
Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.14, 2014 

 

48 

Homotopy Analysis Method for Solving Delay Differential 

Equations of Fractional Order 
 

Osama H. Mohammed and Abbas I. Khlaif
 

Al-Nahrain University, College of Science, Department of Mathematics and Computer Applications, Baghdad 

,Iraq 

E-mail (abas_ibrahem_2008@yahoo.com) (dr_usama79@yahoo.com)  

 

 

Abstract: In this paper, we implement the Homotopy Analysis method for solving numerically non-linear delay 

differential equations of fractional order. The fractional derivative will be in the Caputo sense. In this approach, 

the solutions are found in the form of a convergent power series with easily computed components. Some 

numerical examples are presented to illustrate the accuracy and ability of the proposed method. 

 
Keywords: Homotopy Analysis method, delay differential equations, fractional calculus, fractional delay 

differential equations. 

 

1. Introduction 

The subject of fractional calculus (that is calculus of integrals and derivatives of any arbitrary real or 

complex order) has gained considerable popularity and importance during the past three decades or so, due 

mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of science and 

engineering. It does indeed provide several potentially useful tools for solving differential and integral equations, 

and various other problem involving special functions of mathematical physics as well as their extensions and 

generalizations in one and more variables (Kilbas,2006). 

In real world systems, delays can be recognized everywhere and there has been widespread interest in 

the study of delay differential equations for many years. 

However, fractional delay differential equations(FDDES) are a very recent topic.Although it seems 

natural to model certain processes and systems in engineering and other sciences (with memory and heritage 

properties) with this kind of equations, only in the last few years has the attention of the scientific community 

been devoted to them (Moragdo,2013). 

Concerning the existence of solutions of (FDDES) we refer (Lakshmikantham,2007), (Ye and 

Gao,2007),  (Liao and Ye ,2009),  . In (Lakshmikantham,2007) Lakshmikantham provides sufficient conditions 

for the existence of solutions to initial value problems to single term nonlinear delay fractional differential 

equations, with the fractional derivative defined in the Riemann-Liouville sense. In (Ye and Gao,2007),Ye et al. 

investigate the existence of positive solutions for a class of single term delay fractional differential equations. 

Later in (Liao and Ye ,2009), for the same class of equations, sufficient condition for the uniqueness of the 

solution are reported. 

For the stability issues of the (FDDES) we refer the references (Chen Moore,2002),( Mihailo and 

Aleksandar,2009), (Krolk,2011),( Deng and Lu,2007). 

           In this paper we shall use the Homotopy Analysis  method to find the approximate solution of the 

(FDDES) with variable delays . 

The structure of this paper is organized as follows: 

In section 2, we recall the definitions of fractional derivatives and fractional integration in section 3 the 

basic concept of the Homotopy Analysis  method will be given in section 4 we present our approach to solve the 

variable delay differential equation of fractional order in section 5 numerical examples are given followed by 

conclusions in section 6. 

 

2. Fractional Derivatives and Fractional Integration 

Definition(1):The Riemann-Liouville fractional integral operator of order ˃0 is defined as: 

It
αf(t) =

1

Γ(α)
∫ (t − x)α−1f(x)dx, α > 0, x > 0 

t

0

 

It
0f(t) = f(t) 

Definition(2):The Riemann-Liouville fractional derivative operator of order ˃0 is defined as: 

Dt
αf(t) =

1

Γ(n − α)

dn

dtn
∫ (t − x)n−α−1

t

0

f(x)dx  
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where n is an integer and n − 1 < α ≤ n. 
 

Definition(3):The Caputo fractional derivative operator of order  is defined as: 

Dt
αc f(t) =

1

Γ(n − α)
∫ (t − x)n−α−1

t

0

dn

dxn
f(x)dx 

where n is an integer and n − 1 < α ≤ n. 
 

Caputo fractional derivative has a useful property: 

It
α Dt

αc f(t) = f(t) − ∑ f (k)(0+)
tk

k!

n−1

k=0

 

where n is an integer and n − 1 < α ≤ n. 
And similar to integer-order differentiation, Caputo fractional derivative operator is a linear operation: 

Dt
αc (λf(t) + μg(t)) = λ Dt

αc f(t) + μ Dx
αc g(t) 

where and  are constants. For the Caputo’s derivative, also we have: 

Dt
αc C = 0, C is constant  

Dt
αc tn = {

0, for n ∈ N0 and n ≥ [α]

Γ(n + 1)

Γ(n + 1 − α)
tn−α for n ∈ N and n ≥ [α]

 

We use the ceiling function [] to denote the smallest integer greater than or equal to  and N{0,1,2,3,…}. 

 

3.    Homotopy Analysis  Method (HAM) 
In this section the basic ideas of the HAM are introduced . Here a description of the method (Liao,2003), is given 

to solve a general nonlinear problem  

                                                               𝐴[𝑦(𝑡)] =  0   , t > 0                                                     (1)       

Where A is a nonlinear operator and y(t) is an unknown function of the independent variable t . 

3.1 Zero – order deformation equation 

 Let 𝑦0(𝑡) denote an initial guess of the exact solution of equation (1) , h ≠ 0 an auxiliary  parameter , H(t) ≠ 0 an 

auxiliary function and L an auxiliary linear operator with the property  

                                                             𝐿[ 𝑓(𝑡)]  =  0    , 𝑤ℎ𝑒𝑛 𝑓(𝑡)  =  0.                                  (2)  

[Liao,2003]  constract using 𝑞 ∈ [0, 1] as an embedding parameter , the so-called zero – order deformation 

equation  

     (1 −  𝑞)𝐿[Ф (𝑡;  𝑞)– 𝑦0(𝑡)] − 𝑞ℎ𝐻𝐴[Ф(𝑡, 𝑞)] = 0  ,                                       (3) 

Where Ф(t,q) is the solution which depends on h , H(t) , L , 𝑦0(𝑡)and q . when q = 0 , the zero – order 

deformation equation(3) becomes 

    Ф (𝑡;  0) =  𝑦0(𝑡)                                                                                                      (4) 

And when q = 1 , since h ≠ 0 and H(t) ≠ 0 , then the zero – order deformation equation (3) reduces to  

                                                                                  𝐴[Ф(𝑡, 1)] =  0                   (5) 

So , Ф (t,1) is exactly the solution of the nonlinear equation (1) . 

Define the so-called m 
th

 order deformation derivatives  
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                                                                                     𝑦𝑚

=
1

𝑚!
 
𝜕𝑚Ф(𝑡, 𝑞)

𝜕𝑞𝑚
|

𝑞=0

                                                                         (6) 

If the power series (6) of Ф(t,q) converges at q = 1 , then we get the following series solution  

    𝑦(𝑡) = 𝑦0(𝑡) + ∑ 𝑦𝑚(𝑡)

∞

𝑚=1

                                                                                         (7) 

The above expression provides us with a relationship between the initial guess 𝑦0(𝑡) and the exact solution y(t) 

by means of the terms 𝑦𝑚(𝑡) (𝑚 = 1,2,3, … ) which are unknown up to now. 

3.2 High – Order deformation equation  

Define the vector   

                                                             �⃗�𝑚 = {𝑦0(𝑡), 𝑦1(𝑡), … , 𝑦𝑚(𝑡)}                                         (8) 

Differentiating equation (3) m times with respect to the embedding parameter q and then setting q = 0 and finally 

dividing by 𝑚! We have the so- called m
th

 – order deformation equation  

                                                         𝐿[𝑦𝑚(𝑡) − 𝑋𝑚𝑦𝑚−1(𝑡)]

= ℎ𝐻(𝑡)𝑅𝑦𝑚
(�⃗�𝑚−1, 𝑡)                                                              (9) 

Where  

                                                                                         𝑋𝑚

= {
0   ,   𝑚 ≤ 1
1   ,   𝑚 > 1

                                                                              (10) 

And  

        𝑅𝑦𝑚
(�⃗�𝑚−1, 𝑡) =

1

(𝑚 − 1)!

𝜕𝑚−1𝐴[Ф(𝑡, 𝑞)]

𝜕𝑞𝑚−1
|

𝑞=0

                                             (11) 

Thus , we can get 𝑦0(𝑡), 𝑦1(𝑡), 𝑦2(𝑡), … by means of solving the linear high-order deformation equation (9) One 

after One in order . 

The m
th

 – order approximation of y(t) is given by  

      𝑦(𝑡) ≈ ∑ 𝑦𝑘(𝑡)

𝑚

𝑘=0

                                                                                              (12) 

 

4. The Approach 

In this section the basic ideas of the HAM are introduced in order to solve the following problem : 

                                                 𝐷𝑡
𝛼𝑦(𝑡) = 𝑓(𝑡, 𝑦(𝑡), 𝑦(Φ𝑐 (𝑡))   , 𝑛 − 1 < 𝛼

≤ 𝑛                                                                 (13) 

                                                  𝑦(𝑡) = ѱ(𝑡) .          − 𝜏 ≤ 𝑡 ≤ 0                                                                    (14)  

                                                  𝑦(𝑖)(0) = 𝑦0
𝑖    𝑖

= 0,1, . . , 𝑛 − 1                                                                                              (15)  
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Where 𝐷𝑡
𝛼𝑐  is the fractional derivative in the Caputo sense and  ѱ(𝑡) is a continuous function , f is a nonlinear 

operator and 𝑦0
𝑖  are prescribed constants .  

4.1 Zero – Order Deformation Equation  

          In HAM equation (13) is first written in the form  

                         𝑁[𝑡, 𝑦(𝑡), 𝑦(Ф(𝑡))] = 0                                                                                (16) 

Where N is a nonlinear operator given by   

                                                     𝑁[𝑡, 𝑦(𝑡), 𝑦(Ф(𝑡))]

= 𝐷𝑡
𝛼𝑦(𝑡) − 𝑓(𝑡, 𝑦(𝑡), 𝑦(Φ𝑐 (𝑡))                                                     (17) 

t denote the in depended variable , y(t) is the unknown function and Ф(t) is the delay function . 

let 𝑦0(𝑡) denote the initial guess of the exact solution y(t) , h ≠ 0 an auxiliary parameter and let L to be  an 

auxiliary operator defined by  

𝐿 = 𝐷𝑐
𝑡
𝛼 

Then using 𝑞 ∈ [0,1] as an embedding parameter , in view of Liao [Liao,2003] we construct such a homotopy  

  𝐻[�̃�(𝑡, 𝑞), 𝑦0, ℎ, 𝑞] = (1 − 𝑞)𝐿[�̃�(𝑡, 𝑞) − 𝑦0] − 𝑞ℎ𝐻𝑁[𝑡, �̃�(𝑡), �̃�(𝜙(𝑡)), 𝑞]                                 (18) 

For the FDDEs (16) . 

Enforcing the homotopy (18) to be zero , we have the so called zeroth-order deformation equation as  

        (1 − 𝑞)𝐿[�̃�(𝑡, 𝑞) − 𝑦0] = 𝑞ℎ𝐻𝑁[𝑡, �̃�(𝑡), �̃�(𝜙(𝑡)), 𝑞]                                                         (19) 

 Where �̃�(𝑡, 𝑞) is the solution which depends on the initial guess 𝑦0(𝑡) , the auxiliary linear operator L , the 

nonzero auxiliary parameter h , the auxiliary function H and the embedding parameter 𝑞 ∈ [0,1]  . 

Obviously , when q = 0 and q = 1 , both  

                                                            �̃�(𝑡, 0) = 𝑦0(𝑡)  , �̃�(𝑡, 1) = 𝑦(𝑡)                                            ( 20) 

Respectively  hold . 

Thus,  according to above equation , as the embedding parameter q increases from 0 to 1 , �̃�(𝑡, 𝑞) varies 

continuously from the initial approximate 𝑦0(𝑡)  to the exact solution y(t) of the original equation (13) . 

The zero-order deformation equation (19) defines a family of homotopies between the initial approximation  

𝑦0(𝑡)  and the exact solution y(t) via auxiliary parameter h .  

The mapping to the exact solution is implemented through a successive approximation with the initial 

approximation as the first term . 

To this end , the mapping function �̃�(𝑡, 𝑞) are expanded in Taylor series about q = 0 as     

                                                                           �̃�(𝑡, 𝑞)

=  𝑦0(𝑡) + ∑ 𝑦𝑚 (𝑡)𝑞𝑚 

∞

𝑚=1

                                                                  (21) 
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Where  

                                                                                     𝑦𝑚

=
1

𝑚!
 
𝜕𝑚�̃�(𝑡, 𝑞)

𝜕𝑞𝑚
|

𝑞=0

                                                                         (22) 

Assume that the auxiliary parameter h , the auxiliary function H , the initial guess 𝑦0(𝑡) and the auxiliary linear 

operator L are so properly chosen that the series (21) converges at q = 1 . 

Then at q = 1 , the series (21) becomes  

                                                                      �̃�(𝑡, 1)

=  𝑦0(𝑡) + ∑ 𝑦𝑚 (𝑡)

∞

𝑚=1

                                                                              (23) 

Therefore , using equation (20) , we have  

                                                                     𝑦(𝑡)

= 𝑦0(𝑡) + ∑ 𝑦𝑚(𝑡)

∞

𝑚=1

                                                                                    (24) 

Where the terms  𝑦𝑚(𝑡) can be determined by the so-called high-order deformation equation described below . 

4.2 High – Order Deformation Equation  

Define the vector  

�⃗�𝑚 = {𝑦0(𝑡), 𝑦1(𝑡), … , 𝑦𝑚(𝑡)} 

According to the definition (22) the governing equation of 𝑦𝑚(𝑡) can be derived from the zeroth-order 

deformation equation(19) .  

Differentiating zeroth-order deformation equation (19) m times with respect to the embedding parameter q and 

then setting q = 0 and finally dividing by 𝑚! We have the so called m
th

 – order deformation equation  

      𝐿[𝑦𝑚(𝑡) − 𝑋𝑚𝑦𝑚−1(𝑡)] = ℎ𝐻(𝑡)𝑅𝑦𝑚
(�⃗�𝑚−1, 𝑡)                                                                (25) 

Where  

                                                   𝑅𝑦𝑚
(�⃗�𝑚−1, 𝑡)

=
1

(𝑚 − 1)!

𝜕𝑚−1𝑁[𝑡, �̃�(𝑡), �̃�(𝜙(𝑡))]

𝜕𝑞𝑚−1
|

𝑞=0

                                                 (26) 

And  

                                                                                         𝑋𝑚

= {
0   ,   𝑚 ≤ 1
1   ,   𝑚 > 1

                                                                              (27) 

Notice that 𝑅𝑦𝑚
(�⃗�𝑚−1, 𝑡) given by the above expression is only dependent upon y_0 (t),y_1 (t),y_2 (t),…,y_(m-

1) (t)  which are known when solving the mth – order deformation equation (25) . 

The m
th

 – order approximation of y(t) is given by equ.(12) 
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5. Numerical Examples 

In this section we shall use the HAM to solve the non-linear delay differential equations of fractional order and 

the results obtained using this scheme will be compare with the analytical solution     

Example (1):- 

Consider the FDDES 

   𝐷𝑡
𝛼𝑐 𝑦(𝑡) =

1

2
𝑒

𝑡
2𝑦 (

𝑡

2
) + 

1

2
𝑦(𝑡)    ,   0 ≤ 𝑡 ≤ 1  , 0 < 𝛼 ≤ 1                                             (28)  

𝑦(0) = 1 

Where the exact solution was given in (Evans,2004), as 𝑦(𝑡) = 𝑒𝑡. 

And in order to solve equation (29) using HAM.  

First we choose the initial approximation 𝑦0(𝑡) to be  

                                                                                      𝑦0(𝑡) = 1                                                       (29) 

And according to equation (17) then  

    𝑁 [𝑡, 𝑦(𝑡), 𝑦 (
𝑡

2
)] = 𝐷𝑡

𝛼𝑐 𝑦(𝑡) −
1

2
𝑒

𝑡
2𝑦 (

𝑡

2
) − 

1

2
𝑦(𝑡)                                                       (30) 

Set  𝐿 = 𝐷𝑡
𝛼𝑐  , ℎ = −1    𝑎𝑛𝑑   𝐻 = 1 hence according to equation (25) we have  

    𝐷𝑡
𝛼𝑐 [𝑦𝑚(𝑡) − 𝑋𝑚𝑦𝑚−1(𝑡)] = −𝑅𝑦𝑚

(�⃗�𝑚−1, 𝑡)                                                                      (31) 

where 

        𝑅𝑦𝑚
(�⃗�𝑚−1, 𝑡) = 𝐷𝑡

𝛼𝑐 𝑦𝑚−1(𝑡) −
1

2
𝑒

𝑡
2𝑦𝑚−1 (

𝑡

2
) − 

1

2
𝑦𝑚−1(𝑡)                                         ( 32) 

 

Operating 𝐼𝑡
𝛼 to the both sides of equation (31) and using equation (29) therefore one can get the functions 

𝑦1, 𝑦2, … one after one in order by solving the linear high – order deformation (31) . 

Following table(1) represent the approximate solution of example (1) using HAM up to three terms for different 

values of α and  with a comparison with the exact solution when α = 1. It is noticed that we are made an 

approximation to 𝑒
𝑡

2 using Maclurian series expansion up to three terms .  

 

Table  (1)The approximate solution of example (1) using different values of α with a comparison with the exact 

solution when α = 1 

t 
HAM 

 0.5 

HAM 

0.75 

HAM 

1 
Exact 

0 1 1 1 1 

0.1 1.45 1.216 1.105 1.105 

0.2 1.701 1.391 1.221 1.221 

0.3 1.926 1.565 1.347 1.35 

0.4 2.142 1.745 1.485 1.492 

0.5 2.356 1.932 1.636 1.649 

0.6 2.573 2.128 1.799 1.822 
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0.7 2.794 2.334 1.976 2.014 

0.8 3.022 2.553 2.167 2.226 

0.9 3.26 2.784 2.374 2.46 

1 3.508 3.029 2.598 2.718 

Examle (2):- 

Consider the FDDES  

   𝐷𝑡
𝛼𝑐 𝑦(𝑡) =

3

4
𝑦(𝑡) + 𝑦 (

𝑡

2
) − 𝑡2 + 2  ,    0 ≤ 𝑡 ≤ 1,    1 < 𝛼 ≤ 2                                                      (33) 

𝑦(0) = 0                                                                                                                     

Where the exact solution was given in (Evans,2004), as 𝑦(𝑡) = 𝑡2. 

And in order to solve equation (33) using HAM 

First we choose the initial approximation 𝑦0(𝑡) to be  

                                                                      𝑦0(𝑡) = 0                                                                               (34) 

And according to equation (17) then  

 𝑁 [𝑡, 𝑦(𝑡), 𝑦 (
𝑡

2
)] = 𝐷𝑡

𝛼𝑐 𝑦(𝑡) −
3

4
𝑦(𝑡) −  𝑦 (

𝑡

2
) + 𝑔(𝑡; 𝑞)                                                                (35) 

𝑤ℎ𝑒𝑟𝑒 𝑔(𝑡; 𝑞) = 2 − 𝑡2𝑞 

Set  𝐿 = 𝐷𝑡
𝛼𝑐  , ℎ = −1    𝑎𝑛𝑑   𝐻 = 1 hence according to equation (25) we have  

       𝐷𝑡
𝛼𝑐 [𝑦𝑚(𝑡) − 𝑋𝑚𝑦𝑚−1(𝑡)] = −𝑅𝑦𝑚

(�⃗�𝑚−1, 𝑡)                                                                              (36) 

Where 

       𝑅𝑦𝑚
(�⃗�𝑚−1, 𝑡) = 𝐷𝑡

𝛼𝑐 𝑦𝑚−1(𝑡) −
3

4
𝑦𝑚−1(𝑡) − 𝑦𝑚−1 (

𝑡

2
) − 𝑊𝑛(𝑡)                                       (37) 

𝑤ℎ𝑒𝑟𝑒 𝑊1 = 2   𝑎𝑛𝑑  𝑊2 = −𝑡2  , 𝑎𝑛𝑑  𝑊𝑛 = 0  , 𝑛 = 3,4, …   

Operating 𝐼𝑡
𝛼 to the both sides of equation (36) and using equation (34) therefore one can get the functions 

𝑦1, 𝑦2, … one after one in order by solving the linear high – order deformation (36). 

Following table(2) represent the approximate solution of example (2) using HAM up to three terms for different 

values of α and with a comparison with the exact solution when α = 2. 

Table (2)The approximate solution of example (2) using different values of α with a comparison with the exact 

solution when α = 2 

t 
HAM 

 1.5 

HAM 

1.75 

HAM 

2 
Exact 

0 0 0 0 0 

0.1 0.048 0.022 0.01 0.01 

0.2 0.137 0.075 0.04 0.04 

0.3 0.255 0.153 0.09 0.09 

0.4 0.397 0.254 0.16 0.16 

0.5 0.563 0.377 0.25 0.25 

0.6 0.75 0.521 0.36 0.36 

0.7 0.958 0.686 0.49 0.49 

0.8 1.186 0.872 0.64 0.64 

0.9 1.434 1.077 0.81 0.81 

1 1.7 1.303 1 1 
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Example (3):- 

Consider the FDDES  

   𝐷𝑡
𝛼𝑐 𝑦(𝑡) = 1 − 2𝑦2 (

𝑡

2
)       ,      0 ≤ 𝑡 ≤ 1  , 0 < 𝛼 ≤ 1                                                         (38) 

                                                 𝑦(0) = 0 

The exact solution was given in (Evans,2004), as 𝑦(𝑡) = sin 𝑡. 

And in order to solve equation (38) using HAM 

First we choose the initial approximation 𝑦0(𝑡) to be  

                                 𝑦0(𝑡) = 𝑡                                                                                                                    (39) 

And according to equation (17) then  

 

   𝑁 [𝑡, 𝑦(𝑡), 𝑦 (
𝑡

2
)] = 𝐷𝑡

𝛼𝑐 𝑦(𝑡) − 1 + 2𝑦2 (
𝑡

2
)                                                                                       (40) 

Set  𝐿 = 𝐷𝑡
𝛼𝑐  , ℎ = −1    𝑎𝑛𝑑   𝐻 = 1 hence according to equation (25) we have  

  𝐷𝑡
𝛼𝑐 [𝑦𝑚(𝑡) − 𝑋𝑚𝑦𝑚−1(𝑡)] = −𝑅𝑦𝑚

(�⃗�𝑚−1, 𝑡)                                                                                         (41) 

Where 

                             𝑅𝑦𝑚
(�⃗�𝑚−1, 𝑡) = 𝐷𝑡

𝛼𝑐 𝑦𝑚−1(𝑡) + 2 ∑ 𝑦𝑖 (
𝑡

2
) 𝑦𝑚−1−𝑖 (

𝑡

2
)

𝑚−1

𝑖=0

− (1 − 𝑋𝑚)              (42) 

Operating 𝐼𝑡
𝛼 to the both sides of equation (41) and using equation (39) therefore one can get the functions 

𝑦1, 𝑦2, … one after one in order by solving the linear high – order deformation (41). 

Following table(3) represent the approximate solution of example (3) using HAM up to three terms for different 

values of α  and with a comparison with the exact solution when α = 1   

Table (3)The approximate solution of example (3) using different values of α with a comparison with the exact 

solution when α = 1 
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t 
HAM 

 0.5 

HAM 

0.75 

HAM 

1 
Exact 

0 0 0 0 0 

0.1 0.099 0.1 0.1 0.1 

0.2 0.195 0.197 0.199 0.199 

0.3 0.286 0.292 0.296 0.296 

0.4 0.371 0.382 0.389 0.389 

0.5 0.45 0.467 0.479 0.479 

0.6 0.523 0.547 0.565 0.565 

0.7 0.589 0.619 0.644 0.644 

0.8 0.649 0.685 0.717 0.717 

0.9 0.703 0.744 0.783 0.783 

1 0.751 0.795 0.842 0.841 

 

6.    Conclusions 

         In this paper we have been used the HAM for solving variable order delay differential equations of 

fractional order. Three examples were solved in the view of the HAM with good approximation and agreement 

with the exact solution. The results presented in this paper shows that this method gave us rapidly and acceptate 

solution 
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