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Abstract 

The influence of magnetic field on the propagation of Rayleigh waves in an inhomogeneous, 

orthotropic elastic solid medium has been discussed. The method of separation of variable is 

used to find the frequency equation of the surface waves. The obtained dispersion equations 

are in agreement with the classical results when magnetic field and non-homogeneity are 

neglected 
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Nomenclature 

  

 is the electric intensity, 

 is magnetic field induction, 

0 is permeability of vacuum, 

0 is permittivity of vacuum, 

e is the magnetic permeability of the medium, 

J  is the current density, 

 is the conductivity of the material 

v
V

t





is velocity of conductor, 

ρ is the density of the material, 

g is the earth  , 

ij is the stress component, 

u  is the component of displacement vector, 

i  is the perturbed magnetic field,
 

 is magnetic field intensity, 
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0  is the initial magnetic field intensity along z-axis 

F is the Lorentz’s force, 

Cij is elastic constant, 

t is the time. 

 

Introduction 

 

The theory of elasticity is an approximation to the stress-strain behavior of real materials. An 

ideal elastic material regains its original configuration on the removal of deforming force. 

Therefore an ideal ‘‘elastic wave’’ is that wave which propagates through a material in such a 

way that the particles oscillates about their mean positions without causing any change.  

 

Bromwich
 1

 was the first who taken the case of   in wave propagation through elastic solid 

media. Love
2
 investigated the influence of   Rayleigh wave. Many researchers such as Biot

3 

studied the effect of   and initial stress on Rayleigh waves, De and Sengupta
4
 considered 

problems of elastic waves under the effect of   field, Sengupta and Acharya
5 

discussed the 

influence of   on the propagation of waves in a magnetoelastic layer. Sharma and Kaur 
6
 

studied Rayleigh waves in rotating thermoelastic solids with voids. Chattopadhyay et al.
 7, 8

 

studied the propagation of G-type seismic waves in viscoelastic medium, they also discussed 

the effect of point source, and heterogeneity on the propagation of SH- waves. Abd-Alla and 

Ahmed 
9
 studied the Rayleigh waves in an orthotropic magneto-elastic medium under   field 

and initial stress. Recently, Love waves in a non-homogeneous elastic media, Rayleigh waves 

in a non-homogeneous granular media, Stoneley, Rayleigh and Love waves in viscoelastic 

media, Love waves in a non-homogeneous orthotropic layer under     ‘P’ overlying semi-

infinite non-homogeneous medium were studied by Kakar et al. 
10, 11, 12, 13

. 

 

In the present study, the influence magnetic field on the propagation of Rayleigh type waves in 

a non-homogeneous, orthotropic elastic solid medium has been discussed. The dispersion 

equation so obtained is in well agreement with the corresponding classical results. 

 

2. Formulation of the problem and basic equations 

 

The problem is dealing with magnetoelasticity. Therefore the basic equations will be 

electromagnetism and elasticity. The Maxwell equations of the electromagnetic field in a 

vacuum (in the absence of displacement current), are  

 

0  ,  (1a) 

0   , (1b) 

t


  


 , 

(1c) 

0 0 .
t

 


 


 
(1d) 

The current displacement vector and electric field are related as 
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,J E  

(2a) 

 

If the conductor is moving with velocityV in applied magnetic field, then  

( ) ( ).
v

J E V B E B
t

  


     


 
(2b) 

 

The electromagnetic wave equation through a vacuum is given by  
2

2

0 0 2
0,

t


 
    

 
 

(3a) 

2
2

0 0 2
0.

t


 
    

 
 

(3b) 

 

Let us consider an orthotropic, non-homogeneous elastic solid along x-direction further it is 

also under the influence of magnetic field. Here we consider Oxyz Cartesian coordinates 

system where O be any point on the plane boundary and Oz be normal to the medium and 

Rayleigh wave propagation is taken in the positive direction of x-axis. It is also assumed that 

at a great distance from center of disturbance, the wave propagation is two dimensional and is 

polarized in (x, z) plane. So, displacement components along x and z direction i.e. u and w are 

non-zero while v = 0. Also it is assumed that wave is surface wave as the disturbance is 

extensively confined to the boundary.  

Also it is assumed that wave is surface wave as the disturbance is extensively confined to the 

boundary. Let ρ be the density of the material medium. 

The value of magnetic field intensity is  

 

  00,0, i   
                                                                                          (4)                                                                                                                             

 

 

Equations governing the propagation of small elastic disturbances in a perfectly conducting 

elastic solid having electromagnetic force F =  J   (the Lorentz force, J  is the current 

density and being magnetic induction vector) as the only  

body force are  (Biot 
3
) 




11, x + 

12, y + 
13, z + Fx ,ttu   

 


12, x + 

22, y + 
23, z  + Fy

 = v,tt,  

                                                
 


13, x + 

23, y + 
33,z + Fz

 = ,ttw       (5)      

 

where u, v, w are displacement components in x, y and z direction and wx, wy, wz are 

rotational components and are given by 

 

, ,

1
( ),

2
x y zw w v   , ,

1
( ),

2
y z xw u w   , ,

1
( ).

2
z x yw v u   

(6) 

Further dynamical Eq. (5) in (x, z) directions are given by 
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


11, x + 

12, y + 
13, z  + Fx ,ttu 




13, x + 

23, y + 
33,z + Fz

 = ,ttw                                                              (7)    

 

where stress components are given by 

 


11

= C
11

 u
1,x + C

13
 u

3,z , 




33

= C
31

 u
1, x + C

33
 u

3,z ,  




13

= C
44

 u
1,z + u

3,x,                                                                                           (8)       

 

where Cij are elastic constants. Since the problem is treated in two-dimensions (x, z), 

therefore C12=C22=C23=0 

Let us take the assumption that C
44

 = 
1

2
(C

11
 – C

13
).  

Substituting Eq. (8) in Eq. (7) ; we have 

 

C
11

 (2u
1, xx + u

1, zz + u
3, xz) + C

13 (u3, xz – u
1, zz) +(u

1, z + u
3, x)(C

11
– C

13
), z + 2u

1,x C
11

, x 

+ 2u
3,z C

13
,x

2

0 , ,2 ( )e xx xzH u w   ,ttu                                          (9)   

       

C
11

 (u
1, xz + u

3, xx) + C
13

 (u
1, xz – u

3, xx) + 2 C
33

 u
3, zz 2

0 , ,2 ( )e xx xzH u w   + (u
1,z + u

3, x) 

(C
11

 – C
13

), x + u
1, x C

13, z + u
3,z C

33,z = ,ttw  .                          (10)  

 

Now we assume the non-homogeneity for the elastic half space and density are given by 

 

Cij = ij emz, = 
0
 emz,        (11)     

 

where i,j, 0
,
 
and m are constants. 

 

Substituting Eq. (11) in Eq.  (9) and in Eq. (10), we get 

 

emz 
11

 (2u
1, xx + u

1, zz + u
3, xz) + 

13 (u3, xz – u
1, zz) emz +(u

1, z + u
3, x) (

11
 – 

13
) m 

emz 2

0 , ,2 ( )e xx xzH u w  ,ttu                                                  




11

 (u
1, xz+u

3, xx) + (
13

) (u
1, xz) – (

13
) u

3, xx + 2
33

 u
3,zz

2

0 , ,2 ( )e xx xzH u w  + 2 
13

 m 

u
1,x + 2

33
 mu

3, z = ,ttw . (13) 

 

To investigate the surface wave propagation along Ox, we introduce displacement potentials 

in terms of displacements components are given by 

 

u = ,x – ,z ; w = ,z + ,x  (14) 
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Introducing Eq. (14) in Eqs (13) and (12) we get 

 

2 (
11

2

0eH ) 
2
 + m (

11
 – 

13
) (2,z + ,x) = 0 .2 tt  ,                                (15)                                                                        

  

(
11

 – 
13

) 
2
m (

11
– 

13
) ,z = 0 ,2 tt  ,                                                   (16)  

 

and 




11 , xx + 

33 ,zz – 2
13

 m ,x + 2
33

 m,z = 0 ,2 tt                                   (17) 

 

(
11

 – 
13

2

0eH ) ,xx + (2 
33

 – 
13 – 

11
) ,zz + (2

13
 m) ,x +2

33
m ,z = 0 .2 tt  .                                                                                                             

(18) 

 

where 
2 
= 

2 2

2 2x z

 

 
 . 

 

Since the velocity of waves are different in x and z direction. Now Eq. (15) and Eq. (16) 

represent the compressive wave along x and z-direction while Eq. (17) and Eq. (18) represents 

the shear waves along these directions. Since we consider the propagation of Rayleigh waves 

in x-direction, therefore we consider only Eq. (15) and Eq. (18). 

 

To solve Eq. (18) and Eq. (15) we introduce 



 (x, y, z) = f (z) 
 i x ct

e
 

 , 



(x, y, z) = h(z) 
 i x ct

e
 

 .    (19) 

 

putting Eq. (19) in Eq. (15) and Eq. (18) we get 

 

f,zz +  Af,z + Bf + Ch = 0, (20) 

 

h,zz + A'h,z + B'h + C'f = 0, (21) 

 

where  

A =
 11 13

2

11 0e

m

H

 

 




, B = 

 2 2

0 11

2

11 0e

c

H

  

 




 ,  

C = 
 

 
11 13

2

11 02 e

m i

H

  

 

  


,             

A'= 33

33 11 13

2

2

m

   
, B'=

 2 2

0 11 13

33 11 13

2

2

c   

  

 

 
, 

C'= 
 0 13

33 11 13

2 2

2

g m i  

  



 
.                                                                                  (22) 
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Now Eq. (20) and Eq. (21) have exponential solution in order that f (z) and h (z) describe 

surface waves and also they varnish as z hence Eq. (15) takes the form, 

  

 (x, z, t) =  1 2

1 2

i x ctz zC e C e e
      , 

 

 (x, z, t) =  1 2

3 4

i x ctz zC e C e e
      , (23) 

 

where C
1
, C

2
, C

3
, C

4
 are arbitrary constants and 

1
, 

2
 are the roots of the equation 

 11 134 333

2

11 0 33 11 13

2

2e

m m

H

  
 

    

 
  

   
 

+ 
2 2

2 20 11 13 0 11

2

33 11 13 11 0

2

2 e

c c

H

    
 

    

   
 

   
 

+ 
     

   

2 2

11 33 0 11 13 0 11 332

2

11 0 33 11 13

2 2

2e

c c
m

H

       
 

    

     
 

    

 

+
   

  

4 2 2

0 11 0 11 13

2

11 0 0 33 11 13

2

2e

c c

P H

     

    

   


   

   

    

   
11 13 0 132

2

11 0 33 11 13

2 2

2 2e

m g m

H

   


    

 


   

= 0. (24) 

Here we consider only real roots of Eq. (24). Now the constants C
1
, C

2
 and C

3
, C

4
 are related 

by the Eq (20) and Eq. (21). 

 

By equating the co-efficients of 1ze  and 2 ze   to zero, Eq. (20) gives, 

 

C
3
 = 

1
 C

1
, C

4
 = 

2
 C

2
,                                                                                      (25)      

 

where  



 

2 2 2

11 0 11 13 0 11

11 13

2 [( ? ? m ( 爾 ) ? 爾 )]

  1,  2.)(

e j j

j

i H c

m

j

       


  

 


  



                                                                                                                          

                                                                                                                        (26)       

3. Boundary Conditions  

 

The plane z = 0 is free from stresses i.e. 
13

 = 
33

 = 0 at z = 0,                         (27)  

where 


13

 = 
1

2
(

11
 – 

13
) [2,xz – ,zz + ,xx] emz ,                                               (28)  


33

 = 
31

 [, xx – ,xz] emz + 
33

[,zz + ,zx] emz.                                        (29)   

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                              www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.12, 2014 

 

182 

Introducing Eq. (28) and Eq. (29) in Eq. (27) we have 

 

C
1 

(2
1
 i + 

1


1


 + 




1
) + C

2
 [2 

2
 i+ 

2


2


 + 


 

2
] = 0,                             (30) (33) 

C
1
 [–

2
 

13
 + 

1


 

33
 – 

1


1
i(

33
 – 

13
)] +C

2
 [–




13
 + 

2


 

33
 –

1
 

1
i (

33
 – 13)] = 0. 

                                                                                                                                       (31) 

Eliminating C
1
 and C

2
 from Eq. (30) and Eq. (31) ; we have 

 

[2
1
 i + 

1


1


 + 




1
] [–


13

 + 
2


 

33
 –

1
 

1
i (

33
 – 13)] 

– [2 
2
 i+ 

2


2


 + 


 

2
] [–

2
 

13
 + 

1


 

33
 – 

1


1
i(

33
 – 

13
)] = 0,  (32) 

where j (j = 1, 2) are given by Eq. (26) and j (j = 1, 2) are roots of Eq. (24). 

Now Eq (32) gives the wave velocity equation for Rayleigh waves in a non-homogeneous 

elastic half space of orthotropic material under magnetic field. From Eq. (32), it follows that 

Rayleigh waves depends magnetic field and non-homogeneous character of the medium and 

nature of the material.  

From Eq. (32), we conclude that if is large i.e. length of wave i.e. 
2


 is small then  , 

magnetic field and     have small effects on Rayleigh waves in non-homogeneous orthotropic 

half space and if is small i.e. 
2


 is large then  , magnetic field and     plays a vital role for 

finding out the wave velocity c. 

 

When the medium is isotropic, Eq. (32) becomes 

 

[2
1
 i + 

1


1


 + 




1
] [

1


 (

2


 - 


) + 2

2


 (1 – i

2


2
)] 

– [2 
2
 i+ 

2


2


 + 


 

2
] [

1


 (

1


 - 


) + 2

2


 (1 – i

1


1
)] = 0,  (33)  

where 
1


 = 

2 




, 

2


 = 




, (,  are Lame’s constants). (34) 

Eq. (34) determines the Rayleigh waves in a non-homogeneous isotropic elastic solid under 

the magnetic field. 

When initial  magnetic field are absent i.e.  H0=0 then Eq. (33) reduces to, 

[2
1
 i + 

1


1


 + 




1
] [

1


 (

2


 - 


) + 2

2


 (1 – i

2


2
)] 

– [2 
2
 i+ 

2


2


 + 


 

2
] [

1


 (

1


 - 


) + 2

2


 (1 – i

1


1
)] = 0, (35) 

where 
1


 = 

2 




 , 

2


 = 




. 

Eq. (35) determines the Rayleigh surface waves in non-homogeneous isotropic elastic solid 

under the influence of   which is similar to corresponding classical result given by Das et al. 

When magnetic field is absent, we get same velocity equation for Rayleigh waves in non-

homogeneous elastic solid as eq (32) with 

j = 
 

2 2

11 11 13 0 11

11 13

2 [( ) ? m ( 爾 ) ? 燾爾 )]j ji

m

      

  



  

  ; j = 1, 2, 

where 
1
, 

2
 are roots of the equation 

 11 134 333

11 33 11 13

2

2

m m  
 

   

 
  

  
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+
2 2

2 20 11 13 0 11

33 11 13 11

2

2

c c    
 

   

   
 

  
 

+ 
     

 

2 2

11 33 0 11 13 0 11 332

11 33 11 13

2 2

2

c c
m

       
 

   

     
 

   

 

+
   

 

4 2 2

0 11 0 11 13

11 33 11 13

2

2

c c     

   

   


 

   

    

   
11 13 132

11 33 11 132

m m  


   


 

  

= 0.         (36) 

When H0=0   

we get, velocity equation for Rayleigh waves is similar to Eq. (32) with 

j = 
 

2 2

11 11 13 0 11

11 13

2 [( ? m ( 爾 ) ? 燾爾 )]j ji

m

      

  



  

  ; j = 1, 2, 

where 
1
, 

2
 are roots of the equation 

 11 134 333

11 33 11 13

2

2

m m  
 

   

 
  

  
 

+ 
2 2

2 20 11 13 0 11

33 11 13 11

2

2

c c    
 

   

   
 

  
 

+ 
     

 

2 2

11 33 0 11 13 0 11 332

11 33 11 13

2 2

2

c c
m

       
 

   

     
 

   

 

+
   

 

4 2 2

0 11 0 11 13

11 33 11 13

2

2

c c     

   

   


 

    

 
11 13 132

11 33 11 13

2

2 2

m m  


   


 

  

=0.            (37)                                            

When the non-homogeneity of the material, H0=0, and   field are absent further medium is 

initially unstressed and isotropic, Eq. (32) reduces to, 

2 2

2 2

1 2

4 1 1
c c

K K

   
    

   
= 

2
2

2

2

2
c

K

 
 

 
,                                                              (38) 

where 
1


 = 

2 




 , 

2


 = 




. 

Eq. (38) is similar to the equation given by Rayleigh. 

 

4. Conclusions 

 

1. Equation (32) represents the wave velocity equation for the Rayleigh waves in a non-

homogeneous, orthotropic elastic solid medium under the influence of magnetic field.  

2. It also depends upon the wave number and confirming that waves are dispersive. 

Moreover, the dispersion equation contains terms involving magnetic field and non-

homogeneity, so the phase velocity ‘c’ not only depends upon magnetic field but also 

on the non-homogeneity of the material medium. 
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3. The explicit solutions of this wave velocity equation cannot be determined by 

analytical methods. However, these equations can be solved with the help of numerical 

method, by a suitable choice of physical parameters involved in medium. 
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