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Abstract

The present study prove some fixed point results for two self-mappings in a complete S -metric space under
some contractive conditions.
Keywords: S-metric spaces,fixed point,nondecreasing map

1 Introduction.

Studies on generalized metric spaces have received serious attention in recent years. One reason for this interest
is their potential applicability. Specifically [5, 6] introduced an improved version of the generalized metric space
structure, which they called G -metric space and established the Banach contraction principle. For more details
on G -metric space, one can refer to the papers [7, 8]. Recently Sedghi et al.[9] have introduced the concept of
S -metric space and some properties. Also,in [3, 4] some new properties of S -metric spaces were represented.
In this paper we attain some fixed point results for self-mappings in a complete S -metric space under some

contractive conditions in terms of a nondecreasing map ¢ .

2 Basic Concepts

In this part we recast the concept of S -metric space introduced by [9] for our goals.

Definition 2.1 Let X be a nonempty set. We call S-metric on X is a function S:X* —[0,00) which
satisfies the following conditions for each X,Y,z,ae€ X

(i) S(x,y,2) 20,

(i) S(X,y¥,2)=0 ifandonlyif X=y =12,

(i) S(X,y,2)<S(x,x,a)+S(y,y,a)+S(z,z,a).

Theset X inwhich S -metric is defined is called S-metric space.
The examples of such S-metric spaces are:

(a) Let X be any normed space, then S(X,Y,z) =I¥ +z —2xTHI¥ —zI isaS-metricon X .

(b) Let (X,d) be a metric space, then S(X,Y,z) =d(X,z)+d(y,2) isaS-metricon X . This S-metric
is called the usual S-metricon X .
(c) Another S -metric on (X,d) is S(X,Yy,z)=d(x,y)+d(x,z)+d(y,z) which is symmetric with

respect to the arguments.
The following lemmas have important role in our work (See[9]).
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Lemma2.l Ina S -metric space, we have S(X,X,Y)=S(Y,Y,X).
Lemma 22 Let (X,S) be a S -metric space. If there exist sequences {X,} and {y,} such that

liMnoe X, =X and limnse Y, = Y, then limnowe S(X,, X, ¥,) = S(X, X, Y) .

There exists a natural topology on a S-metric spaces, for more details we refer to [3].

Lemma 2.3 (See[3]). Any S -metric space is a Hausdorff space.

Definition 2.2 Let f and ¢ be self-mappings of aset X .If w= fXx=gx forsome X in X, then X
is called a coincidence pointof f and g,andw IS called a point of coincidence of f and Q.

Theorem 2.1 [1] Let f and g be weakly compatible self-mappings of a set X . If f and g have a
unique point of coincidence W = fX = gX, then W is the unique common fixed pointof f and Q.

3 Main Result

Suppose by [2] a nondecreasing function ¢ :[0,4+00) —[0,+0) has the following properties (when the power
of functions to be understand with respect to the composition operation):

(M1)  limnose@"(t) =0, forall te(0,+),
(M2) ¢(t)<t forall te(0,+x),
(M3) ¢(0)=0.

Examples of such functions will appear in what follows. The set of all function ¢ is denoted by @ .

The method of proof of the following theorem is similar to the proof of the respective fact from [10].
Theorem 3.1 Let X be acomplete S -metric space and a self-map T on X satisfy the following contraction
condition:

ST, T(X). T(Y) <A(S(x, %, Y)) (1)
fora ¢ ® andforall X,y e X .Then T hasa unique fixed point Ue X and T iscontinuousat U.
Proof. Choose X, € X and suppose that X, =T(X,,) for ne€N. Assuming X, # X, , we will show

that {X,} isa Cauchy sequence. For NN we get

S (Xn ' Xn’ Xn+l) = S (T (Xn—l)’T (Xn—l)’T (Xn ))
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< ¢(S (Xn—l’ Xn—l’ Xn ))

<¢"(S(Xo %0 %,))

Let &£ >0 be given. By (M1) and (M2) we have , [imn_.®" (S(Xy, %5, %)) =0 and @) <& , then

there exists N, such that

¢"(s<xo,xo,xl»<§(e—¢(e» vn>n,.

Therefore by (2)

S (X Xgs Xoa) <3 (8 #(g))  vnzn,

Applying the induction on M we can assert that

S(X,,%,,X,) <¢& forall m>n>n,.

Since €—¢(g) < &, and by (3), holds for m =K. By (iii) and Lemma 2.1 for m =Kk +1, we have

S(X, X Xin) < 28 (X0 X Xos) + S (X Xirgs Xoa)
= 28(Xy1 X Xnu1) + S (X0 X1 Xiea1)
<e—P()+P(S(Xy %1 %))

<e—de)+h(e) =

Therefore {X,} isa Cauchy sequence.

Since X is complete then {X } convergenttosome U e X . By (iii) and Lemma 2.1, for n €N we have

S(U,U, T () <25(U, U, X,,,) +S(T(U), T (U), X,.,1)
= 285U, U, Xo1) + S (Xguzs X0, T (U))

= 28U, U, X g ) + SCT (%), T (X,), T (u))
<2S(U,u, X,,,) + (S (X, X, u))

< ZS(U,U, Xn+l)+s(xn’ n? )
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By letting N —o0 we have S(u,u,T(u)) =0, hence by (ii) we have T(u) =u. Therefore U is a fixed

point of T . To prove the uniqueness suppose that V is another fixed pointof T .By (1) and (M2) we

have

S(u,u,v) =S(T(u), T(u), T(v)
<#(S(u,u,v))
< S(u,u,v).

Then U=V. To prove the continuity of T at u , let {y,} be a sequence that convergent to U . For

nNeN we get
SUU,T(Y,)) =S(T (), TW),T(y,))

<¢(S(u,u,y,))

<S(uu,y,).
Letting N — o0, we have imn_. S(U,u,T(y,)) =0. Therefore T(y,) convergesto u=T(u) .
Corollary 3.1 Let T be a self map on complete S -metric space (X,S) satisfying on following contraction

conditionfora ¢ ® andall X,y e X and for some m:

ST (), T (). T"(¥)) < #(S(x, X, y)),

then T has a unique fixed point.

Proof. By Theorem 3.2 we deduce that T™ has a fixed point (say, U ). Since
TU)=TT"(U)=T""(u) =T"(T(u),
therefore T (U) is also a fixed point for T™. By uniqueness of U, wehave T(u)=u.
Corollary 3.2 Let T be a self map on a complete S -metric space (X,S). Suppose there is k €[0,1)

suchthat T satisfies the following two contraction conditions for all X,y € X :

S(T(X), T(X),T(y)) <kS(x,x,Y)),
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S(X, X,
ST T T(y) s X ) ©
1+S(X X, Y)
then T has a unique fixed point(say, U)and T iscontinuousat U.
t
Proof. For (5) define ¢:[0,00) —[0,0) by ¢@(t) =kt and for (6) define @(t) = ot It’s clear that ¢
+
is nondecreasing function with lim,_,¢"(t) =0 forall t>0. Since (1) is holds, the result follows from
Theorem 3.2.
In this paper we prove following theorem:
Theorem 3.2 Let X bea S -metricspace. Suppose the maps f,g: X — X satisfy:
S(fx, fx, fy) < g(maxq{S(gx, gx, gy), G(9x, gx, x),G(gy, gy, fy)}) (7)

for all X,ye X.If f(X)cg(X) and g(X) is a closed subspace of X, then f and g have a
unique point of coincidence in X . Moreover, if f and g are weakly compatible , then f and g have a
unique common fixed point.
Proof. Suppose f and ¢ satisfy inequality (7). Let X, be an arbitrary point in X . Since
f(X)<g(X), choose X, € X such that f(X,)=g(X,). Continuing this process, we produce a
sequence {X,} in X suchthat f(X,)=0(X,.,) foral neN.For ne NuUO, we have

S(G%,s 9%,y OXoi1) = S(fX, .y, X4, X))

< p(max{S (9X,_1, 9%,_1, 9%,), S(9X, 1, Xy X ),

 S(9%,, 9%, X,)}-

Since
S(9%, 9%, ;) = S(9%,, 9%, 9%,.1)
and
#(S(9%,, 9%, X)) < S(9X,, 9%, 9%;.1)
we have

Max{S (9%, 1, P15 9%), S(9%, 4, 9%, 1y TX,1), S(9%,, 9%, X))}

= S(9%, 1, 0%, 1, 9%,)-
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Thus for n e N, we have

S (gxn ! an’ an+1) < ¢(S (an_l, an—l’ gxn ))

< ¢2 (S (gxn—Z' an—Z’ gxn—l))

<9"S((9%, 9%, 9%,))-
Given &>0. Since [imn_..®" (S(9%;, 9%, %)) =0 and %(8—¢(8))>0, there is an integer K,
such that

£ (0%, 0%, %) < %(s—¢(e» forall n>k,

Hence

S(gx,, 0%, 0X,.,) < %(5 —¢(g)) forall n=>k,. (8)
For k,neN with k>n, we claim:

S(ox,, 0%, 0%) <& forall k>nx>Kk,: 9)
By induction on K we prove inequality (9) . Inequality (9) holds for K =n+21 by using inequality (8) and the

1
fact that 5(8 —¢(&)) < &. Assume inequality (9) holds for k =m, that is,

G(9x,,0%,,0%,) < & forall m=>nz>k,. (10)
For K=m+1, we have

S(gxm anl ng+1) < ZS(an, an’ an+1) + S(gxn+l' gxn+1’ gxm+l)

From inequality (7), we have

S(gxn+l’ an+1’ gxm+l) = S( an’ an, me)

< p(max{S(gx,, 9%, 9%n), (9%, 9%, T,), S(9%;, 9%ns X)3).

Max{S (9%, P¥yr P ), S(9%,, 9%, X,), S(9%, By )3 = S0, 9%, 9
then
S (9% 9% OXini) < 28(9%,, 9%, 9%,.0) + (S (9%, 9, 9X,)
By inequalities (8) and (10) , we get

G4 9%, ) < 5 (=4 +9(e) <&
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maX{S(an! an’ gxm)1 S(gxn! an’ an), S(gxm’ gxm’ me)}) = S(gxm an’ fxn)

Then

S(gxn’ an’ ng+l) = zs(gxn’ an’ an+1) + ¢(S(gxn’ an’ an )) < SS(an, anl an+1)

By inequality (8), we get

S(9%,, 9%,y OX) <& —9e) < &

maX{S(an! an, ng)’ S(gxnl an1 an), S(gxm’ ng’ me)}) = S(gxm’ ng’ fxm)’

then

S(9%ys 9Xq s OXinin) < 28(9X,, 9%y, O%,as) + B(S(9X,, 9%y, X))
Since #(S(9X,,, 9%, IX.,)) < S(9X,,,9X,,, X,) and m>nz=Kk,, then by (8) we have
S(9%,, 9%y, OXyy) < E€—(e) < e
By induction on K, we conclude that inequality (7) holds forall k >n>k,.So {gX,} isa Cauchy sequence
in g(X).Since g(X) is complete, there is a point ¢ in g(X) suchthat {gX,} is convergent to some
q.Choose pe X suchthat gp=(q.Weclaim fp =gp.Ifnot, then for N € N U{0} we have
S(9%,, 9%, 1) = S(,4, 1, o)

p(Mmax{S(gX, 4, 9%, 1, IP), S(9X, 4, 9%, 4, X, 1), S(ap, gp, 1))

max{S (9%, 1, 9%, 1, 9P), S(9X,_1, 9%,1» X, 1), S(9P. 9P, f0)} = S(9X, 4, 9%, 4. 9P),

then

S(9%,, 9%, 1) < A(S(9X, 4, 9%, 1, GP)) < S(GX, 4, 9%, 4, GP)-

Letting N —> o0, we getthat gp = fp . If

max{S(gx, 4, 9X, 1, IP), S(9X, 4, 9%, 4, X, ), S(gp, gp, 1)} = S(9X, 1, 9%, 4, X, 1),

then

S(9%,, 9%y, 1p) <A(S(9X,_1, 9%, 40 X, 1)) = #(S(OX, 4, OX, 1, OX,))

Since {gx.,} is a Cauchy sequence and @(S(9X, 1, 09X, 4, 0X,)) < S(OX, 1, 9%, 4, 09X,) ., by letting
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n—oo,weget gp=fp.If
max{S (gX,_1, 9X_1, IP), S (9%, 4, 9%, 4, X, 4), S(9P, 9p, 1p)}=S(gp. gp. fp),
then S(GX,, 0%, 1) < #(S(0P, 9P, fp)). Letting N—>0 we get
S(9p, 9p, fp) <4(S(gp. gp, 7))
Since  #(S(gp, gp, p)) <S(9p,9p, fp) . we have S(gp,gp, fp) <S(gp,gp, fp) which is a
contradiction. Therefore gp = fp. For uniqueness P, suppose that there exists another ¢ in X such that

fg=gq.I1f gp=gq, then we have
S(g4, gg, gp) = S(fa, fq, fp)
p(max{S(ga, 9a, gp), S(ga, fa, fa), S(gp, gp, f)}).

since G(gq, 9, f9) =0, S(gp,gp, fp) =0, and @(S(gd, 9, gp)) <S(gd,gd, gp) we have

S(gd,99,9p) < S(gq, gp, gp) which is a contradiction. So gp = gq . From Theorem 2.1, f and g have a

unique common fixed point.
Theorem 3.2 generalizes Theorems 2.3 and 2.4 in [1] for S -metric spaces.

Corollary 3.3 Let X be a S -metric space. Suppose the maps f,g:X — X satisfy on following

inequality:

S(fx, f, fy) <aS(gx, gx, gy) +bS(gx, gx, ix) +cS(gy, gy, fy)
forall X,ye X, where a+b+c<1.1f f(X)cg(X) and g(X) is a closed subspace of X , then
f and g have a unique point of coincidence in X . Moreover, if f and g are weakly compatible, then
f and g have a unigue common fixed point.

Proof. For X,y € X , suppose

H (X, X, y) = max{S(gx, gx, gy), S(gx, g, fx),S(ay, gy, fy)}.
Then
as(gx, gx, gy) +bS(gx, gx, &) +cS(gy, gy, fy) <(a+b+Cc)H(X, X, y).

So if,

208


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper)  ISSN 2225-0522 (Online) L'A.i.l
Vol.4, No.14, 2014 HS'E

S(fx, 1, fy) <aS(gx, gx, gy) +bS(gx, g, x) +cS(gy, gy, fy)

then S(fX, fx, fy) <(a+b+c)H(X,X,y) . Define ¢:[0,400) —>[0,4) by ¢(t)=(a+b+cC)t .

Then ¢ is a nondecreasing function. Also, if a+b+c <1 then limn_...#"(t)=0 forall t>0. Hence
by Theorem 3.2, we get the result.

Corollary 3.4 Let X be a S -metric space. Suppose the maps f,g:X — X satisfy on following
inequality:

S(fx, &, fy) <kmax{S(gx, gx, ix),S(ay, 9y, fy)} (11)
for all X,ye X, where 0<k<1.1f f(X)cg(X) and g(X) is a complete subspace of X, then
f and g have a unique point of coincidence in X . Moreover, if f and g are weakly compatible , then
f and g have a unique common fixed point.

Proof. Forall X,y e X, we let

H (X, x, y) = max{S(gx, gx, fx),S(gy, gy, fy)}.

if inequality (11) is hold,
then S(fx, fx, fy) <kH(X, X, y). Define ¢:[0,+00) —[0,+0) by @(t) =kt. Then its clear that ¢ is

nondecreasing and |imn_...@" (t) =0 forall t>0. The result follows from Theorem 3.2.
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