of G.

A strong support edge is adjacent to at least two end edges. A star is a tree with exactly one vertex of degree greater than one. A double star is a tree with exactly one support edge.

For an edge e is a rooted tree T, let C(e) and S(e) denote the set of childrens and descendants of e respectively. Further we define $S[e] = S(e) \cup \{e\}$. The maximal sub tree at e is the sub tree of T induced by S[e], and is denoted by T_e .

A set $D \subseteq E$ is said to be total edge dominating set of G, if the sub graph $\langle D \rangle$ has no isolated edges. The

total edge domination number of G, denoted by $\gamma'_t(G)$, is the minimum cardinality of a total edge dominating set of G. Total edge domination in graphs was introduced by S.Arumugam and S.Velammal [1].

A set $S \subseteq V$ is said to be double dominating set of G, if every vertex of G is dominated by at least two vertices of S. The double domination number of G, denoted by $\gamma_d(G)$, is the minimum cardinality of a double dominating set of G. Double domination is a graph was introduced by F. Harary and T. W. Haynes [3]. The concept of domination parameters is now well studied in graph theory (see [4] and [5]).

Analogously, a set $D \subseteq E$ is said to be double edge dominating set of G, if every edge of G is dominated by at least two edges of D. The double edge domination number of G, denoted by $\gamma'_d(G)$, is the minimum cardinality of a double edge dominating set of G.

In this paper, we provide a constructive characterization of trees with equal total edge domination and double edge domination numbers.

2. Results:

Initially we obtain the following Observations which are straight forward.

Observation 2.1: Every support edge of a graph G is in every $\gamma'_t(G)$ set.

Observation 2.2: Suppose every non end edge is adjacent to exactly two end edge, then every end edge of a graph G is in every $\gamma'_{d}(G)$ set.

Observation 2.3: Suppose the support edges of a graph G are at distance at least three in G, then every support edge of a graph G is in every $\gamma'_{d}(G)$.

3. Main Results:

Theorem 3.1: For any tree T, $\gamma'_{d}(T) \ge \gamma'_{t}(T)$.

Proof: Let q be the number of edges in tree T. We proceed by induction on q. If $diam(T) \le 3$. Then T is either a star or a double star and $\gamma'_d(T) = 2 = \gamma'_t(T)$. Now assume that $diam(T) \ge 4$ and the Theorem is true for every tree T with q' < q. First assume that some support edge of T, say e_x is strong. Let e_y and e_z be the end edges adjacent to e_x and T = T - e. Let D' be any $\gamma'_d(T')$ - set. Clearly $e_x \in D'$, where D' is a total edge dominating set of tree T. Therefore $\gamma'_t(T') \le \gamma'_t(T)$. Now let S be any $\gamma'_d(T)$ - set. By observations 2 and 3, we have $e_y, e_x, e_z \in S$. Clearly, $S - \{e_y\}$ is a double edge dominating set of tree T'. Therefore $\gamma'_d(T') \le \gamma'_d(T) - 1$. Clearly, $\gamma'_d(T) \ge \gamma'_d(T') + 1 \ge \gamma'_t(T') + 1 \ge \gamma'_t(T) + 1 \ge \gamma'_t(T)$, a contradiction. Therefore every support edge of T is weak.

Let T be a rooted tree at vertex r which is incident with edge e_r of the diam(T). Let e_t be the end edge at maximum distance from e_r , e be parent of e_t , e_u be the parent of e and e_w be the parent of e_u in the rooted tree. Let T_{e_r} denotes the sub tree induced by an edge e_x and its descendents in the rooted tree.

Assume that $\deg_T(e_u) \ge 3$ and e_u is adjacent to an end edge e_x . Let T' = T - e and D' be the $\gamma'_t(T')$ -set. By Observation 1, we have $e_u \in D'$. Clearly, $D' \cup \{e\}$ is a total edge dominating set of tree T. Thus $\gamma'_t(T) \le \gamma'_t(T') + 1$. Now let S be any $\gamma'_d(T)$ -set. By Observations 2 and 3, $e_t, e_x, e, e_u \in S$. Clearly, $S - \{e, e_t\}$ is a double edge dominating set of tree T'. Therefore $\gamma'_d(T') \le \gamma'_d(T) - 2$. It follows that $\gamma'_d(T) \ge \gamma'_d(T') + 2 \ge \gamma'_t(T') + 2 \ge \gamma'_t(T) + 1 \ge \gamma'_t(T)$.

Now assume that among the decedents of e_u there is a support edge say e_x , which is different from e. Let T'=T-e and D' be the $\gamma'_t(T')$ - set containing no end edges. Since e_x must have a neighbor in D', thus $e_u \in D'$. Clearly $D' \bigcup \{e\}$ is a total edge dominating set of tree T and hence $\gamma'_t(T) \leq \gamma'_t(T') + 1$. Now let S be any $\gamma'_d(T)$ - set. By Observations 2 and 3, we have $e_t, e, e_x \in S$. If $e_u \in S$, then $S - \{e, e_t\}$ is the double edge dominating set of tree T'. Further assume that $e_u \notin S$. Then $S \cup \{e_u\} - \{e, e_t\}$ is a double edge dominating set of tree T'. Therefore $\gamma'_d(T') \leq \gamma'_d(T) - 1$. Clearly, it follows that, $\gamma'_d(T) \geq \gamma'_d(T') + 1 \geq \gamma'_t(T') + 1 \geq \gamma'_t(T)$.

To obtain the characterization, we introduce six types of operations that we use to construct trees with equal total edge domination and double edge domination numbers.

Type 1: Attach a path P_1 to two vertices u and w which are incident with e_u and e_w respectively of T where e_u, e_w located at the component of $T - e_x e_y$ such that either e_x is in γ'_d set of T or e_y is in γ'_d - set of T.

Type 2: Attach a path P_2 to a vertex v incident with e of tree T, where e is an edge such that T - e has a component P_3 .

Type 3: Attach $k \ge 1$ number of paths P_3 to the vertex v which is incident with an edge e of T where e is an edge such that either T - e has a component P_2 or T - e has two components P_2 and P_4 , and one end of P_4 is adjacent to e is T.

Type 4: Attach a path P_3 to a vertex v which is incident with e of tree T by joining its support vertex to v, such that e is not contained is any γ'_t - set of T.

Type 5: Attach a path $P_4(n)$, $n \ge 1$ to a vertex v which is incident with an edge e, where e is in a γ'_d - set of T if n = 1.

Type 6: Attach a path P_5 to a vertex v incident with e of tree T by joining one of its support to v such that

T - e has a component $H \in \{P_3, P_4, P_6\}$.

Now we define the following families of trees

Let \Im be the family of trees with equal total edge domination number and double edge domination number. That is

 $\mathfrak{I} = \{T \mid T \text{ is a tree satisfying } \gamma'_t(T) = \gamma'_d(T) \}.$

We also define one more family as

 $\Re = \{T \mid T \text{ is obtained from } P_3 \text{ by a finite sequence of type - } i \text{ operations where} \}$

$$1 \le i \le 5$$
.

We prove the following Lemmas to provide our main characterization.

Lemma 3.2: If $T' \in \mathfrak{T}$ and T is obtained from T' by Type-1 operation, then $T \in \mathfrak{T}$.

Proof: Since $T' \in \mathfrak{T}$, we have $\gamma'_t(T') = \gamma'_d(T')$. By Theorem 1, $\gamma'_t(T) \leq \gamma'_d(T)$, we only need to prove that $\gamma'_t(T) \geq \gamma'_d(T)$. Assume that T is obtained from T' by attaching the path P_1 to two vertices u and w which are incident with e_u and e_w as e'_u and e'_w respectively. Then there is a path $e_x e_y$ in T' such that either e_x is in γ'_d - set of T and $T' - e_x e_y$ has a component $P_5 = e_u e e_w e_x$ or e_y is in γ'_d - set of T' and $T' - e_x e_y$ has a component $P_6 = e_u e e_w e_x e'_x$. Clearly, $\gamma'_t(T') = \gamma'_t(T) - 1$.

Suppose $T' - e_x e_y$ contains a path $P_5 = e_u e e_w e_x$ then S' be the γ'_d - set of T' containing e_x . From Observation 2 and by the definition of γ'_d - set, we have $S' \cap \{e_u, e, e_w, e_x\} = \{e_u, e_w\}$ or $\{e_u, e\}$. Therefore $S = (S' - \{e_u, e, e_w\}) \bigcup \{e'_u, e, e'_w\} \text{ is a double edge dominating set of } T \text{ with } |S| = |S'| + 1 = \gamma'_d(T') + 1.$ Clearly, $\gamma'_t(T) = \gamma'_t(T') + 1 = \gamma'_d(T') + 1 = |S| > \gamma'_d(T).$

Now, if $T' - e_x e_y$ contains a path $P_6 = e_u e_w e_x e_x'$. Then S' be the γ'_d - set of T' containing e_y . By Observation 2 and by definition of γ'_d - set, we have $S' \cap \{e_u, e, e_w, e_x, e_x'\} = \{e_u, e_w, e_x'\}$. Therefore $S = (S' - \{e_u, e_w\}) \cup \{e_u', e, e_w'\}$ is a double edge dominating set of T with $|S| = |S'| + 1 = \gamma'_d(T') + 1$. Clearly, $\gamma'_t(T) = \gamma'_t(T') + 1 = \gamma'_d(T') + 1 = |S| \ge \gamma'_d(T)$.

Lemma 3.3: If $T' \in \mathfrak{T}$ and T is obtained from T' by Type-2 operation, then $T \in \mathfrak{T}$.

Proof: Since $T' \in \mathfrak{T}$, we have $\gamma'_t(T') = \gamma'_d(T')$. By Theorem 1, $\gamma'_t(T) \leq \gamma'_d(T)$, we only need to prove that $\gamma'_t(T) \geq \gamma'_d(T)$. Assume that T is obtained from T' by attaching a path P_2 to a vertex v which is incident with e of T' where T'-e has a component $P_3 = e_w e_x$. We can easily show that $\gamma'_t(T) = \gamma'_t(T') + 1$. Now by definition of γ'_d - set, there exists a γ'_d - set, D' of T' containing the edge e. Then $D' \cup \{e'_u\}$ forms a double edge dominating set of T. Therefore $\gamma'_t(T) = \gamma'_t(T') + 1 = \gamma'_d(T') + 1 = |D' \cup \{e'_u\}| \geq \gamma'_d(T)$.

Lemma 3.4: If $T' \in \mathfrak{T}$ and T is obtained from T' by Type - 3 operation, then $T \in \mathfrak{T}$.

Proof: Since $T' \in \mathfrak{T}$, we have $\gamma'_t(T') = \gamma'_d(T')$. By Theorem 1, $\gamma'_t(T) \leq \gamma'_d(T)$, hence we only need to prove that $\gamma'_t(T) \geq \gamma'_d(T)$. Assume that T is obtained from T' by attaching $m \geq 1$ number of paths P_3 to a vertex vwhich is incident with an edge e of T' such that T'-e has a component P_3 or two components P_2 and P_4 . By definition of γ'_t set and γ'_d set, we can easily show that $\gamma'_t(T) \geq \gamma'_t(T') + 2m$ and $\gamma'_d(T') + 2m \geq \gamma'_d(T)$. Since $\gamma'_t(T') = \gamma'_d(T')$, it follows that $\gamma'_t(T) \geq \gamma'_t(T') + 2m = \gamma'_d(T') + 2m \geq \gamma'_d(T)$. **Lemma 3.5:** If $T' \in \mathfrak{T}$ and T is obtained from T' by Type - 4 operation, then $T \in \mathfrak{T}$.

Proof: Since $T' \in \mathfrak{T}$, we have $\gamma'_t(T') = \gamma'_d(T')$. By Theorem 1, $\gamma'_t(T) \leq \gamma'_d(T)$, hence we only need to prove that $\gamma'_t(T) \geq \gamma'_d(T)$. Assume that T is obtained from T' by attaching path P_3 to a vertex v incident with e in T such that e is not contained in any γ'_t -set of T' and T'-e has a component P_4 . For any γ'_d - set, S' of T', $S' \cup \{e_x, e_z\}$ is a double edge dominating set of T. Hence $\gamma'_d(T') + 2 \geq \gamma'_d(T)$. Let D be any γ'_t - set of T containing the edge e_u , which implies $e_y \in D$ and $|D \cap \{e, e_x, e_z\}|=1$.

If
$$e \notin D$$
, then $|D \cap E(T')| = |D| - 2 = \gamma'_t(T) - 2 \ge \gamma'_t(T')$, since $D \cap E(T')$ is a total edge
dominating set of T' . Further since $\gamma'_t(T') = \gamma'_d(T')$, it follows that $\gamma'_t(T) \ge \gamma'_t(T') + 2$
 $= \gamma'_d(T') + 2 \ge \gamma'_d(T)$.

If $e \in D$, then $D \cap \{e, e_x, e_z\} = \{e\}$ and $|D \cap E(T')| = |D| - 1 = \gamma'_t(T) - 1 \ge \gamma'_t(T')$, since $D \cap E(T')$ is a total edge dominating set of T'. Suppose $\gamma'_t(T) \le \gamma'_d(T) - 1$, then by $\gamma'_d(T') = \gamma'_t(T')$, it follows that $\gamma'_d(T) \ge \gamma'_t(T) + 1 \ge \gamma'_t(T') + 2 = \gamma'_d(T') + 2 \ge \gamma'_d(T')$. Clearly, $|D \cap E(T')| = \gamma'_t(T) - 1 = \gamma'_t(T')$ and $D \cap E(T')$ is a total edge dominating set of T' containing e. Therefore, it gives a contradiction to the fact that e is not in any total edge dominating set of T' and hence $\gamma'_t(T) \ge \gamma'_d(T)$.

Lemma 3.6: If $T' \in \mathfrak{T}$ and T is obtained from T' by Type - 5 operation, then $T \in \mathfrak{T}$.

Proof: Since $T' \in \mathfrak{T}$, we have $\gamma'_t(T') = \gamma'_d(T')$. By Theorem 1, $\gamma'_t(T) \le \gamma'_d(T)$, hence we only need to prove that $\gamma'_t(T) \ge \gamma'_d(T)$. Assume that T is obtained from T' by attaching path $P_4(n)$, $n \ge 1$ to a vertex v incident

with e in T' such that e is in γ'_d - set for n = 1. Clearly, $\gamma'_t(T) \ge \gamma'_t(T') + 2n$. If $n \ge 2$, then by $\gamma'_t(T') = \gamma'_d(T')$, it is obvious that $\gamma'_t(T) \ge \gamma'_t(T') + 2n = \gamma'_d(T') + 2n \ge \gamma'_d(T)$. If n = 1, then D' be a γ'_d - set of T' containing e. Thus $D' \cup \{e_z, e_x\}$ is a double edge dominating set of T. Hence $\gamma'_t(T) \ge \gamma'_t(T') + 2 = \gamma'_d(T') + 2 = |S' \cup \{e_z, e_x\}| \ge \gamma'_d(T)$.

Lemma 3.7: If $T' \in \mathfrak{T}$ and T is obtained from T' by Type - 6 operation, then $T \in \mathfrak{T}$.

Proof: Since $T' \in \mathfrak{T}$, we have $\gamma'_t(T') = \gamma'_d(T')$. By Theorem 1, $\gamma'_t(T) \leq \gamma'_d(T)$, hence we only need to prove that $\gamma'_t(T) \geq \gamma'_d(T)$. Assume that T is obtained from T' by attaching path a path P_5 to a vertex v which is incident with e. Then there exists a subset D of E(T) as γ'_t - set of T such that $D \cap N_{T'}(e) \neq \phi$ for n = 1. Therefore $D \cap E(T')$ is a total edge dominating set of T' and $|D \cap E(T')| \geq \gamma'_t(T')$. By the definition of double edge dominating set, we have $\gamma'_d(T') + 3 \geq \gamma'_d(T)$. Clearly, it follows that

$$\gamma'_{t}(T) = |D| = |D \cap E(P_{6})| + |D \cap E(T')| > 3 + \gamma'_{t}(T') = 3 + \gamma'_{d}(T') \ge \gamma'_{d}(T).$$

Now we define one more family as

Let T be the rooted tree. For any edge $e \in E(T)$, let C(e) and F(e) denote the set of children edges and descendent edges of e respectively. Now we define

 $C'(e) = \{e_u \in C(e) | \text{ every edge of } F[e_u] \text{ has a distance at most two from } e \text{ in } T\}.$

Further partition C'(e) into $C'_1(e)$, $C'_2(e)$ and $C'_3(e)$ such that every edge of $C'_i(e)$ has edge degree i in T, i = 1, 2 and 3.

Lemma 3.8: Let *T* be a rooted tree satisfying $\gamma'_t(T) = \gamma'_d(T)$ and $e_w \in E(T)$. We have the following conditions:

- 1. If $C'(e_w) \neq \phi$, then $C'_1(e_w) = C'_3(e_w) = \phi$.
- 2. If $C_{3}'(e_{w}) \neq \phi$, then $C_{1}'(e_{w}) = C_{2}'(e_{w}) = \phi$ and $|C_{3}'(e_{w})| = 1$.

3. If
$$C(e_w) = C'(e_w) \neq C_1'(e_w)$$
, then $C_1'(e_w) = C_3'(e_w) = \phi$.

Proof: Let $C_1'(e_w) = \{e_{x_1}, e_{x_2}, \dots, e_{x_l}\}$, $C_2'(e_w) = \{e_{y_1}, e_{y_2}, \dots, e_{y_m}\}$ and $C_3'(e_w) = \{e_{z_1}, e_{z_2}, \dots, e_{z_n}\}$ such that $|C_1'(e_w)| = l, |C_2'(e_w)| = m$ and $|C_3'(e_w)| = n$. For every $i = 1, 2, \dots, n$, let e_{u_i} be the end edge adjacent to e_{z_i} in T and $T' = T - \{e_{x_1}, e_{x_2}, \dots, e_{x_l}, e_{u_1}, e_{u_2}, \dots, e_{u_n}\}$.

For (1): We prove that if $m \ge 1$, then l + n = 0. Assume $l + n \ge 1$. Since $m \ge 1$, we can have a γ'_d - set S of T such that $e_w \in S$ and a γ'_t - set D' of T such that $e_w \in D'$. Clearly $S - \{e_{x_1}, e_{x_2}, ..., e_{x_l}, e_{u_1}, e_{u_2}, ..., e_{u_n}\}$ is a double edge dominating set of T' and D' is a total edge dominating set of T. Hence $\gamma'_t(T') = |D'| \ge \gamma'_t(T) = \gamma'_d(T) = |S| > |S - \{e_{x_1}, e_{x_2}, ..., e_{x_l}, e_{u_1}, e_{u_2}, ..., e_{u_n}\}| \ge \gamma'_d(T')$, it gives a contradiction with Theorem 1.

For (2) and (3): Either if $C'_{3}(e_{w}) \neq \phi$ or if $C(e_{w}) = C'(e_{w}) \neq C'_{1}(e_{w})$. Then for both cases, $m + n \ge 1$. Now select a γ'_{t} - set D' of T' such that $e_{w} \in D'$. Then D' is also a total edge dominating set of T. Hence $\gamma'_{t}(T') = |D'| \ge \gamma'_{t}(T)$. Further by definition of γ'_{d} - set and by Observation 2, there exists a γ'_{d} - set S of T which satisfies $S \cap \{e_{y_{1}}, e_{y_{2}}, ..., e_{y_{m}}, e_{z_{1}}, e_{z_{2}}, ..., e_{z_{n}}\} = \phi$. Then $(S \cap E(T')) \cup \{e_{w}\}$ is a γ'_{d} - set of T'. Hence $\gamma'_{d}(T') \le |(S \cap E(T')) \cup \{e_{w}\}| \le |S| - (l+n) + 1 = \gamma'_{d}(T) - (l+n) + 1 = \gamma'_{t}(T) - (l+n) + 1$.

If $n \ge 1$, then $\gamma'_d(T') \le \gamma'_t(T) \le \gamma'_t(T') \le \gamma'_d(T')$, the last inequality is by Theorem 1. It follows that l + n = 1and $e_w \notin S$. Therefore l = 0 and n = 1. From Condition 1, we have m = 0. Hence 2 follows. If $C(e_w) = C'(e_w) \neq C_1'(e_w)$, then $m + n \ge 1$. By conditions 1 and 2, l = 0. Now we show that n = 0. Otherwise, similar to the proof of 2, we have $e_w \notin S$, n = 1 and m = 0. Since $C(e_w) = C'(e_w)$ and deg $(e_w) = 2$, for double edge domination, $e_w, e_z \in S$, a contradiction to the selection of S.

Lemma 3.9: If $T \in \mathfrak{T}$ with at least three edges, then $T \in \mathfrak{R}$.

Proof: Let q = |E(T)|. Since $T \in \mathfrak{T}$, we have $\gamma'_t(T) = \gamma'_d(T)$. If $diam(T) \le 3$, then T is either a star or a double star and $\gamma'_t(T) = 2 = \gamma'_d(T)$. Therefore $T \in \mathfrak{R}$. If $diam(T) \ge 4$, assume that the result is true for all trees T' with |E(T')| = q' < q.

We prove the following Claim to prove above Lemma.

Claim 3.9.1: If there is an edge $e_a \in E(T)$ such that $T - e_a$ contains at least two components P_3 , then $T \in \Re$. Proof: Assume that $P_3 = e_b e_b^{'}$ and $e_c e_c^{'}$ are two components of $T - e_a$. If $T' = T - \{e_b, e_b^{'}\}$, then use D' and S to denote the γ_t' -set of T' containing e_a and γ_d' - set of T, respectively. Since $e_a \in D'$, $D' \cup \{e_b\}$ is a total edge dominating set of T and hence $\gamma_t'(T') \ge \gamma_t'(T) - 1$. Further since S is a γ_d' - set of T, $S \cap \{e_a, e_b, e_b^{'}\} = \{e_a, e_b^{'}\}$ by the definition of γ_d' - set. Clearly, $S \cap E(T')$ is a double edge dominating set of T' and hence $\gamma_t'(T') \ge \gamma_t'(T) - 1 = \gamma_d'(T) - 1 = |S \cap E(T')| \ge \gamma_d'(T')$. By using Theorem 1, we get $\gamma_t'(T') = \gamma_d'(T')$ and so $T' \in \Im$. By induction on T', $T' \in \Re$. Now, since T is obtained from T' by type - 2 operation, $T \in \Re$.

By above claim, we only need to consider the case that, for the edge e_a , $T - e_a$ has exactly one component P_3 . Let $P = e_u e_v e_v e_v e_z \dots e_r$ be a longest path in T having root at vertex r which is incident with e_r .

Clearly, $C(e_w) = C'(e_w) \neq C'_1(e_w)$.By 3 of Lemma 6, $C'_1(e_w) = C'_3(e_w) = \phi$. Hence $P_4 = e_u e e_w$ is a component of $T - e_x$. Let *n* be the number of components of P_4 of $\langle S(e_x) \rangle$ in *T* such that an end edge of every

 P_4 is adjacent to e_x . Suppose $\langle S(e_x) \rangle$ in T has a component P_4 with its support edge is adjacent to e_x . Then it consists of j number of P_3 and k number of P_2 components. By Lemma 6, $m, j \in \{0,1\}$ and $k \in \{0,1,2\}$. Denoting the n components P_4 of the sub graph $\langle S(e_x) \rangle$ in T with one of its end edges is adjacent to an edge e_x in T by $P_4 = e_{u_i}e_i e_{w_i}$, $1 \le i \le n$. We prove that result according to the values of $\{m, j, k\}$.

Case 1: Suppose m = j = k = 0. Then $\langle S(e_x) \rangle = P_4(n), n \ge 1$ in T. Further assume that $T' = T - S[e_x]$, then $2 \le |E(T')| < q$. Clearly, $\gamma'_t(T') \ge \gamma'_t(T) - 2n$. Let S be a γ'_d - set of T such that S contains as minimum number of edges of the sub graph $\langle S(e_x) \rangle$ as possible. Then $e_x \notin S$ and $|S \cap S[e_x]| = 2n$ by the definition of γ'_d - set. Clearly $S \cap E(T')$ is a double edge dominating set of T' and hence $\gamma'_t(T') \ge \gamma'_t(T) - 2n = \gamma'_d(T) - 2n = |S \cap E(T')| \ge \gamma'_d(T)$. By Theorem 1, $\gamma'_t(T') = \gamma'_d(T')$ and $S \cap E(T')$ is a double edge dominating set of T'. Hence $T' \in \mathfrak{T}$. By applying the inductive hypothesis to T', $T' \in \mathfrak{R}$.

If $n \ge 2$, then it is obvious that T is obtained from T' by type - 5 operation and hence $T \in \Re$.

If n=1. Then $\langle S(e_x) \rangle = P_4 = e_u e e_w$ in T which is incident with x of an edge e_x and $S \cap \{e_u, e, e_w, e_x\} = \{e_u, e_w\}$. To double edge dominate, $e_x, e_y \in S$ and so $e_y \in S \cap E(T')$, which implies that e_y is in some γ'_d - set of T'. Hence T is obtained from T' by type-5 operation and $T \in \Re$.

Case 2: Suppose $m \neq 0$ and by the proof of Lemma 6, m = 1 and j = k = 0. Denote the component P_4 of $\langle S(e_x) \rangle$ in T whose support edge is adjacent to e_x in T by $P_4 = e_a e_b e_c$ and if $T' = T - \{e_a, e_b, e_c\}$. Then, clearly $3 \leq |E(T')| \leq q$. Let S be a γ'_d - set of T which does not contain e_b .

Now we claim that e_x is not in any γ'_t - set of T'. Suppose that T' has a γ'_t - set containing e_x which is denoted by D', then $D' \cup \{e_b\}$ is a total edge dominating set of T. Clearly, $\gamma'_t(T') \ge \gamma'_t(T) - 1$. Since $e_b \notin S$ then $S \cap E(T')$ is a double edge dominating set of T'. Hence $\gamma'_t(T') \ge \gamma'_t(T) - 1 = \gamma'_d(T) - 1 = |S \cap E(T')| + 1 \ge \gamma'_d(T') + 1$, which gives a contradiction to the fact that $\gamma'_t(T') \le \gamma'_d(T')$. This holds the claim and therefore T can be obtained from T' by type-4 operation.

Now we prove that $T' \in \mathfrak{R}$. Let D' be any γ'_t - set of T'. By above claim, $e_x \notin D'$. Since $D' \cup \{e_x, e_b\}$ is a total edge dominating set of T, $\gamma'_t(T') \ge \gamma'_t(T) - 2$. Further since $e_b \notin S$, $S \cap E(T')$ is a double edge dominating set of T', $\gamma'_t(T') \ge \gamma'_t(T) - 2 = |S \cap E(T')| \ge \gamma'_d(T')$. Therefore by Theorem 1, we get $\gamma'_t(T') = \gamma'_d(T')$, which implies that $T' \in \mathfrak{I}$. Applying the inductive hypothesis on T', $T' \in \mathfrak{R}$ and hence $T \in \mathfrak{R}$.

Case 3: Suppose $j \neq 0$ and by the proof of Lemma 6, m = k = 0. Let $T' = T - \bigcup_{i=1}^{n} \{e_{u_i}, e_i, e_{w_i}\}$. Clearly, $3 \leq |E(T')| < q$ and T is obtained from T' by type - 3 operation.

We only need to prove that $T \in \mathfrak{R}$. Suppose $D \subset E(T)$ be a γ_t - set of T. Then

 $D \cup \left(\bigcup_{i=1}^{n} \left\{ e_{i}, e_{w_{i}} \right\} \right)$ is a total edge dominating set of T and hence. $\gamma_{t}'(T') \ge \gamma_{t}'(T) - 2n$. Since $T - e_{x}$ has a

component $P_3 = e_a e_b$, we can choose $S \subseteq E(T)$ as a γ'_d - set of T containing e_x . Then $S \cap E(T')$ is a γ'_d - set of T' and hence $\gamma'_d(T) = |S| = 2n + |S \cap E(T')| \ge 2n + \gamma'_d(T')$. Clearly, it follows that, $\gamma'_t(T') \ge \gamma'_d(T')$. Therefore, by Theorem 1, we get, $\gamma'_t(T') = \gamma'_d(T')$ and hence $T' \in \mathfrak{T}$. Applying the inductive hypothesis on T', we get $T' \in \mathfrak{R}$.

Case 4: Suppose $k \neq 0$. Then by Lemma 6, $k \in \{1,2\}$ and so m = j = 0. We claim k = 1. If not, then k = 2. We denote the two components P_2 of $\langle S(e_x) \rangle$ by e'_x and e''_x in T. Let $T' = T - e''_x$. Clearly, $\gamma'_t(T') = \gamma'_t(T)$. Let S be a γ'_d - set of T containing $\{e_{w_1}, e_{w_2}, ..., e_{w_n}\}$. By Observation 2, $\{e'_x, e''_x\} \subseteq S$. Since $S \cap E(T')$ is a double edge dominating set of T' with $|S \cap E(T')| = \gamma'_d(T) - 1$, we have $\gamma'_t(T') = \gamma'_t(T) = \gamma'_d(T) > \gamma'_d(T) - 1 \ge \gamma'_d(T')$, which is a contradiction to the fact that $\gamma'_t(T') \le \gamma'_d(T')$. **Sub case 4.1:** For $n \ge 2$. Suppose $T' = T - \bigcup_{i=1}^n \{e_{u_i}, e_{i_i}, e_{w_i}\}$. Then T is obtained from T' by type - 3 operation. Now by definition of γ'_t - set and γ'_d - set, it is easy to observe that $\gamma'_t(T') + 2(n-1) = \gamma'_t(T)$ and $\gamma'_d(T') + 2(n-1) = \gamma'_d(T)$. Hence $\gamma'_t(T') = \gamma'_d(T')$ and $T' \in \mathfrak{T}$. Applying the inductive hypothesis on T', $T' \in \mathfrak{R}$ and hence $T \in \mathfrak{R}$.

Sub case 4.2: For n = 1. Denote the component P_2 of $\langle S(e_x) \rangle$ by e'_x in T. Suppose $\langle S(e_y) - S[e_x] \rangle$ has a component $H \in \{P_3, P_4, P_6\}$ in T, then $T' = T - S[e_x]$. Therefore we can easily check that T is obtained from T' by type-6 operation. Now by definition of γ'_d - set, $\gamma'_d(T') + 3 = \gamma'_d(T)$. For any γ'_t - set D' of T', $D' \cup \{e, e_w, e_x\}$ is a total edge dominating set of T. Clearly, $\gamma'_t(T') \ge \gamma'_t(T) - 3 = \gamma'_d(T) - 3 = \gamma'_d(T')$. By Theorem 1, we get $\gamma'_t(T') = \gamma'_d(T')$ and $T' \in \mathfrak{I}$. Applying inductive hypothesis on T', $T' \in \mathfrak{R}$ and hence $T \in \mathfrak{R}$.

Now if the sub graph $\langle S(e_y) - S[e_x] \rangle$ has no components P_3, P_4 or P_6 . Then we consider the structure of $\langle S(e_y) \rangle$ in T. By above discussion, $\langle S(e_y) \rangle$ consists of a component $P_6 = e_u e e_w e_x e_x'$ and g number of components of P_2 , denoted by $\{e_1, e_2, ..., e_g\}$. Assume l = 2. Then, let $T' = T - S[e_y]$. It can be easily checked that $\gamma'_t(T') + 4 \ge \gamma'_d(T) = \gamma'_d(T') + 5$, which is a contradiction to the fact that $\gamma'_t(T') \le \gamma'_d(T')$. Hence $g \le 1$. Suppose $T' = T - \{e_u, e_x'\}$. Here we can easily check that $\gamma'_t(T') + 1 = \gamma'_t(T)$. Let S be a γ'_d - set of T such that S contains as minimum edges of $S[e_y]$ as possible and $S \cap S[e_x] = \{e_u, e_w, e_x'\}$. Then $S' = (S - \{e_u, e_w, e_x'\}) \cup \{e, e_x\}$ is a double edge dominating set of T'. Therefore $\gamma'_t(T') = \gamma'_t(T) - 1 = \gamma'_d(T) - 1 = |S'| \ge \gamma'_d(T')$, which implies that $\gamma'_t(T') = \gamma'_d(T')$ where S' is a

double edge dominating set of T'. Hence $T' \in \mathfrak{I}$. Applying inductive hypothesis to T', $T' \in \mathfrak{R}$.

If g = 0, then $\deg_T(e_y) = 2$. Since $e_x \notin S$, to double edge dominate e_y , $e_y \in S$. Therefore

 e_y is in the double edge dominating set D' of T'. Hence T is obtained from T' by type-1 operation. Thus $T \in \mathfrak{R}$.

If
$$g = 1$$
, then $\deg_T(e_y) = 3$. Since $e_x \notin S$ to double edge dominate e_y , we have $e_y \notin S$ and

 $e_z \in S$, by the selection of S. Therefore e_z is in the double edge dominating set S' of T'. Hence T is obtained from T' by type-loperation. Thus $T \in \Re$.

By above all the Lemmas, finally we are now in a position to give the following main characterization.

Theorem 3.10: $\Im = \Re \bigcup \{P_3\}$

References

S. Arumugan and S. Velammal, (1997), "Total edge domination in graphs", *Ph.D Thesis, Manonmaniam Sundarnar University, Tirunelveli, India.*

F. Harary, (1969), "Graph theory", Adison-wesley, Reading mass.

F. Harary and T. W. Haynes, (2000), "Double domination in graph", Ars combinatorics, 55, pp. 201-213.

T.W. Haynes, S. T. Hedetniemi and P. J. Slater, (1998), "Fundamentals of domination in graph", *Marcel Dekker, New York.*

T. W. Haynes, S. T. Hedetniemi and P. J. Slater, (1998), "Domination in graph, Advanced topics", *Marcel Dekker, New York.*

Biography

A. Dr.M.H.Muddebihal born at: Babaleshwar taluk of Bijapur District in 19-02-1959.

Completed Ph.D. education in the field of Graph Theory from Karnataka. Currently working as a Professor in Gulbarga University, Gulbarga-585 106 bearing research experience of 25 years. I had published over 50 research papers in national and international Journals / Conferences and I am authoring two text books of GRAPH THEORY.

B. A.R.Sedamkar born at: Gulbarga district of Karnataka state in 16-09-1984.

Completed PG education in Karnataka. Currently working as a Lecturer in Government Polytechnic Lingasugur, Raichur Dist. from 04 years. I had published 10 papers in International Journals in the field of Graph Theory.