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Abstract:

The objective of this paper is to study the dynamical behavior of an aquatic food chain system. A
mathematical model that includes nutrients and harmful phytoplankton and zooplankton is proposed and
analyzed. The phytoplankton produces a toxic substance as a strategy of defense against predation by
zooplankton. Its assumed that all the feeding processes in this food chain are depending on the Holling type-II
functional response. Further a portion of dead phytoplankton and zooplankton are return to the nutrient due to the
decomposition process. This model is represented mathematically by the set of nonlinear differential equations.
The existence, uniqueness and boundedness of the solution of this model are investigated. The local and global
stability conditions of all possible equilibrium points are established. The occurrence of local bifurcation (such as
saddle-node, transcritical and pitchfork) a long with Hopf bifurcation near each of the equilibrium points are
discussed. Finally, numerical simulation is used to study the global dynamics of this model.

Keywords: nutrient , phytoplankton, zooplankton, stability analysis, stability bifurcation.

1. Introduction:

The nutrient —phytoplankton—zooplankton (NPZ) model is a common tool in oceanographic research. The NPZ
model incorporates one of the simplest set of dynamics that usefully to describe oceanic plankton dynamics.
Their acceptability as a research tool is by no means universal [franks and chen, 2000][1].Phytoplankton
transform mineral nutrients into primitive biotic material using external energy provided by the sun. The
dynamic relationship between phytoplankton and nutrients has long been of great interest in both experimental
and mathematical ecology its universal existence and important [2]. Some type of phytoplankton release toxic as
a defensive strategy against the predation, these types are known as harmful phytoplankton. For example harmful
algal bloom (HABs), which have adverse effects on human health, fishery, tourism, and the environment. In
recent year considerable scientific attention has been given to HABs. Since the phytoplankton is a base of all the
aquatic food chain systems and most of zooplankton organism depends directly on the phytoplankton in its
feeding process. Therefore toxic substances released by harmful plankton play an important role in this context
see for example [3]. phytoplankton organisms are the dominant primary producers in the pelagic environment.
They convert inorganic materials into new organic compounds by the process of photosynthesis, starting thereby
most aquatic food webs [4]. phytoplankton production is responsible for approximately 40% of the global
primary productivity, hence the stocks of these tiny plank tonic algae play a significant role for marine reserves
and fishery management. Pollution of freshwater and marine systems by anthropogenic sources has become a
concern over the last decades. Organic (e.g triazine herbicides) [5-8]or inorganic (e.g. heavy metal) compounds
[5,6,9-12] both may have
harmful effects.

The dynamics of most the biological systems can be represented mathematically by a set of first order
nonlinear differential equations. These systems are known as a mathematical model for such biological systems
and can be studied mathematically. Consequently, in this paper one kind of aquatic ecological model is proposed
and analyzed .

2. Mathematical model formulation:

Consider the ecological system that consisting of nutrient, phytoplankton and zooplankton with Holling
type-11 functional response. According to the
specific hypotheses, mentioned below, this system can be modeled mathematically by using the following set of
nonlinear equations:

dN NP
—=D(Ng—-N)- +mMeP +mosoZ = ot

m (No—N) 2 + N 161 262 1(t)

dP kNP PPZ

== (Dtg)P- = f,(t 1
gt~ ap N (D+é&1) AP 2(t) ()

dz ko pPZ
=27 (p Z —6aPZ = fa(t
dt - peP (D+e&p) 3(t)

94


http://www.iiste.org/
mailto:sara.jabbar9@gmail.com
mailto:rknaji@gmail.com

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) l'H.i.l
Vol.4, No.14, 2014 NS'E

here N(t), P(t) and Z(t) denoted the densities of nutrient, phytoplankton and zooplankton at time t
respectively, while the parameters are assumed to be positive parameters and can be described as following: D
is the dilution rate, N is the concentration of the input nutrient, mj <1; (i =1,2) is the conversion factor from

dead phytoplankton species and dead zooplankton species respectively to the nutrient due to the decomposition
operation, aj and ap are the maximum specific ingestion rate and the half saturation constant of phytoplankton,

£ and S are maximum attack rate and half saturation constant of the zooplankton, kj <1; (i=12) is the

conversion factor from nutrient to phytoplankton and from phytoplankton to zooplankton respectively. € the
liberation rate of toxin substance by the harmful ,(a )the maximum zooplankton in gestation rates for the toxic
substance produced by phytoplankton, finally the natural mortality rate of phytoplankton and zooplankton are

denoted by &1 and €2 respectively. The above model is build depending on the following set of hypotheses:

1. There is a constant concentration of nutrient with constant rate of dilution. The nutrient up taken by the
phytoplankton according to the Holling type-II

functional response. On the other hand a portion of the dead phytoplankton and zooplankton return to the
nutrient due to the decomposition operation.

2. In the absence of nutrient the phytoplankton decay exponentially due to dilution and natural death. Further
decay facing the phytoplankton due to the feeding process by zooplankton.

3. The zooplankton feeds on the phytoplankton according to the Holling type-11 and decay exponentially due to
dilution and natural death. Further it is assumed that the zooplankton affected by the toxin produced by the
phytoplankton during the predation process.

Theorem (1) : All the solutions of the system (1) are bounded:

Proof: Let W = N + P+ Z then by differentiating this variable with respect to time we obtain:
W _ BN — DN — (1 ky)-22NP
. dt a>+N

—(1-m)eP - (1-mp)epZ

-DP-(1-kp) Pz —DZ - 6aPZ.
P +P

dd_vt\lzDNo—D(N+P+Z).:>dd—V':Is DNg — DW.

Consequently, by solving this differential inequality we get that
W (t) <Wq exp(-Dt) +%(exp(—Dt) ~1)  So,ast—»o0 we getthat W (t) < %. .

3. Existence of equilibrium point:
In this section the existence of all possible equilibrium points of system (1) is discussed as shown
below:

The nutrient equilibrium point Eg = (Ng,0,0) always exists.
The zooplankton free equilibrium point Eq = (N’, P’,0) where
N’ = aZ(D+51) P = le(No—N')

kigg —(D+¢1) (D+e1)—msrkg
Clearly, El belongs to the interior of the positive quadrant of NP —plane, which denoted by

Int.RE = {(N, P)e R2 ‘N>0,p> 0}, provided that one set of the following sets of conditions holds:

N’ < Ng and Mgk < D+ &1 <agkq (2a)
Or

N'>Ngand D+¢ < min.{alkl, mlé‘lkl} (2b)
The coexistence or positive equilibrium point can be established as follows.
From the third equation of system (1) we obtain that:

;12—f';—(o+gz)—9apzo

Hence we obtain that
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6aP? + (D + &y + B8 —Ko )P+ (D +£) =0
Clearly, due to discard rule we have either two positive real roots (given below) or else there are no positive
roots depending on the following conditions whether it hold or violate respectively.

(D+e&2)+ pba<ko (3a)
(D+ep+ Bioa—kyB) > 4683 (D +&p) (3b)
These two positive real roots can be written as:
__(D+&p+ proa—kyp)
R, Py = e

i%\/(D+82 + p10a ko B)% — 4685 (D + £7)

By substituting B for each (i =1,2) in the second equation of system (1) and equating it to zero, then we get
after some calculation a unique root given by that:

Zi = N(B1+PR)kiag —(D+e1)]-a2(f + R )(D+é1) 3d)
B(az +N)
Now by substituting the value of P, and Zi for each (i =l,2) in the first equation of system (2.1) and
equating it to zero, we obtain after some calculation a unique positive root given by

Ni :ﬂ+\[H12+4DH2 | (3¢)
2D 2D
here H; =DNg + &R + mogsZ; —Day — g R
Ho = DNgay + aomye1 B +aomosaZ;
Clearly by using N; for each (i =12) in Zj, then Z;j will be positive constant provided that
._a(D+é)
kjag — (D +41)
According to the above calculation, system (2.1) have two positive equilibrium points, denoted by
Ey> =(N1,R,2Z7) and E3=(Ny,P,Z9), belong to  the  positive  octant  of

RS = {(N, P,Z)eR3:N>0,P>0,Z > 0} provided that conditions (3a), (3b) and (3f) hold.

(3c)

>0 (3f)

4. Local stability analysis

In this section we will study the local stability analysis near each of the above equilibrium points with
help of linearization technique as shown below.
Straightforward computation shows that the Jacobian matrix of system (1) can be written as

J—[aij 3 (4)
where
a1 —D—LZPZ<0,a12=_aN +mlgl,a13=m252>0,a21=k1a1—a2pz>0.
(a+N) ap +N (ap +N)
a22=kla—lN—(D+£1)— Bz + ﬂpzz,azgz— AP <0. ag1 =0.
ap +N B+P (B +P) P +P

k Z k
a3y =Lﬂ12—6az,a33 _KefP —(D+&9)—6aP.
(B +P) p+P
Consequently, the Jacobian matrix at each of the above equilibrium points can be written as follows
The Jacobean matrix of system (1) at the equilibrium point Eq =(Ng,0,0) can be written as:
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I - No ]
-D A0 e Mog
a5 + Ng 1€ 262
kia; — (D + No—a»(D +
Jo=| 0 [kiag — (D +&1)INg —a2(D + &) 0 (52)
as +Ng
0 0 —(D+&p)

Clearly the eigenvalues of J o lie on the main diagonal and given by

kja; — (D +&1)]Ng —ap(D +
Jon =-D <0, jgp = KA~ ;;)L\?O 20+2) o (D+e)<0

where /10U represents the eaginvalues that describe the dynamics in the U -direction. Note that the eagenvalue

in the P -direction will be negative and hence the nutrient equilibrium point Egq is locally asymptotically stable
provided that
aki<D+g (5b)
Or
as(D+&)

kia; > (D + and N <
181 > (D +¢1) 0 Y a—(D+ep)

(5¢)

otherwise it will be saddle point.
The Jacobean matrix of system (1) at the zooplankton free equilibrium point E; = (N’, P’,0) can be written as:

_D- alazP 5 — (D + 81) + mlé‘lk]_ Moéo
(ay +N') ky
Jl = &klpz 0 _ ,BP ' (62)
(ap +N) p+P
0 0 PRaP —(D+&p)—6aP’
i pL+P 1
Consequently the eigenvalues of Jq satisfy the following relations
AN +A4p =—D—&PZ<O
(ag +N')

aarP’

AN Ap = —2E——[(D + &1) — mpziky]
(a2 +N’)

P!
Mz =&,—(D+82)—6HP'
P +P
Straightforward computation shows that all these eigenvalues will be negative and hence Eq =(N’,P’,0) is
locally asymptotically stable provided that the following conditions holds, otherwise it is saddle point

(D +é&1) > mek (6b)
glki E: <(D+é&p)+6aP’ (6¢c)

The Jacobean matrix of system (1) at the positive equilibrium point Ep =(Np, P, Z1), similarly for
E3 =(N2,P>,Z5), can be written as

J2 =[Mijjlax3 @
where
aj apPy aN kjaja
Mig=-D-"—""75 M 2‘1—&,+ myg1, M3 = Mo, Mpg = —1-221 2P12 :
(a2 +Ng) az + N1 (ay +Nq)
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Z ko852

Moo :'Bpl—lzl Mog =— Iia) M31=0,M3» :ilz_éazll M3z =0.

(BL+Py) AR (B +R)
The characteristic equation of Jo is given by

Bt AP+ PAod+ Ag=0 (7a)
where

A ==(M11+M22).

Ao =M11M2 —M1pM21 —Mp3Mgy.

Ag = Mg2[M11M23 —M13M21].
And

A=—(My1 +M2)[M11M 2 — M1oMa1 ]+ M3p[M2oMa3 + M13May] (7b)
Note that according to the Routh-Hurwitz criterion all the eigenvalues of Jo have negative real parts and hence
E» is locally asymptotically stable if and

only if A; >0 for i =1,3 and A>0. Therefore the conditions that guarantee the local stability of Eo are
established in the following theorem.

Theorem (2): The positive equilibrium point E» is locally asymptotically stable provided that the following
conditions are satisfied.

m]_81R1 < alN]_ (8a)
2 2 2
Z
max R4 PLRI(DR” +2q2R) | Ry2 < min. k2fB [ R (8b)
aay kjaap (gNp —meRy) fa | kimper
3
Rp? < K1B132M222R, (80)

2
B Ry
here Ry =ap+Njand Ro =31 +R.
Proof: By using the elements of Jo, it is easy to verify that condition (8b) guarantees that A; >0 and A3 >0.

While conditions (8a) and (8b) ensures that the first term of A will be positive, however conditions (8b) and
(8c) guarantees the positivity of the second term of A . Hence all conditions of Routh-Hurwitz criterion are
satisfied with the help of the above conditions. Therefore all the eigenvalues of Jo have negative real parts and

hence Ej is locally asymptotically stable. [

5. Global stability analysis:
In this section the region of the global stability of each equilibrium points of system (1) is established
with the help of Lyapunov function as shown in the following theorems.

Theorem (3): Let the nutrient equilibrium point Eg =(Ng,0,0) is locally asymptotically stable, then it is

globally asymptotically stable in the sub region Gy of the domain RJ::’ that satisfy the following condition.

. D+ D+

N0+k1<N<m|n.{N0+ 81,N0+ 82} 9)
mey me2

Proof. Consider the following real valued function

VRY:

Clearly Vg : RE:’ — R Dbe a continuously differentiable function that satisfy that
Vo (N,0,0) >0 and Vy(Ng,0,0) =0
Further,
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dvo _ =(N )d_N d_P dz
dt dt dt dt
alNP S (N=No k) -LPE (1-ky)

—D(N - No)

P +P
- P(mlé‘lNo +D+ & - m]_é‘]_N)
—Z(mpeoNg + D+ &9 —moeoN)
Consequently, by using the given condition we get that

dVp 2
“0< pD(N-N
. ( 0)

Thus d(%<0 for any initial condition in the interior of Gq and hence V( is a Lyapunov function. So,

Eo =(Np,0,0) is globally asymptotically stable in the sub region Gy . =

Obviously, Gj represent the basin of attraction of the nutrient equilibrium point Eg =(Ng,0,0) of
system (1).
Theorem (4): Let the zooplankton free equilibrium point Eq = (N’, P’,0) is locally asymptotically stable, then

it is globally asymptotically stable in the sub region G of the domain Rf that satisfy the following conditions.

D+é& > M (10a)
ar+N
P>P +ky (10b)
N < N’+M (10c)
maé&p
2
72 <4r1va (10d)
kjajaoP aiN’
here =me& + —+ ,
712 =Meéy R ay + N’
ajaoP CEL
=D+—% and =(D+¢g)- .
11 R 722 =(D+é1) 2y + N’

Proof. Consider the following real valued function
(N-N)*  (P—P)?
2 2
Clearly Vq : RJ?’r — R be a continuously differentiable function that satisfy that
V1(N,P,0) >0 and V4(N',P’,0)=0

Vi =

Further
My I, ppydP 02
dt dt dt  dt
S—[D+a1a2p}(N—N')2+ ey +22182P | &N e py
R R ap +N
klalN 2
~[(D+&)- |(P=P")* ~[D+e& +mpeaN'—maeoN |2
ap +
—|P-(P"+k
[P-( 2>]ﬂ1 5

here R =(ap + N)(a» + N'). Consequently, by using the given conditions we get that
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B <[ N -N) o (- P

dv I e L . .
Thus dc':\l <0 for any initial condition in the interior of G, and hence Vq is a Lyapunov function. So,

Eq =(N’,P’,0) is globally asymptotically stable in the sub region Go. [

Again, G represent the basin of attraction of the zooplankton free equilibrium point Ej =(N’,P’,0) of
system (1).

Further more since there are two positive equilibrium points in the interior of Rf having the same local stability

conditions but with different neighborhood of starting points then its not possible to study the globule stability of
them using
Lyapunov function. Therefore we will study it numerically instead of analytically as shown in last chapter.
6. The local Bifurcation

In this section an investigation for the dynamical behavior of system (1) under the effect of varying one
parameter of each time is carried out. The
occurrence of local bifurcation in the neighborhood of the equilibrium point are studied in the below theorems.
Consider the Jacobean matrix of system (1) given by equation (4). It is easy to verify that straight forward
computation gives that:

2ajanv. V1P
2 ‘@ : Ngy 2
(a2 +No)
D2F(X,a)(\/,V): 2kiaraovy v viP . 26P1v2 yAY) v3) (11)

@+Np)?  @2¥NO) (g g2 (AP

2K2PPIVD (o - DY2 y opn
1P (v3 (ﬂ1+P)) v2v3

where V = (Vl,V2,V3)T . Further

6a1a2v12 V1P

(v2 - )
(ag+Ng)® ~ (@2+No)

Gﬂﬂlvg R
(p+p)3  (ALHP)

6k;|_&11a2v12 V1P

3
D3F(X,a)(V,V,V) = -
(ag+N)3 (@2+No)

) (12)

Vo) +

6205 2y
(pr+p)3 ALHP

v3)

where X = (N,P,Z)T , and « be any parameter .

D+ ar+N
Theorem(5) : Assume that the parameter kq passes through the value kl* = ( gl)l\(l 2+N) , then
aNo

system (1) near the equilibrium point Eg has:

1. No saddle-node bifurcation.
2. A transcritical bifurcation but no pitch-fork bifurcation can occur
provided that the following condition holds :

L= | K2dv 5 [1— TP j+ Zﬁzz 20 (13)
(a2 +Np) (a2 +Np) ﬂl
3. A pitch-fork bifurcation provided that:
L=0 (14a)
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kiagapT,? TP Bz
> ~1|-£5|=0 (14b)
(a2 + Np) (ag +Np) By
Where Tp = —ﬂﬂnlgl i
(a2 +No) D

Proof : According to the Jacobian matrix of system (1) at Eq that is given by equation (5a), it is easy to verify
thatas kq = kl* , then the Jq(Ep, kf) has the following eigenvalues : AgN =-D,Agp =0,407 =—(D+¢1)

Let V = (Vy, \72,\73)T be the eigenvector of Jg(Eg, ki) corresponding to the eigenvalue Agp =0 . Then it is
easy to check that V = ((T 1V, Vo ,O)T , Where Vo represents any nonzero real value

Also, let C = (61,62,63)T represents the eigenvector of Jg (Eo,kl*) that corresponding to the eigenvalue

Agp = 0. Straight forward calculation shows that C = (0, EZ,O)T where Cy is any nonzero real number.

T
alNIT\I ,OJ , Where X =(N,P,Z)T and F =(fq, fo, f3)T with

oF
Now, since —=F. (X,kq)=]0,
ok k, (X, k) (

fi;1=212,3 represent the functions in the right hand side of system (1) then we get Fkl(EO, kl*) = (O,O,O)T
and hence the following is obtained:

C ' [Fi (Eo.k)]=(0,52,0)(000) =0
Thus the system (1) at E, does not experience any saddle-node bifurcation in view of sotomayor theorem [13].

While the first condition of the transcritical and pitch-fork bifurcation is satisfied .
Also, since

CT[DRy, (Eo, K V1= (0,52.00,

where DFkl(EO,kl*) =§Fk(x,kl) and then substitite X = Eq,kq =kj . Moreover, according to

N N
&\72,0) =TV (al—o) 20
a> +Ng a> +Ng

equation (ll) we have

CT[D2F (Eq. ki) V)] = 26,72 kqaagv ) B2y .0
[ (Eg.k{)V ,V)]= ((a2+N0)2( (a2+N0)) ﬂl)i

where D2F(Eg, ki) = DJg(X, k) with X =Eg kj =ki .

Clearly, C'[D2F(Eg,ki)V,V)]#0  provided that condition (13) holds, and then by sotomayor
theorem [13] the system (1) possesses a transcritical bifurcation but not pitch-fork bifurcation near Eg.
However, if the condition (14a) holds we get that C_ZT[DZFkl(EO,kf)(\T,\T]zo , and hence further
computation shows

- S 5 k@aT? TP
CTID3F(Eq. ki)W ,V V)] = 6c3v3 (

2 No) -D- Pz ) #0
an +

(aZ + NO) 2 0 ,81

Clearly if the condition (14b) holds then system (1) possesses a Pitch-fork bifurcation near Eq at ki = kl* , and

hence the proof is complete. [

PP oo

Theorem(6): Assume that the parameter &9 passes through the value g’zk = Y
+

, where g5 is

positive parameter under the condition
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PV
PP by ap (15a)
p+P

then system (1) near the equilibrium point Eq has:

1. No saddle-node bifurcation.

2. A transcritical bifurcation but no pitch-fork bifurcation can occur
provided that the following condition holds :

Ly = k2Bp 5 (1— 2T : —aaj £0 (15b)
(B +P) (B +P)
3. A pitch-fork bifurcation provided that .
L, =0 (16a)
L3:(L2, —1j #0 (16b)
(AL+P)

" n2 '
where Tp = ki¥3 (m &y — D@z +N) s

D + &1 (1— k) kiagap (AL +P) k(B +P')
Proof : According to the Jacobian matrix of system (1) at Ej that is given by equation (6a) , it is easy to verify

that if &9 = g}k the eigenvalues of equation (6a) satisfy the following relation:

ajas P’
ﬂ,lN +/1]_p =—D—(azl+—2N')2,
a]_a]_P'
N Ap =—————[(D+ &) —meky,
IN AP (a2+N,)[( 1) — Myerky
Mz =0

Let V = (\71,\72,\73)T be the eigenvector of Jq(Eq,&5) corresponding to the eigenvalue g, =0, then it is
N2y
B(az +N')"V3
ajazky (B +p’)
Also, let C = (él,ég,ég)T represents the eigenvector of JlT (El,gi) that corresponding to the eigenvalue

easy to check that V = ( ,ToV3,V3), where V3 represents any nonzero real value.

Az =0 .Straightforward calculation shows that C =(0,, ég)T where C3 is any nonzero real number.

Now, since aa—F =Fy, (X, 62) =(mpz,0-Z)" ,where X =(N,P,Z)T and F =(fy, 2, f3)" with
)

fi;1=1,2,3 represent the right hand side of system (1) then we get ng (Eq, 55) = (O,O,O)T and the following
is obtained:
CTIF,, (E1.£3)]1=(0,0,63)(0.0.0)" =0

Thus the system (1) at E(y does not experience any saddle-node bifurcation in view of sotomayor theorem[13] .
While the first condition of the Transcritical and Pitch-fork bifurcation is satisfied. Also, since

CT[DF,, (Ep, £3)V1=(0,0,63)(mpV3,0,V3)" =—6303 0

where DFE2 (E1, ) =aix Fe, (X,£2)  and then substitute X =Ep, &3 = &5 . Moreover, According to

equation (11) we have
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CTID?F (Ey, £5)(V V)] = 26502T,| —2PA_q__Z2T2
[D°F (B, £2)(V,V)] = 2C303T) B Pyl P

where D?F(Ep,&3) =DJi(X, &) with X =E1 ,&p =5

—6a) |#0

Clearly , éT[DZF(El,gE)(\i,\i] #0 provided that condition (15b) holds, and then by sotomayor
theorems[13], the system (1) possesses a transcritical bifurcation but not pitch-fork bifurcation near Eg.
However , if the condition (16a) holds we get that ol [D2F(E1, g>2k)(\7,\7)] =0.

Also, According to equation (12) we have ¢t [D3F(E1,g>2k)(\7,\7,\7)]

2634
6k T,V5C
_ 2ﬂﬂlg§3( ZT2,_1) 40
(B +P)°  (BL+P)
Clearly if the condition (16b) holds then system (1) possesses a Pitch-fork bifurcation near Eqg atey = & *, and
hence the proof is complete. [

koBA
(B +P)%a

Theorem(7): Assume that the parameter € passes through the value 0" = , then system

(1) near the equilibrium point E2 has:
1. Saddle-node bifurcation provided that :

[Mzz ——M]"\iMZJ'JiO
11

[M23_M)¢o

2. No transcritical bifurcation .
3. No pitch-fork bifurcation .

Proof : According to the Jacobian matrix of system (2.1) at Eo that is given by equation (7) , It is easy to verify

(17)

thatas @ = @". The characteristic equation of J o that given by Eq. (7a).
Since Ag = M32[M11M23 —M13M21], where Mij represents the elements of the Jacobian matrix Jp. We

obtain that Ag =0 for 8 = 0" = Lﬂlz and hence .the eigenvalues of J o satisfy the following relation
(BL+R)"a

/1(/12 + A4+ Ap) =0, so either A=0 or (/12 + A A+ Ay)=0. Now if we assume that A =0. Then it

V= V1,V ,\73)T be the eigenvector of Jo(E2,0") corresponding to the eigenvalue A =0. Then it is easy

N T
to check that \V — [[M12M11M23—M12M21M13_M13J V3 ],(M21M13—M11M23)j\73’\73
M2oM11-M12M2g M11 )\ M2oM11-M1pM2g

where V3 represents any nonzero real value.

Also, let C= (51,52,53)T represents the eigenvector of Jg (E2,<9*)that corresponding to the eigenvalue

A =0 . Straightforward competition and under the condition (17) shows that C= (0,0, 53)T where C3 is any
nonzero real number.

Now, Since %z FO(X,0)=(0,0-aPZ)" ,where X =(N,P,Z)" and F =(fy, fp, f3)with Fj;i =1,2,3

represent the right hand side of system (1) then we get Fy(Ep,0) =(0,0,—aFiZl)T and the following is
obtained:
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CT[Fy(Ep.6")]=—cgaRZy #0
Then by sotomayor theorems [13], the system (1) possesses a saddle-node bifurcation but not transcritical and
pitch fork bifurcation. [

7. The Hopf bifurcation:
In this section, the occurrence of Hopf-bifurcation near the equilibrium point is studied below .

The Hopf bifurcation analysis near Eqg and Ej :
According to the Jacobean matrix of system (1) at EO and El which are given by equation (5a) and (6a)

respectively, it is easy to verify that Jg and Jq has three real eigenvalues. So, the necessary and sufficient

conditions for a Hop bifurcation to occur are not satisfies.
Theorem(8): Assume that the conditions (8a) and (8c) with the following condition are hold:

MREZL f71Ry (DR +aga,Py) <R,? <{k2ﬁﬂ}

max ,
qay; kyap(agNg —meRy) fa

(18a)

Then system (1) possesses a Hopf bifurcation around the equilibrium point E> when the parameter & passes

through 6 = 0" , where
o - =(M11+M22)[M13Mop ~M1pMpg]l . k254
aZy (MM o3 +M13Mp; a(f +P)?
and M ij represent the elements of the Jacobian matrix given by (7).

Proof: Consider The characteristic equation of Jo that given by Eq. (7a)

and A that given in Eqg. (7b).

Now, suppose that A= AjAy — A3 =0 then according to [14] there is possibility to occurrence of Hopf-
bifurcation if and only if the Jacobian matrix of system (1) near Eo has two complex conjugate eigenvalues, say
JAj = o iwy with the third eigenvalue is real and negative, in addition to the following two conditions:

@ (07)=0 (18b)
dd_a;l 40 (18c)
0-6"

where 6 = 6" represents the bifurcation parameter.
Now, to verify the necessary and sufficient conditions for a Hopf bifurcation to occur we need to find a

parameter satisfy A(6") =0, Ai(e*) >0and Ay 6*)>0 .
Consequently, if

0=—-(M11+M22)[M11M2 — M1oMo1 ]+ M32[M2oMo3 + M13Ma1]
it is easy to verify that the parameter's value that satisfy the above equation is:

o - —(M11 + M2p)[M11M2p —~M1pMpa] koS
aZy(M22Mp3 + M13Mpg a(B +R)?

where 6 is a positive parameter under the condition (8a), (8c) and (18a). Hence the coefficients of the
characteristic equation can be written as:

A (0")=-(M11+Mp)>0.

k Z
Ao (67) = M11M2p — M1pMa1 —Mp3 %12—9*321 >0
(BL+PR)

A(6%) = {I(Zﬁ—ﬂlzlz - e*azlJ[MllM 23 = M13M21].
(B +F)

Sofor @ =6" we have AjAy = Ag and then the characteristic equation becomes:
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Py(1)=(4+ Ai)(/lz + A2)= 0
Thus the roots become 41 =—A; and Ap3 = ii\/A_z.

Clearly, at @ = @™ there are two pure imaginary eigenvalues Ap 3 = +i,/ Ay with the other one of eigenvalues
real and negative, that is mean, Re(J; (9)19:9* = a;l(e*): 0, 1=2,3. Thus the first condition (18b) of the

necessary and sufficient conditions for Hopf bifurcation is satisfied at 6 = 0",

Let as now check the second condition (18c). Since, in general, the complex eigenvalues for any value of & can
be written as: Ay 3 =) *iwp

So to verify the transversality condition we apply the bifurcation criterion given by [23] as stated in chapter one

. Note that for @ = 8 we have @ =0 and wp =i,/ Ay , substitution into Eq. (1.25) gives that

P(0") =-2(M11M 22 — M1aMpq — M23(k2ﬂ—ﬁ1212—6’*621)-
(B+R)

* k *
@) =-2(M11+M2z) \/Mllez—Mlezl—Mze,(%zlz—@ azy)
(AL+P1)

©(0™) =-az3(M13M23 — M13M21).

K z
r©@") =(zM 23)[\/'\/'11'\/' 22 ~M12M21 —Ma3 (ﬂl2 - 9*621)}

(A+R)
Further by substitution into Eq. ©(z)¥(u)+ (1) () we obtain

O (1) + T () (22

kZﬂﬂlZl _ g*azl

B P)’ } ((M11M23 ~M13M21) = M23(M11 +M22))

2aZ| M11M 2 —M1oMp1 — Mzs{

Now, according to [14], the necessary and sufficient conditions for a Hop bifurcation to occur are satisfies if in
addition to the above the following condition should be satisfied ®(/¢)‘P(/¢)+F(/¢)d)(/¢)¢ 0. Clearly this is
will be hold under the given conditions and hence the proof is complete. m

8. Numerical simulation

In this section the dynamical behavior of system (1) is studied numerically for different sets of
parameters. The objectives of this study are: first investigate the effect of varying the value of each parameter on
the dynamical behavior of system (1) and second confirm our obtained analytical results. It is observed that, for
the following hypothetical values of the parameters with initial point (14.46,6.47,1.69); system (1) has
asymptotically stable positive equilibrium point, see Fig. (1).

D=0.2, Ng=40, 3 =1.25, a =8, m =0.5,

my =0.8, ky=0.4, ky=0.6, B=0.6, B =4, (19)
0=002 a=002, & =0.025, & =002
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Fig. (1): The solution of system (1) approaches asymptotically to stable positive point (14.46,6.47,1.69)

Now in order to discuss the effect of varying the parameters values of system (1) on the dynamical
behavior of the system, the system is solved numerically for the data given in Eqg. (19) with varying one
parameter each time. It is observed that, for the data given in Eq. (19) with varying one of the parameters values

Mo or &1, there is no change in the dynamical behavior of system (1) and the system still approaches to positive
equilibrium point.

For the data given in Eqg. (19) with 25< Ng <49, the solution of system (1) approaches to the
positive equilibrium point as shown in Fig. (2a), however for Ng > 49 the solution of system (2.1)

approaches to periodic dynamic in Int.RJ3r as shown in Fig.(2b), while for 7 < Ng <24 the solution of system
(1) approaches asymptotically to Ej = (N’, P’,O) in the interior of positive quadrant of NP-plane as shown in
Fig.(2c). Further for Ng <6 the solution of system (2.1) approaches asymptotically to Eg =(N0,O,0) on the
boundary N —axis as shown in Fig.(2d).

B —
0 02 04 06 08 1 12 14 16 18 2
Time

18 5

Populations

% 0.5 1 1.5 2 0 05 1 15 2

Time ‘10 Time Y10°

Fig.(4.2): Time series of the solution of system (1) for the data given by Eq (19) with different values of
Ng. (a) System (1) approaches to (9.0096,6.47,0.69) in Int.R:or’ for Ng =30. (b) System(2.1) approaches

to periodic dynamic in Int.RJ:E for Ng =55 (c) System (1) approaches to (6.54,4.16,0) in Int.RE of NP-
plane for Ng =18. (d) System (1) approaches to (3,0,0) on the N- axis for Ng =3.
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Similarly by varying the parameter a, keeping the rest of parameters values as in Eq. (19), It is observed
that for 26 <ap <49 the system (1) approaches asymptotically to Ej = (N’, P',O) in the interior of positive
quadrant of NP — plane, however for 0.05< ay <25 the system approaches to the positive equilibrium point,
while for ap <0.04 the system(1)

approaches to periodic dynamic in Int.Rf, but for ap =50 the solution of system (1) approaches
asymptotically to Eg =(Ng,0,0) on the boundary N —axis.

For the parameters values given in Eq. (19) with varying D in the range 0.18<D <0.25 the system
approaches to the positive equilibrium point as shown in Fig. (3a), however for D <0.17 the system (1)

approaches to periodic dynamic in Int.Rf as shown in Fig. (3b). Moreover for D >0.26 the system (1)

approaches asymptotically to Ej = (N ! P’,O) in the Int.RE of NP-plane as shown in Fig. (3c).

@ (b) 40
40

—N
0 —P
E—4 30 —z
30
% 20 % 20
g &
10 h 10
| e ‘ | | I
OWL,/ O\y \k/ \\Ju/ v v A /ﬁv WA O\/
0 1 2 3 4 5 5 0 1 2 3 4 5

Time 4 Time Time

X x10°
Fig.(3): Time series of the solution of system (2.1) for the data given by Eq (19) with different values of D.
() System (1) approaches to (13.29,7.33,1.45) in Int.Rf for D=0.21. (b) System(2.1) approaches to

periodic dynamic in Int.Rf for D=0.11. (c) System (2.1) approaches to (24,6.05,0) in Int.RE of NP-plane
for D=0.35.
Now by varying the parameter ko keeping the rest of parameters values as in Eq. (19), it is observed that

for ko > 0.7 the system(1) approaches to periodic dynamic in Int.RE, while for ko< 0.5 the solution of
system (1) approaches asymptotically to Eq = (N !, P',O) in the interior of positive quadrant of NP — plane.

Also varying the parameter [ keeping the rest of parameter values as in Eq. (19), it is observed that for
£ =05 ,=0.6, the solution of system (2.1) approaches to the positive equilibrium point. However for

£ =>0.7 the system (1) approaches to periodic dynamic in Int.Rf , while for £ <0.4 the solution of system

(1) approaches asymptotically to Ej = (N', P’,O) in the Int.RE of NP-plane.
For the parameters values given in Eq.(19) with varying S inthe range £ <0.1 and 4< /) <7 the
system approaches to the positive equilibrium point. However for 0.2< 5 <3 the system (1) approaches to

periodic dynamic in Int.Rf, while for £ >8 the solution of system (1) approaches asymptotically to

B = (N’, P’,O) in the Int.RE of NP-plane.

For the parameters values given in Eq.(19) with varying aj, it is observed that for dy > 0.8, the
solution of system (1) approaches to the positive equilibrium point as shown in Fig. (4a), however for a; =0.7
the solution of system (1) approaches asymptotically to Ej = (N ', P’,O) in the Int.RE of NP-plane as shown in
Fig. (4b). While for a; <0.6 the solution of system (1) approaches asymptotically to Eg = (NO,O,O) on the

boundary N — axis as shown in Fig. (4c).
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Fig.(4): Time series of the solution of system (1) for the data given by Eq (19) with different values of a7 .

Populations
Populations
Populations

10

(a) System (1) approaches to (9.29,6.47,2.82) in Int.R:or’ for a; =1.8 . (b) System (1) approaches to
(32,7.2.64,0) in Int.Rf_ of NP-plane for a; =0.7 . (c) System (2.1) approaches to (40,0,0) on the N- axis for
a;=0.1.

For the parameters values given in Eq.(19) with varying kq, it is observed that for 0.3<kj <0.5 the
system approaches to the positive equilibrium point as shown in Fig. (5a). However for 0.6 <kq <7 the system

(2.1) approaches to periodic dynamic in Int.Rf as shown in Fig. (5b), while for k; < 0.2 the solution of system
(1) approaches asymptotically to Eqg = (NO,O,O) on the boundary N — axis as shown in Fig. (5¢).

(a) (b) ©
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Fig.(5): Time series of the solution of system (1) for the data given by Eq (19) with different values of kl-

Time

(a) System (2.1) approaches to (14.46,6.47,1.69) in Int.RE for kl =0.4. (b) System(2.1) approaches to
periodic

dynamic in Int.Rf for k1 = 2. (c) System (2.1) approaches to (40,0,0) on the N- axis for k; =0.1.

Now for the parameters values given in Eq.(19) with varying &5 in the range &£ =0.07 the system
approaches to the positive equilibrium point as shown in Fig. (6a). However for &5 <0.07 the solution of

system (1) approaches asymptotically to Eq = (N !, P',O) in the Int.Rf of NP-plane as shown in Fig. (6b).
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Fig.(6): Time series of the solution of system (1) for the data given by Eq (19) with different values of &5.

(a) System (2.1) approaches to (12.6,7.33,1.52) in Int.Rf for g9 =0.09. (b) System (2.1) approaches to
(6.54,12.16,0) in INtR? of NP-plane for &, =0.03.

Similarly varying the parameter € keeping the rest of parameters values as in Eq. (19) shows that for

6 > 0.3, the solution of system (1) approaches asymptotically to Ej = (N’, P',O) in the Int.Rf of NP-plane,
while for @ <0.2 the system approaches to the positive equilibrium point.

Also varying the parameter (a) keeping the rest of parameters values as in Eq. (19) gives that for a <0.2
the system approaches to the positive equilibrium point. However for a>0.3 the solution of system (1)

approaches asymptotically to Eq =(N’,P’,0) in the Int.Rf of NP-plane.

Finally for the parameters values given in Eq.(19) with varying My, it is observed that when m <6.9,
the solution of system (1) approaches to the positive equilibrium point as shown in Fig. (7a), however for

my > 7 the system (1) approaches to periodic dynamic in Int.Rf as shown in Fig. (7b).
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Fig.(7): Time series of the solution of system (1) for the data given by Eq (19) with different values of m; .

(a) System (1) approaches to (14.266,6.47,1.66) in Int.Rf for my =0.1. (b) System(2.1) approaches to
periodic dynamic in Int.RJ::’ for m =122.

9. conclusions and Discussions:

In this chapter, a mathematical model consisting of nutrients, harmful phytoplankton and zooplankton
species has been proposed and analyzed. it is assumed that the phytoplankton producing a toxin substance as a
defensive strategy against the predation by zooplankton. However the zooplankton consumes the phytoplankton
according to Holling type-Il functional response. Finally a portion of the dead species of phytoplankton and
zooplankton is returned to nutrient due to the decomposition operation. The boundedness of the proposed system
(1) has been discussed. The dynamical behavior of system (1) has been investigated locally as well as globally.

Further, it is observed that the nutrient equilibrium point ( Eq ) always exist and it is locally asymptotically stable
point if and only if the conditions (5b) or (5c¢) hold otherwise it will be saddle point. The zooplankton free
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equilibrium point ( Eq) exists if the conditions (2a) and (2b) hold, and it is locally asymptotically stable point if
and only if the conditions (6b) and (6c) hold. Further it is observed that there are two positive equilibrium point
(Ep) and (E3) provided that the conditions (3a), (3b) and (3f) are hold, and they are locally asymptotically

stable points if and only if the conditions (8a), (8b) and (8c) are hold.

To understand the effect of varying each parameter on the dynamics of system (1) and to confirm our
obtained analytical results, system (1) has been solved numerically using the hypothetical parameters values
given by Eq. (19) and the following results are obtained:

1. It is observed that varying the parameters values mo and & do not have any effect on the dynamical
behavior of system (1) and the system still approaches to positive equilibrium point.

2.Gradually decreasing the parameter D, which stand for dilution rate, causes destabilizing of the system
(2.1) and the solution approaches asymptotically to periodic dynamic in the Int.Rf that means the
system still persist. However increasing the value of D, causes extinction of zooplankton species and

the system (1) approaches to equilibrium point Ej in the Int.RE of NP-plane. Thus there are two
bifurcation points of this parameter.

3. Gradually decreasing the parameter N, which stand for the concentration of the input nutrient, causes
extinction of zooplankton species and the system (1) approaches to equilibrium point Ep in the

Int.RE of NP-plane. Moreover further decreasing of Nq leads to extinction of phytoplankton
species too and the system approaches to Eq on the boundary of N-axis. However increasing the
value of Ng, causes destabilizing of the system (1) and the solution approaches asymptotically to

periodic dynamic in the Int.Rf that means the system still persist. Thus there are three bifurcation
points of this parameter.

4. Gradually decreasing the parameter @, which stand for the maximum specific ingestion rate, causes
extinction of zooplankton species and the system (1) approaches to equilibrium point Ep in the

Int.RE of NP-plane. Moreover further decreasing of a; leads to extinction of phytoplankton species
too and the system approaches to Eq on the boundary of N-axis. However as increasing the value of

ap the system (1) still approaches asymptotically to the positive point in the Int.RJ3r that means

increasing a; has a stabilizing effect on the system. Thus there are two bifurcation points of this
parameter.

5. Gradually decreasing the parameter ay, which stand for the half saturation constant of phytoplankton,
causes destabilizing of the system (1) and the solution approaches asymptotically to periodic dynamic
in the Int.Rf that means the system still persist. However increasing the value of a, causes
extinction of zooplankton species and the system (1) approaches to equilibrium point Ep in the

Int.Rf of NP-plane. Moreover further increasing of a, leads to extinction of phytoplankton species

too and the system approaches to Eg on the boundary of N-axis. Thus there are three bifurcation
points of this parameter.

6. Gradually decreasing the parameter mq , which stand for the conversion factor from dead phytoplankton
species to nutrient, has no effect on the system and the solution still approaches to the positive
equilibrium point. However increasing the value of my causes destabilizing of the system (1) and the

solution approaches asymptotically to periodic dynamic in the Int.Rf that means the system still
persist. Thus there are two bifurcation points for this parameter.
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7.Gradually decreasing the parameter ki, which stand for the conversion rate from nutrient to
phytoplankton , causes extinction in the phytoplankton and zooplankton populations and the system
approaches to Eg on the boundary of N-axis. However increasing the value of kl causes
destabilizing of the system (1) and the solution approaches asymptotically to periodic dynamic in the

Int.R;”: that means the system still persist. Thus there are two bifurcation points for this parameter.

8.Gradually decreasing the parameter Ky, which stand for the conversion rate from phytoplankton to
zooplankton, causes extinction in the zooplankton species and the system approaches to Ej in the

Int.RE of NP-plane. However increasing the value of ko causes destabilizing of the system (1) and

the solution approaches asymptotically to periodic dynamic in the Int.Ri3 that means the system still
persist. Thus there are two bifurcation points for this parameter.

9. Similarly the maximum attack rate £ of zooplankton has the same behavior as that of the conversion
rate from phytoplankton to zooplankton K.

10. Gradually decreasing the parameter /3, which stand for the half saturation constant of zooplankton,
causes destabilizing of the system (1) and the solution approaches asymptotically to periodic dynamic

in the Int.Rf that means the system still persist. Moreover further decreasing of S leads to return
back to stable case and again the system (1) approaches asymptotically to the positive point in the
Int.RE that means decreasing f; less than a specific value has a stabilizing effect on the system.
However increasing the value of f; causes extinction of zooplankton species and the system (1)

approaches to equilibrium point Ep in the Int.RE of NP-plane. Thus there are three bifurcation
points for this parameter.

11. Gradually decreasing the parameter €, which stand for the dilution rate, has no effect on the system
and the solution still approaches to the positive equilibrium point. However increasing the value of 8
causes extinction of zooplankton species and the system (1) approaches to equilibrium point Ejp in

the Int.RE of NP-plane. Thus there are two bifurcation points for this parameter.

12. Similarly the liberation rate of toxin substance by the harmful @ has the same behavior as that of the
dilution rate 4.

13. Finally decreasing the parameter ¢5, which stand for the natural mortality rate of zooplankton, has
no effect on the system and the solution still approaches to the positive equilibrium point. However
increasing the value of &5 causes extinction of zooplankton species and the system (1) approaches to

equilibrium point Ej in the Int.Rf of NP-plane. Moreover further increasing of £o leads to return
back to stable case and again the system (1) approaches asymptotically to the positive point in the

Int.R:oL’ that means increasing &2 more than a specific value has a stabilizing effect on the system.
Thus there are three bifurcation points of this parameter.
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