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 Abstract: 

 The objective of this paper is to study the dynamical behavior of an aquatic food chain system. A 

mathematical model that includes nutrients and harmful phytoplankton and zooplankton is proposed and 

analyzed. The phytoplankton produces a toxic substance as a strategy of defense against predation by 

zooplankton. Its assumed that all the feeding processes in this food chain are depending on the Holling type-II 

functional response. Further a portion of dead phytoplankton and zooplankton are return to the nutrient due to the 

decomposition process. This model is represented mathematically by the set of nonlinear differential equations. 

The existence, uniqueness and boundedness of the solution of this model are investigated. The local and global 

stability conditions of all possible equilibrium points are established. The occurrence of local bifurcation (such as 

saddle-node, transcritical and pitchfork) a long with Hopf bifurcation near each of the equilibrium points are 

discussed. Finally, numerical simulation is used to study the global dynamics of this model. 

 Keywords: nutrient , phytoplankton, zooplankton, stability analysis, stability bifurcation. 

                                                    
1. Introduction: 

  The nutrient –phytoplankton–zooplankton (NPZ) model is a common tool in oceanographic research. The NPZ 

model incorporates one of the simplest set of dynamics that usefully to describe oceanic plankton dynamics. 

Their acceptability as a research tool is by no means universal [franks and chen, 2000][1].Phytoplankton  

transform mineral nutrients into primitive biotic material using external energy provided by the sun. The 

dynamic relationship between phytoplankton and nutrients has long been of great interest in both experimental 

and mathematical ecology its universal existence and important [2]. Some type of phytoplankton release toxic as 

a defensive strategy against the predation, these types are known as harmful phytoplankton. For example harmful 

algal bloom (HABs), which have adverse effects on human health, fishery, tourism, and the environment. In 

recent year considerable scientific attention has been given to HABs. Since the phytoplankton is a base of all the 

aquatic food chain systems and most of zooplankton organism depends directly on the phytoplankton in its 

feeding process. Therefore toxic substances released by harmful plankton play an important role in this context 

see for example [3]. phytoplankton organisms are the dominant  primary producers in the pelagic environment. 

They convert inorganic materials into new organic compounds by the process of photosynthesis, starting thereby 

most aquatic food webs [4]. phytoplankton production is responsible for approximately 40% of the global 

primary productivity, hence the stocks of these tiny plank tonic algae play a significant role for marine reserves 

and fishery management. Pollution of freshwater and marine systems by anthropogenic sources has become a 

concern over the last decades. Organic (e.g triazine herbicides) [5-8]or inorganic (e.g. heavy metal) compounds 

[5,6,9-12] both may have  

harmful effects. 

     The dynamics of most the biological systems can be represented mathematically  by a set of first order 

nonlinear differential equations. These systems are known as a mathematical model for such biological systems 

and can be studied mathematically. Consequently, in this paper one kind of aquatic ecological model is proposed 

and analyzed .  

2. Mathematical model formulation: 

 Consider the ecological system that consisting of nutrient, phytoplankton and zooplankton with  Holling 

type-II functional response. According to the  

specific hypotheses, mentioned below, this system can be modeled mathematically by using the following set of 

nonlinear equations: 
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here )(tN , )(tP  and )(tZ  denoted the densities of nutrient, phytoplankton and zooplankton at time t 

respectively, while the parameters are assumed to be positive parameters and can be described as following: D  

is the dilution rate, 0N  is the concentration of the input nutrient, )2,1(;1  imi  is the conversion factor from 

dead phytoplankton species and dead zooplankton species respectively to the nutrient due to the decomposition 

operation, 1a and 2a  are the maximum specific ingestion rate and the half saturation constant of phytoplankton, 

  and 1  are maximum attack rate and half saturation constant of the zooplankton, )2,1(;1  iki  is the 

conversion factor from nutrient to phytoplankton and from phytoplankton to zooplankton respectively.   the 

liberation rate of toxin substance by the harmful ,(a )the maximum zooplankton in gestation rates for the toxic 

substance produced by phytoplankton, finally the natural mortality rate of phytoplankton and zooplankton are 

denoted by 1  and 2  respectively. The above model is build depending on the following set of hypotheses: 

1. There is a constant concentration of nutrient with constant rate of dilution. The nutrient up taken by the 

phytoplankton according to the Holling type-II  

functional response. On the other hand a portion of the dead phytoplankton and zooplankton return to the 

nutrient due to the decomposition operation. 

2.  In the absence of nutrient the phytoplankton decay exponentially due to dilution and natural death. Further 

decay facing the phytoplankton due to the feeding process by zooplankton. 

3. The zooplankton feeds on the phytoplankton according to the Holling type-II and decay exponentially due to 

dilution and natural death. Further it is assumed that the zooplankton affected by the toxin produced by the 

phytoplankton during the predation process.         

 

Theorem (1) : All the solutions of  the system (1) are bounded: 

Proof: Let ZPNW   then by differentiating this variable with respect to time we obtain: 
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Consequently, by solving this differential inequality we get that  
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3. Existence of equilibrium point: 

 In this section the existence of all possible equilibrium points of system (1) is discussed as shown 

below:  

The nutrient equilibrium point )0,0,( 00 NE   always exists. 

The zooplankton free equilibrium point )0,,(1 PNE   where 
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Clearly, 1E  belongs to the interior of the positive quadrant of NP plane, which denoted by 

 0,0:),(. 22  pNRPNRInt , provided that one set of the following sets of conditions holds: 

 0NN   and 111111 kaDkm                                    (2a) 

Or 

 0NN   and  111111 ,.min kmkaD                                   (2b) 

The coexistence or positive equilibrium point can be established as follows.  

From the third equation of system (1) we obtain that: 
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Hence we obtain that 
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Clearly, due to discard rule we have either two positive real roots (given below) or else there are no positive 

roots depending on the following conditions whether it hold or violate respectively. 
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These two positive real roots can be written as: 

 

)(4)(
2

1

2

)(
,

21
2

212

212
21













DakaD
a

a

kaD
PP

                                        (3c)  

By substituting iP  for each )2,1( i  in the second equation of system (1) and equating it to zero, then we get 

after some calculation a unique root given by that: 
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Now by substituting the value of iP  and iZ  for each )2,1( i  in the first equation of system (2.1) and 

equating it to zero, we obtain after some calculation a unique positive root given by 
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here  iii PaDaZmPmDN 12221101    
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Clearly by using iN  for each )2,1( i  in iZ , then iZ  will be positive constant provided that 
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According to the above calculation, system (2.1) have two positive equilibrium points, denoted by 

),,( 1112 ZPNE   and ),,( 2223 ZPNE  , belong to the positive octant of 

 0,0,0:),,( 33  ZPNRZPNR  provided that conditions (3a), (3b) and (3f) hold. 

 

4. Local stability analysis 

 In this section we will study the local stability analysis near each of the above equilibrium points with 

help of linearization technique as shown below.  

Straightforward computation shows that the Jacobian matrix of system (1) can be written as  
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Consequently, the Jacobian matrix at each of the above equilibrium points can be written as follows 

The Jacobean matrix of system (1) at the equilibrium point )0,0,( 00 NE   can be written as: 
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Clearly the eigenvalues of 0J  lie on the main diagonal and given by  
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where U0  represents the eaginvalues that describe the dynamics in the U -direction. Note that the eagenvalue 

in the P -direction will be negative and hence the nutrient equilibrium point 0E  is locally asymptotically stable 

provided that 
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otherwise it will be saddle point. 

The Jacobean matrix of system (1) at the zooplankton free equilibrium point )0,,(1 PNE   can be written as: 
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Consequently the eigenvalues of  1J  satisfy the following relations 
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Straightforward computation shows that all these eigenvalues will be negative and hence )0,,(1 PNE   is 

locally asymptotically stable provided that the following conditions holds, otherwise it is saddle point 
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The Jacobean matrix of system (1) at the positive equilibrium point ),,( 1112 ZPNE  , similarly for 

),,( 2223 ZPNE  , can be written as  
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The characteristic equation of 2J  is given by  
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Note that according to the Routh-Hurwitz criterion all the eigenvalues of 2J  have negative real parts and hence 

2E  is locally asymptotically stable  if and  

only if  0iA  for 3,1i  and 0 .  Therefore the conditions that guarantee the local stability of  2E  are 

established in the following theorem. 

 

Theorem (2): The positive equilibrium point 2E  is locally asymptotically stable provided that the following 

conditions are satisfied.  
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here 121 NaR   and 112 PR   . 

Proof: By using the elements of 2J , it is easy to verify that condition (8b) guarantees that 01 A  and 03 A . 

While conditions (8a) and (8b) ensures that the first term of   will be positive, however conditions (8b) and 

(8c) guarantees the positivity of the second term of   . Hence all conditions of Routh-Hurwitz criterion are 

satisfied with the help of the above conditions. Therefore all the eigenvalues of 2J  have negative real parts and 

hence 2E  is locally asymptotically stable.      ■   

 

5. Global stability analysis: 

  In this section the region of the global stability of each equilibrium points of system (1) is established 

with the help of Lyapunov function as shown in the following theorems. 

Theorem (3): Let the nutrient equilibrium point )0,0,( 00 NE   is locally asymptotically stable, then it is 

globally asymptotically stable in the sub region 1G  of the domain 
3
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 Consequently, by using the given condition we get that 
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 for any initial condition in the interior of 1G  and hence 0V  is a Lyapunov function. So, 

)0,0,( 00 NE   is globally asymptotically stable in the sub region 1G .     ■

  

 Obviously,  1G  represent the basin of attraction of the nutrient equilibrium point )0,0,( 00 NE   of 

system (1). 

Theorem (4): Let the zooplankton free equilibrium point )0,,(1 PNE   is locally asymptotically stable, then 

it is globally asymptotically stable in the sub region 2G  of the domain 
3
R   that satisfy the following conditions. 

 
Na

Nka
D






2

11
1                           (10a) 

 2kPP                       (10b) 

 

22

2





m

D
NN


                                             (10c)  

 2211
2

12 4                                              (10 d) 

here 
Na

Na

R

Paak
m






2

1211
1112  ,  

 
R

Paa
D 21

11   , and 
Na

Nak
D






2

11
122 )(  . 

Proof. Consider the following real valued function  

 Z
PPNN

V 






2

)(

2

)( 22

1  

Clearly RRV 
3

1 :   be a continuously differentiable function that satisfy that 

 0)0,,(1 PNV  and 0)0,,(1  PNV  

Further 

 

 
P

PZ
kPP

ZNmNmDPP
Na

Nak
D

PPNN
Na

Na

R

Paak
mNN

R

Paa
D

dt

dZ

dt

dP
PP

dt

dN
NN

dt

dV











































1
2

22222
2

2

11
1

2

1211
11

221

1

)(

)()(

))(()(

)()(









 

here ))(( 22 NaNaR  . Consequently, by using the given conditions we get that 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.14, 2014 

 

100 

  22211
1 )()( PPNN

dt

dV
   

Thus 01\0 
dt

dV
 for any initial condition in the interior of 2G  and hence 1V  is a Lyapunov function. So, 

)0,,(1 PNE   is globally asymptotically stable in the sub region 2G .   ■ 

 

Again,  2G  represent the basin of attraction of the zooplankton free equilibrium point )0,,(1 PNE   of 

system (1). 

Further more since there are two positive equilibrium points in the interior of 
3
R  having the same local stability 

conditions but with different neighborhood of starting points then its not possible to study the globule stability of 

them using  

Lyapunov function. Therefore we  will study it numerically instead of analytically as shown in last chapter. 

6. The local Bifurcation 

     In this section an investigation for the dynamical behavior of system (1) under the effect of varying one 

parameter of each time is carried out. The  

occurrence of local bifurcation in the neighborhood of the equilibrium point are studied in the below theorems. 

Consider the Jacobean matrix of system (1) given by equation (4). It is easy to verify that straight forward  

computation gives that: 







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



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
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
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


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
                                              (11) 

where 
TvvvV ),,( 321 . Further  





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
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6
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3
1

2
3

1

2
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1

2
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3
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2
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2
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1
3
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2
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1
2

3
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2
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v
P
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P
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P
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v
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v
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Pv
v
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vaa

VVVXFD








                                           (12) 

where 
TZPNX ),,( ,  and  be any parameter . 

Theorem(5) : Assume that the parameter 1k  passes through the value 

01

21
1

))((

Na

NaD
k


 

, then 

system (1) near the equilibrium point 0E  has: 

1. No saddle-node bifurcation. 

2. A transcritical bifurcation but no pitch-fork bifurcation can occur 

    provided that the following condition holds :          

        0
2

)(
1

)( 2
1

02

1
2

02

1211 




































Z

Na

PT

Na

vaak
L                                                                           (13) 

3. A pitch-fork bifurcation  provided that:  

0L                                                                                                                                   (14a)  
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01
)()( 3

1
02

1
2

02

2
1211

1 































Z

Na

PT

Na

Taak
L                                                                     (14b) 

Where    
D

m
Na

Na
T

1

)(
11

02

01
1 













  . 

Proof : According to the Jacobian matrix of system (1) at 0E  that is given by equation (5a), it is easy to verify 

that as 
 11 kk , then the ),( 100

kEJ  has the following eigenvalues : )(,0, 1000   DD ZPN  

Let 
TvvvV ),,( 321  be the eigenvector of ),( 100

kEJ  corresponding to the eigenvalue  00 P . Then it is 

easy to check that  TvvTV 0,,( 221 , where 2v  represents any nonzero real value 

Also, let 
TcccC ),,( 321  represents the eigenvector of ),( 100

kEJT
 that corresponding to the eigenvalue 

00 P . Straight forward calculation shows that  
TcC )0,,0( 2 where 2c  is any nonzero real number. 

Now, since 

T

k
Na

NPa
kXF

k

F

















0,,0),(

2

1
1

1
1

, where 
TZPNX ),,(  and 

TfffF ),,( 321  with 

3,2,1; ifi  represent the functions in the right hand side of system (1) then we get 
T

k kEF )0,0,0(),( 101


 

and hence the following is obtained: 

         0)0,0,0)(0,,0()],([ 2101
 T

k
T ckEFC  

Thus the system (1) at 0E  does not experience any saddle-node bifurcation in view of sotomayor theorem [13]. 

While the first condition of the transcritical and pitch-fork bifurcation is satisfied .  

Also, since 

    0)()0,,0)(0,,0(]),([
02

01
222

02

01
2101









Na

Na
vcv

Na

Na
cVkEDFC k

T
 

where ),(),( 1101
kXF

X
kEDF kk






 and then substitute  
 110, kkEX . Moreover, according to 

equation (11) we have 

 0))
)(

1(
)(

(2)],)(,([
2
1

02

1
2

02

12112
2210

2 









Z

Na

PT

Na

vaak
vcVVkEFDC T

 

where  ),(),( 1010
2 kXDJkEFD 

 with 
 110 , kkEX . 

Clearly, 0)],)(,([ 10
2  VVkEFDCT

provided that condition (13) holds, and then by sotomayor 

theorem [13] the system (1) possesses a transcritical  bifurcation  but not pitch-fork bifurcation near 0E . 

However, if the condition (14a) holds we get that 0],)(,([ 10
2

1
 VVkEFDC k

T
 , and hence further 

computation shows 

              0))1
)(

(
)(

(6)],,)(,([
3
1

02

1
2

02

2
12113

3310
3 






Z

Na

PT

Na

Taak
vcVVVkEFDC T

 

Clearly if the condition (14b) holds then system (1) possesses a Pitch-fork bifurcation near 0E  at 
 11 kk , and 

hence the proof is complete.                  ■     

Theorem(6): Assume that the parameter 2  passes through the value  ,
1

2
2 PaD

P

Pk





 



  where 2  is 

positive parameter under the condition            

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.14, 2014 

 

102 

   PaD
P

Pk











1

2                                                         (15a) 

then system (1) near the equilibrium point 1E  has: 

1. No saddle-node bifurcation. 

2. A transcritical bifurcation but no pitch-fork bifurcation can occur  

     provided that the following condition holds :  

0
)(

1
)( 1

2
2

1

12
2 































 a

P

ZT

P

k
L 




                                                                          (15b)                                                       

3. A  pitch-fork bifurcation provided that  . 

02 L                                                                                                                                    (16a) 

01
)( 1

2
3 















P

ZT
L


                                                                                                        (16b) 

where  


























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)1(

ˆ
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2
2

22
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31
2

Pk

P

Paak

NaD
m

kmD

vk
T











 

Proof : According to the Jacobian matrix of system (1) at 1E  that is given by equation (6a) , it is easy to verify 

that if 
 22   the eigenvalues of equation (6a) satisfy the following relation:  

 

0

,)[(
)(

.

,
)(

1

1111
2

11
11

2
2

21
11














Z
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kmD
Na

Paa

Na

Paa
D







 

Let 
TvvvV )ˆ,ˆ,ˆ(ˆ

321  be the eigenvector of ),( 211
EJ  corresponding to the eigenvalue  01 z , then it is 

easy to check that )ˆ,ˆ,
)(

ˆ)(
(ˆ

332
1121

3
2

2 vvT
pkaa

vNa
V









, where  3v̂  represents any nonzero real value. 

Also, let 
TcccC )ˆ,ˆ,ˆ(ˆ

321  represents the eigenvector of ),( 211
EJT

 that corresponding  to the eigenvalue  

01 Z  .Straightforward calculation shows that  
TcC )ˆ,0,0(ˆ

3  where  3ĉ  is any nonzero real number. 

Now, since   TT ZPNXwhereZZmXF
F

),,(,,0,),( 22
2

2








 and 

TfffF ),,( 321 with 

3,2,1; ifi  represent the right hand side of system (1) then we get  
TEF )0,0,0(),( 212

  and the following 

is obtained: 

         0)0,0,0)(ˆ,0,0()],([ˆ
3212

 TT cEFC   

Thus the system (1) at 0E  does not experience any saddle-node bifurcation in view of sotomayor theorem[13] . 

While the first condition of the Transcritical and Pitch-fork bifurcation is satisfied. Also, since 

    0ˆˆ)ˆ,0,ˆ)(ˆ,0,0(]ˆ),([ˆ
333323212
 vcvvmcVEDFC TT   

where ),(),( 221 22
 

XF
X

EDF





 and then substitute 1EX  , 
 22  . Moreover, According to 

equation (11) we have 
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              )]ˆ,ˆ)(,([ˆ
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2
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
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




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



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
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P
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k
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



 
  2212121

2 ,),(),(  EXwithXDJEFDwhere         

Clearly , 0]ˆ,ˆ)(,([ˆ
21

2  VVEFDCT   provided that condition (15b) holds,  and then by sotomayor 

theorems[13], the system (1) possesses a transcritical  bifurcation  but not pitch-fork bifurcation near 0E . 

However , if the condition (16a) holds we get that 0)]ˆ,ˆ)(,([ˆ
21

2  VVEFDCT   . 

Also,  According to equation (12) we have )]ˆ,ˆ,ˆ)(,([ˆ
21

3 VVVEFDCT    

                                                                                                    0)1
)(
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3
3
3

2
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
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
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

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
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P
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Clearly if the condition (16b) holds then system (1) possesses a Pitch-fork bifurcation near 0E  at  2 , and 

hence the proof is complete.                  ■ 

Theorem(7): Assume that the parameter   passes through the value 
aP

k

2
11

12

)( 





 , then system 

(1) near the equilibrium point 2E  has: 

1. Saddle-node bifurcation provided that : 

        

0
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






















M

MM
M

M
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M

                                                                                                               (17)                                                        

2. No transcritical bifurcation . 

3. No  pitch-fork bifurcation . 

Proof : According to the Jacobian matrix of system (2.1) at 2E  that is given by equation (7) , It is easy to verify 

that as 
 . The characteristic equation of 2J  that given by Eq. (7a).  

Since ][ 21132311323 MMMMMA  , where ijM  represents the elements of the Jacobian matrix 2J . We 

obtain that 03 A  for 
aP

k

2
11

12

)( 
 




  and hence .the eigenvalues of 2J  satisfy the following relation 

,0)( 21
2  AA   so either  0  or 0)( 21

2  AA  . Now if we assume that 0 . Then it 

TvvvV )~,~,~(
~

321  be the eigenvector of ),( 22
EJ  corresponding to the eigenvalue  0 . Then it is easy 

to check that 
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3
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where 3
~v  represents any nonzero real value. 

Also, let 
TcccC )~,~,~(

~
321  represents the eigenvector of ),( 22

EJT
that corresponding to the eigenvalue 

01   . Straightforward competition  and under the condition (17)  shows that 
TcC )~,0,0(

~
3 where 3

~c  is any 

nonzero real number. 

Now, Since   TT ZPNXwhereaPZXF
F

),,(,,0,0),( 






and ),,( 321 fffF  with 3,2,1; iFi  

represent the right hand side of system (1) then we get  TZaPEF 112 ,0,0),(    and the following is 

obtained: 
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         0)],([
~

1132  ZaPcEFCT      

Then by sotomayor theorems [13],  the system (1) possesses a saddle-node bifurcation but not transcritical and 

pitch fork bifurcation.                            ■ 

 

7. The Hopf bifurcation:  

In this section, the occurrence of  Hopf-bifurcation near the equilibrium point is studied below . 

The Hopf bifurcation analysis near 0E  and 1E : 

According to the Jacobean matrix of system (1) at 0E  and 1E  which are given by equation (5a) and (6a) 

respectively, it is easy to verify that 0J  and 1J  has three real eigenvalues. So, the necessary and sufficient 

conditions for a Hop bifurcation to occur are not satisfies. 

Theorem(8): Assume that the conditions (8a) and (8c) with the following condition are hold:  
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


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2
1

)(

)(
,max                          (18a) 

Then system (1) possesses a Hopf bifurcation around the equilibrium point 2E  when the parameter   passes 

through 
  , where  

 
2

11
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211323221

211222112211

)((

])[(

Pa

k

MMMMaZ

MMMMMM







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


  

and ijM  represent the elements of the Jacobian matrix given by (7).    

Proof: Consider The characteristic equation of 2J  that given by Eq. (7a)  

and   that given in Eq. (7b).  

Now, suppose that 0321  AAA  then according to [14] there is possibility to occurrence of Hopf-

bifurcation if and only if the Jacobian matrix of system (1) near 2E  has two complex conjugate eigenvalues, say 

21  ii   with the third eigenvalue is real and negative, in addition to the following two conditions: 

               0)(1                                                                                                                            (18b) 

              01 




dl

d
                                                                                                                      (18c) 

where 
  represents the bifurcation parameter.  

Now, to verify the necessary and sufficient conditions for a Hopf bifurcation to occur we need to find a 

parameter satisfy  0)(0)(,0)( 21    AandA   .  

Consequently, if 

   ][)(0 2113232232211222112211 MMMMMMMMMMM    

it is easy to verify that the parameter's value that satisfy the above equation is:  
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
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


  

where 
  is a positive parameter under the condition (8a), (8c) and  (18a). Hence the coefficients of the 

characteristic equation can be written as: 

0)()( 22111  MMA  . 
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)( 2113231112
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112
3 MMMMaZ

P

Zk
A 


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












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
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So for 
  we have 321 AAA   and then the characteristic equation becomes: 
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      02
2

13  AAP                                                                        

Thus the roots become 23,211 AiandA   .  

Clearly,  at 
  there are two pure imaginary eigenvalues 23,2 Ai  with the other one of eigenvalues 

real and negative, that is mean,      3,2,0Re 1  
  ii 


. Thus the first condition (18b) of the 

necessary and sufficient conditions for Hopf bifurcation is satisfied at 
 .  

Let as now check the second condition (18c). Since, in general, the complex eigenvalues for any value of   can 

be written as: 213,2  i  

 So to verify the transversality condition we apply the bifurcation criterion given by [23] as stated in chapter one 

. Note that for 
  we have 01   and 22 Ai , substitution into Eq. (1.25) gives that 
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Further by substitution into Eq.          we obtain 

        
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Now, according to [14], the necessary and sufficient conditions for a Hop bifurcation to occur are  satisfies if in 

addition to the above the following condition should be satisfied         0  . Clearly this is 

will be hold under the given conditions and hence the proof is complete. ■        

 

 8. Numerical simulation 

 In this section the dynamical behavior of system (1) is studied numerically for different sets of 

parameters. The objectives of this study are: first investigate the effect of varying the value of each parameter on 

the dynamical behavior of system (1) and second confirm our obtained analytical results. It is observed that, for 

the following hypothetical values of the parameters with initial point (14.46,6.47,1.69); system (1) has 

asymptotically stable positive equilibrium point, see Fig. (1). 
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                                (19) 
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  Fig. (1): The solution of system (1) approaches asymptotically to stable positive point   (14.46,6.47,1.69) 

     

         Now in order to discuss the effect of varying the parameters values of system (1) on the dynamical 

behavior of the system, the system is solved numerically for the data given in Eq. (19) with varying one 

parameter each time. It is observed that, for the data given in Eq. (19) with varying one of the parameters values 

2m  or 1 , there is no change in the dynamical behavior of system (1) and the system still approaches to positive 

equilibrium point.  

 For the data given in Eq. (19) with  4925 0  N , the solution of system (1) approaches to the 

positive equilibrium point as shown in Fig. (2a), however for 490 N  the solution of system (2.1) 

approaches to periodic dynamic in 
3. RInt  as shown in Fig.(2b), while for 247 0  N  the solution of system 

(1) approaches asymptotically to  0,,1 PNE   in the interior of positive quadrant of NP-plane as shown in 

Fig.(2c). Further for 60 N  the solution of system (2.1) approaches asymptotically to  0,0,00 NE   on the 

boundary N axis as shown in Fig.(2d). 
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Fig.(4.2): Time series of the solution of system (1) for the data given by Eq (19) with different values of 

0N . (a) System (1) approaches to (9.0096,6.47,0.69) in 
3. RInt  for 300 N . (b) System(2.1) approaches 

to periodic dynamic in 
3. RInt  for 550 N   (c) System (1) approaches to (6.54,4.16,0) in 

2. RInt  of NP-

plane for 180 N . (d) System (1) approaches to (3,0,0) on the N- axis for 30 N . 
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         Similarly by varying the parameter 2a  keeping the rest of parameters values as in Eq. (19), It is observed 

that for 4926 2  a  the system (1) approaches asymptotically to  0,,1 PNE   in the interior of positive 

quadrant of NP plane, however for 2505.0 2  a   the system approaches to the positive equilibrium point, 

while for  04.02 a  the system(1)  

approaches to periodic dynamic in 
3. RInt , but  for 502 a  the solution of system (1) approaches 

asymptotically to  0,0,00 NE   on the boundary N axis. 

      For the parameters values given in Eq. (19) with varying D in the range 25.018.0 D  the system 

approaches to the positive equilibrium point as shown in Fig. (3a), however for 17.0D  the system (1) 

approaches to periodic dynamic in 
3. RInt  as shown in Fig. (3b). Moreover for 26.0D  the system (1) 

approaches asymptotically to  0,,1 PNE   in the 
2. RInt  of NP-plane as shown in Fig. (3c). 
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Fig.(3): Time series of the solution of system (2.1) for the data given by Eq (19) with different values of D. 

(a) System (1) approaches to (13.29,7.33,1.45) in 
3. RInt  for D=0.21. (b) System(2.1) approaches to 

periodic dynamic in 
3. RInt  for D=0.11. (c) System (2.1) approaches to (24,6.05,0) in 

2. RInt  of NP-plane 

for D=0.35.  

  

        Now by varying the parameter 2k  keeping the rest of parameters values as in Eq. (19), it is observed that 

for 7.02 k  the system(1) approaches to periodic dynamic in 
3. RInt , while for 5.02k  the solution of 

system (1) approaches asymptotically to  0,,1 PNE   in the interior of positive quadrant of NP plane.  

Also varying the parameter   keeping the rest of parameter values as in Eq. (19), it is observed that for 

6.0,5.0   , the solution of system (2.1)  approaches to the positive equilibrium point. However for 

7.0  the system (1) approaches to periodic dynamic in 
3. RInt , while for  4.0  the solution of system 

(1) approaches asymptotically to  0,,1 PNE   in the 
2. RInt  of NP-plane. 

     For the parameters values given in Eq.(19) with varying 1  in the range 741.0 11   and    the 

system approaches to the positive equilibrium point. However for 32.0 1    the system (1) approaches to 

periodic dynamic in 
3. RInt , while for 81    the solution of system (1) approaches asymptotically to 

 0,,1 PNE   in the 
2. RInt  of NP-plane. 

          For the parameters values given in Eq.(19) with varying 1a , it is observed that for 8.01 a , the 

solution of system (1) approaches to the positive equilibrium point as shown in Fig. (4a), however for 7.01 a  

the solution of system (1) approaches asymptotically to  0,,1 PNE   in the  
2. RInt  of NP-plane as shown in 

Fig. (4b). While for 6.01 a  the solution of system (1) approaches asymptotically to  0,0,00 NE   on the 

boundary N axis as shown in Fig. (4c).   
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Fig.(4): Time series of the solution of system (1) for the data given by Eq (19) with different values of 1a . 

(a) System (1) approaches to (9.29,6.47,2.82) in 
3. RInt  for 8.11 a  . (b) System (1) approaches to 

(32,7.2.64,0) in 
2. RInt  of NP-plane for 7.01 a . (c) System (2.1) approaches to (40,0,0) on the N- axis for 

1.01 a . 

       For the parameters values given in Eq.(19) with varying 1k , it is observed that for 5.03.0 1  k  the 

system approaches to the positive equilibrium point as shown in Fig. (5a). However for 76.0 1  k  the system 

(2.1) approaches to periodic dynamic in 
3. RInt  as shown in Fig. (5b), while for 2.01 k  the solution of system 

(1) approaches asymptotically to  0,0,00 NE   on the boundary N axis as shown in Fig. (5c).    
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 Fig.(5): Time series of the solution of system (1) for the data given by Eq (19) with different values of 1k . 

(a) System (2.1) approaches to (14.46,6.47,1.69) in 
3. RInt  for 4.01 k . (b) System(2.1) approaches to 

periodic  

 

dynamic in 
3. RInt  for 21 k . (c) System (2.1) approaches to (40,0,0) on the N- axis for .1.01 k  

         

        Now for the parameters values given in Eq.(19) with varying 2  in the range  07.02    the system 

approaches to the positive equilibrium point as shown in Fig. (6a). However for 07.02   the solution of 

system (1) approaches asymptotically to  0,,1 PNE   in the 
2. RInt  of NP-plane as shown in Fig. (6b). 
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Fig.(6): Time series of the solution of system (1) for the data given by Eq (19) with different values of 2 . 

(a) System (2.1) approaches to (12.6,7.33,1.52) in 
3. RInt  for 09.02  . (b) System (2.1) approaches to 

(6.54,12.16,0) in 
2. RInt  of NP-plane for 03.02  .  

 

     Similarly varying the parameter   keeping the rest of parameters values as in Eq. (19) shows that for 

3.0 , the solution of system (1) approaches asymptotically to  0,,1 PNE   in the 
2. RInt  of NP-plane, 

while for 2.0 the system approaches to the positive equilibrium point. 

           Also varying the parameter (a) keeping the rest of parameters values as in Eq. (19) gives that for 2.0a  

the system approaches to the positive equilibrium point. However for 3.0a  the solution of system (1) 

approaches asymptotically to  0,,1 PNE   in the 
2. RInt  of NP-plane. 

 Finally for the parameters values given in Eq.(19) with varying 1m , it is observed that when 9.61 m , 

the solution of system (1) approaches to the positive equilibrium point as shown in Fig. (7a), however for 

71 m  the system (1) approaches to periodic dynamic in 
3. RInt  as shown in Fig. (7b). 
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Fig.(7): Time series of the solution of system (1) for the data given by Eq (19) with different values of 1m . 

(a) System (1) approaches to (14.266,6.47,1.66) in 
3. RInt  for 1.01 m . (b) System(2.1) approaches to 

periodic dynamic in 
3. RInt  for 2.121 m . 

 

9. conclusions and Discussions:                                                                                                                                                                 
       In this chapter, a  mathematical model consisting of nutrients, harmful phytoplankton and zooplankton 

species has been proposed and analyzed. it is assumed that the phytoplankton producing a toxin substance as a 

defensive strategy against the predation by zooplankton. However the zooplankton consumes the phytoplankton 

according to Holling type-II functional response. Finally a portion of the dead species of phytoplankton and 

zooplankton is returned to nutrient due to the decomposition operation. The boundedness of the proposed system 

(1) has been discussed. The dynamical behavior of system (1) has been investigated locally as well as globally. 

Further, it is observed that the nutrient equilibrium point ( 0E ) always exist and it is locally asymptotically stable 

point if and only if the conditions (5b) or (5c) hold otherwise it will be saddle point. The zooplankton free 
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equilibrium point ( 1E ) exists if the conditions (2a) and (2b) hold, and it is locally asymptotically stable point if 

and only if the conditions (6b) and (6c) hold. Further it is observed that there are two positive equilibrium point 

( 2E ) and ( 3E ) provided that the conditions (3a), (3b) and (3f) are hold, and they are locally asymptotically 

stable points if and only if the conditions (8a), (8b) and (8c) are hold.  

 To understand the effect of varying each parameter on the dynamics of system (1) and to confirm our 

obtained analytical results, system (1) has been solved numerically using the hypothetical parameters values 

given by Eq. (19) and the following results are obtained: 

1.  It is observed that varying the parameters values 12 andm  do not have any effect on the dynamical 

behavior of system (1) and the system still approaches to positive equilibrium point. 

2. Gradually decreasing the parameter D, which stand for dilution rate, causes destabilizing of the system 

(2.1) and the solution approaches asymptotically to periodic dynamic in the 
3. RInt  that means the 

system still persist. However increasing the value of D, causes extinction of zooplankton species and 

the system (1) approaches to equilibrium point 1E  in the 
2. RInt  of NP-plane. Thus there are two 

bifurcation points of this parameter.   

3. Gradually decreasing the parameter 0N , which stand for the concentration of the input nutrient, causes 

extinction of zooplankton species and the system (1) approaches to equilibrium point 1E  in the 

2. RInt  of NP-plane. Moreover further decreasing of 0N  leads to extinction of phytoplankton 

species too and the system approaches to 0E  on the boundary of N-axis. However increasing the 

value of 0N , causes destabilizing of the system (1) and the solution approaches asymptotically to 

periodic dynamic in the 
3. RInt  that means the system still persist. Thus there are three bifurcation 

points of this parameter. 

4. Gradually decreasing the parameter 1a , which stand for the maximum specific ingestion rate, causes 

extinction of zooplankton species and the system (1) approaches to equilibrium point 1E  in the 

2. RInt  of NP-plane. Moreover further decreasing of 1a  leads to extinction of phytoplankton species 

too and the system approaches to 0E  on the boundary of N-axis. However as increasing the value of 

1a  the system (1) still approaches asymptotically to the positive point in the 
3. RInt  that means 

increasing 1a  has a stabilizing effect on the system. Thus there are two bifurcation points of this 

parameter.   

5. Gradually decreasing the parameter 2a , which stand for the half saturation constant of phytoplankton, 

causes destabilizing of the system (1) and the solution approaches asymptotically to periodic dynamic 

in the 
3. RInt  that means the system still persist. However increasing the value of  2a  causes 

extinction of zooplankton species and the system (1) approaches to equilibrium point 1E  in the 

2. RInt  of NP-plane. Moreover further increasing of 2a  leads to extinction of phytoplankton species 

too and the system approaches to 0E  on the boundary of N-axis. Thus there are three bifurcation 

points of this parameter.  

6. Gradually decreasing the parameter 1m , which stand for the conversion factor from dead phytoplankton 

species to nutrient, has no effect on the system and the solution still approaches to the positive 

equilibrium point. However increasing the value of 1m  causes destabilizing of the system (1) and the 

solution approaches asymptotically to periodic dynamic in the 
3. RInt  that means the system still 

persist. Thus there are two bifurcation points for this parameter.   
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7. Gradually decreasing the parameter 1k , which stand for the conversion rate from nutrient to 

phytoplankton , causes extinction in the phytoplankton and zooplankton populations and the system 

approaches to 0E  on the boundary of N-axis. However increasing the value of 1k  causes 

destabilizing of the system (1) and the solution approaches asymptotically to periodic dynamic in the 

3. RInt  that means the system still persist. Thus there are two bifurcation points for this parameter.   

8. Gradually decreasing the parameter 2k , which stand for the conversion rate from phytoplankton to 

zooplankton, causes extinction in the zooplankton species and the system approaches to 1E  in the 

2. RInt  of NP-plane. However increasing the value of 2k  causes destabilizing of the system (1) and 

the solution approaches asymptotically to periodic dynamic in the 
3. RInt  that means the system still 

persist. Thus there are two bifurcation points for this parameter.   

9. Similarly the maximum attack rate   of zooplankton has the same behavior as that of the conversion 

rate from phytoplankton to zooplankton 2k .  

10.  Gradually decreasing the parameter 1 , which stand for the half saturation constant of zooplankton, 

causes destabilizing of the system (1) and the solution approaches asymptotically to periodic dynamic 

in the 
3. RInt  that means the system still persist. Moreover further decreasing of 1  leads to return 

back to stable case and again the system (1) approaches asymptotically to the positive point in the 

3. RInt  that means decreasing 1  less than a specific value has a stabilizing effect on the system. 

However increasing the value of 1  causes extinction of zooplankton species and the system (1) 

approaches to equilibrium point 1E  in the 
2. RInt  of NP-plane. Thus there are three bifurcation 

points for this parameter.   

11.  Gradually decreasing the parameter  , which stand for the dilution rate, has no effect on the system 

and the solution still approaches to the positive equilibrium point. However increasing the value of   

causes extinction of zooplankton species and the system (1) approaches to equilibrium point 1E  in 

the 
2. RInt  of NP-plane. Thus there are two bifurcation points for this parameter.   

12.  Similarly the liberation rate of toxin substance by the harmful a  has the same behavior as that of the 

dilution rate  .  

13.  Finally decreasing the parameter 2 , which stand for the natural mortality rate of  zooplankton, has 

no effect on the system and the solution still approaches to the positive equilibrium point. However 

increasing the value of  2  causes extinction of zooplankton species and the system (1) approaches to 

equilibrium point 1E  in the 
2. RInt  of NP-plane. Moreover further increasing of 2  leads to return 

back to stable case and again the system (1) approaches asymptotically to the positive point in the 

3. RInt  that means increasing 2  more than a specific value has a stabilizing effect on the system. 

Thus there are three bifurcation points of this parameter.   
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