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Abstract 

The present study prove some fixed point results for two self-mappings in a complete S -metric space under 

some contractive conditions.  
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1  Introduction. 

Studies on generalized metric spaces have received serious attention in recent years. One reason for this interest 

is their potential applicability. Specifically [5, 6] introduced an improved version of the generalized metric space 

structure, which they called G -metric space and established the Banach contraction principle. For more details 

on G -metric space, one can refer to the papers [7, 8]. Recently Sedghi et al.[9] have introduced the concept of 

S -metric space and some properties. Also,in [3, 4] some new properties of S -metric spaces were represented. 

In this paper we attain some fixed point results for self-mappings in a complete S -metric space under some 

contractive conditions in terms of a nondecreasing map   . 

2  Basic Concepts 

In this part we recast the concept of S -metric space introduced by [9] for our goals. 

Definition 2.1 Let X  be a nonempty set. We call S-metric on X  is a function )[0,: 3 XS  which 

satisfies the following conditions for each Xazyx ,,,  

(i) 0,),,( zyxS  

(ii) 0=),,( zyxS  if and only if zyx == , 

(iii) ),,(),,(),,(),,( azzSayySaxxSzyxS  . 

The set X  in which S -metric is defined is called S-metric space.  

The examples of such S-metric spaces are: 

(a) Let X  be any normed space, then  zyxzyzyxS  2=),,(  is a S-metric on X . 

(b) Let ),( dX  be a metric space, then ),(),(=),,( zydzxdzyxS   is a S-metric on X . This S-metric 

is called the usual S-metric on X . 

(c) Another S -metric on ),( dX  is ),(),(),(=),,( zydzxdyxdzyxS   which is symmetric with 

respect to the arguments. 

The following lemmas have important role in our work (See[9]).  
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Lemma 2.1  In a S -metric space, we have ),,(=),,( xyySyxxS .  

Lemma 2.2  Let ),( SX  be a S -metric space. If there exist sequences }{ nx  and }{ ny  such that 

xxnn =lim   and yynn =lim  , then ),,(=),,(lim yxxSyxxS nnnn  .  

There exists a natural topology on a S-metric spaces, for more details we refer to [3]. 

 

Lemma 2.3  (See[3]). Any S -metric space is a Hausdorff space.  

  

Definition 2.2 Let f  and g  be self-mappings of a set X . If gxfxw ==  for some x  in X , then x  

is called a coincidence point of f  and g , and w is  called a point of coincidence of f  and g .  

Theorem 2.1  [1] Let f  and g  be weakly compatible self-mappings of a set X . If f  and g  have a 

unique point of coincidence gxfxw == , then w  is the unique common fixed point of f  and g .  

3  Main Result 

Suppose by [2] a nondecreasing function )[0,)[0,:   has the following properties (when the power 

of functions to be understand with respect to the composition operation): 

0=)(lim1)( tM n
n  , for all )(0,t , 

ttM <)(2)(   for all )(0,t , 

0=(0)3)( M . 

Examples of such functions will appear in what follows. The set of all function   is denoted by  . 

The method of proof of the following theorem is similar to the proof of the respective fact from [10].  

Theorem 3.1  Let X  be a complete S -metric space and a self-map T on X satisfy the following contraction 

condition:  

 )),,(())(),(),(( yxxSyTxTxTS   (1) 

for a   and for all Xyx , . Then T  has a unique fixed point Xu  and T  is continuous at u .  

Proof. Choose Xx 0  and suppose that )(= 1nn xTx  for n . Assuming 1 nn xx  we will show 

that }{ nx  is a Cauchy sequence. For n  we get  

 ))(),(),((=),,( 111 nnnnnn xTxTxTSxxxS   
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 )),,(( 11 nnn xxxS   (2) 

 ... 

 )),,(( 100 xxxSn  

 Let 0>  be given. By (M1) and (M2) we have , 0=)),,((lim 100 xxxSn
n   and  <)(  , then 

there exists 0n  such that  

 .))((
2

1
<)),,(( 0100 nnxxxSn    

 Therefore by (2)  

 .))((
2

1
<),,( 01 nnxxxS nnn    (3) 

 

Applying the induction on m  we can assert that  

 .allfor <),,( 0nnmxxxS mnn   (4) 

 

Since  <)( , and by (3), holds for km = . By (iii) and Lemma 2.1 for 1= km , we have  

 ),,(),,(2),,( 11111   nkknnnknn xxxSxxxSxxxS  

 ),,(),,(2= 1111   knnnnn xxxSxxxS  

 )),,(()( knn xxxS   

 .=)()(    

Therefore }{ nx  is a Cauchy sequence. 

Since X  is complete then }{ nx  convergent to some Xu . By (iii) and Lemma 2.1, for n  we have  

 )),(),((),,(2))(,,( 11   nn xuTuTSxuuSuTuuS  

 ))(,,(),,(2= 111 uTxxSxuuS nnn    

 ))(),(),((),,(2= 1 uTxTxTSxuuS nnn   

 )),,((),,(2 1 uxxSxuuS nnn    

 ),,(),,(2< 1 uxxSxuuS nnn   
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By letting n  we have 0=))(,,( uTuuS , hence by (ii) we have uuT =)( . Therefore u  is a fixed 

point of T . To prove the uniqueness suppose that v  is another fixed point of T  . By (1)  and 2)(M  we 

have  

 ))(),(),((=),,( vTuTuTSvuuS  

 )),,(( vuuS  

 ).,,(< vuuS  

Then vu = . To prove the continuity of T  at u  , let }{ ny  be a sequence that convergent to u . For 

n  we get  

 ))(),(),((=))(,,( nn yTuTuTSyTuuS  

 )),,(( nyuuS  

 ).,,(< nyuuS  

Letting n , we have 0=))(,,(lim nn yTuuS . Therefore )( nyT  converges to )(= uTu  .  

Corollary 3.1 Let T  be a self map on complete S -metric space ),( SX  satisfying on following contraction 

condition for a   and all Xyx ,  and for some m:  

 )),,,(())(),(),(( yxxSyTxTxTS mmm   

then T  has a unique fixed point.  

  

Proof. By Theorem 3.2 we deduce that 
mT  has a fixed point (say, u ). Since  

 ),((=)(=))((=)( 1 uTTuTuTTuT mmm 
 

therefore )(uT  is also a fixed point for 
mT . By uniqueness of u , we have uuT =)( .  

Corollary 3.2 Let T  be a self map on a complete S -metric space ),( SX . Suppose there is [0,1)k  

such that T  satisfies the following two contraction conditions for all Xyx , :  

 )),,,())(),(),(( yxxkSyTxTxTS   (5) 
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 ,
),,(1

),,(
))(),(),((

yxxS

yxxS
yTxTxTS


  (6) 

 then T  has a unique fixed point(say, u ) and T  is continuous at u .  

Proof. For (5) define )[0,)[0,:   by ktt =)(  and for (6) define 
t

t
t

1
=)( . It’s clear that   

is nondecreasing function with 0=)(lim tn
n   for all 0>t . Since (1)  is holds, the result follows from 

Theorem 3.2.  

 

In this paper we prove following theorem: 

Theorem 3.2  Let X  be a S -metric space. Suppose the maps XXgf :,  satisfy:  

 )}),,(),,,(),,,({(),,( fygygyGfxgxgxGgygxgxSmaxfyfxfxS   (7) 

for all Xyx , . If )()( XgXf   and )(Xg  is a closed subspace of X , then f  and g  have a 

unique point of coincidence in X . Moreover, if f  and g  are weakly compatible , then f  and g  have a 

unique common fixed point.  

  

Proof. Suppose f  and g  satisfy inequality (7). Let 0x  be an arbitrary point in X . Since 

)()( XgXf  , choose Xx 1  such that )(=)( 10 xgxf . Continuing this process, we produce a 

sequence }{ nx  in X  such that )(=)( 1nn xgxf  for all n . For 0n , we have  

 ),,(=),,( 111 nnnnnn fxfxfxSgxgxgxS   

 ),,,(),,,({( 11111  nnnnnn fxgxgxSgxgxgxSmax  

 )}.,,(, nnn fxgxgxS  

Since  

 ),,(=),,( 1nnnnnn gxgxgxSfxgxgxS  

and  

 ),,(<)),,(( 1nnnnnn gxgxgxSfxgxgxS  

we have  

 )},,(),,,(),,,({ 11111 nnnnnnnnn fxgxgxSfxgxgxSgxgxgxSmax   

 ).,,(= 11 nnn gxgxgxS   

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.4, No.14, 2014 

 

206 

Thus for n , we have  

 )),,((),,( 111 nnnnnn gxgxgxSgxgxgxS    

 )),,(( 122

2

 nnn gxgxgxS  

 ... 

 )).,,(( 100 gxgxgxSn  

Given 0> . Since 0=)),,((lim 100 gxgxgxSn
n   and 0>))((

3

1
  , there is an integer 0k  

such that  

 .allfor ))((
3

1
<),,( 0110 kngxgxgxn    

Hence  

 .allfor ))((
3

1
<),,( 01 kngxgxgxS nnn    (8) 

For nk,  with nk > , we claim:  

 :allfor <),,( 0knkgxgxgxS knn   (9) 

By induction on k  we prove inequality (9) . Inequality (9) holds for 1= nk  by using inequality (8) and the 

fact that  <))((
3

1
 . Assume inequality (9) holds for mk = , that is,  

 .allfor <),,( 0knmgxgxgxG mnn   (10) 

For 1= mk , we have  

 ),,(),,(2),,( 11111   mnnnnnmnn gxgxgxSgxgxgxSgxgxgxS  

From inequality (7), we have  

 ),,(=),,( 111 mnnmnn fxfxfxSgxgxgxS   

 )}).,,(),,,(),,,({max( mmmnnnmnn fxgxgxSfxgxgxSgxgxgxS  

If  

 ),,(=)}),,(),,,(),,,({max mnnmmmnnnmnn gxgxgxSfxgxgxSfxgxgxSgxgxgxS  

then  

 )),,((),,(2),,( 11 mnnnnnmnn gxgxgxSgxgxgxSgxgxgxS    

By inequalities (8) and (10) , we get  

  <)())((
3

2
<),,( 1 mnn gxgxgxG  

If  
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 ).,,(=)}),,(),,,(),,,({max nnnmmmnnnmnn fxgxgxSfxgxgxSfxgxgxSgxgxgxS  

Then  

 ),,(3<)),,((),,(2),,( 111   nnnnnnnnnmnn gxgxgxSfxgxgxSgxgxgxSgxgxgxS   

By inequality (8), we get  

 .<)(<),,( 1  mnn gxgxgxS  

If  

 ),,,(=)}),,(),,,(),,,({max mmmmmmnnnmnn fxgxgxSfxgxgxSfxgxgxSgxgxgxS  

then  

 )),,((),,(2),,( 11 mmmnnnmnn fxgxgxSgxgxgxSgxgxgxS    

Since ),,(<)),,(( mmmmmm fxgxgxSfxgxgxS  and 0> knm  , then by (8) we have  

 .<)(<),,( 1  mnn gxgxgxS  

By induction on k , we conclude that inequality (7) holds for all 0knk  . So }{ ngx  is a Cauchy sequence 

in )(Xg . Since )(Xg  is complete, there is a point q  in )(Xg  such that }{ ngx  is convergent to some 

q . Choose Xp  such that qgp = . We claim gpfp = . If not, then for {0}n  we have  

 ),,(=),,( 11 fpfxfxSfpgxgxS nnnn   

 )}).,,(),,,(),,,({( 11111 fpgpgpSfxgxgxSgpgxgxSmax nnnnn   

If  

 ),,,(=)},,(),,,(),,,({ 1111111 gpgxgxSfpgpgpSfxgxgxSgpgxgxSmax nnnnnnn   

then  

 ).,,(<)),,((),,( 1111 gpgxgxSgpgxgxSfpgxgxS nnnnnn   

Letting n , we get that fpgp = . If  

 ),,,(=)},,(),,,(),,,({ 11111111  nnnnnnnn fxgxgxSfpgpgpSfxgxgxSgpgxgxSmax  

then  

 )),,((=)),,((),,( 11111 nnnnnnnn gxgxgxSfxgxgxSfpgxgxS    

Since }{ ngx  is a Cauchy sequence and ),,(<)),,(( 1111 nnnnnn gxgxgxSgxgxgxS  , by letting 
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n , we get fpgp = . If  

 ),,,(=)},,(),,,(),,,({ 11111 fpgpgpSfpgpgpSfxgxgxSgpgxgxSmax nnnnn   

then )),,((),,( fpgpgpSfpgxgxS nn  . Letting n  we get 

 )),,((),,( fpgpgpSfpgpgpS   

Since ),,(<)),,(( fpgpgpSfpgpgpS , we have ),,(<),,( fpgpgpSfpgpgpS  which is a 

contradiction.Therefore fpgp = . For uniqueness p , suppose that there exists another q  in X  such that 

gqfq = . If gqgp  , then we have  

 ),,(=),,( fpfqfqSgpgqgqS  

 )}).,,(),,,(),,,({max( fpgpgpSfqfqgqSgpgqgqS  

Since 0=),,( fqgqgqG , 0=),,( fpgpgpS , and ),,(<)),,(( gpgqgqSgpgqgqS ,we have 

),,(<),,( gpgpgqSgpgqgqS  which is a contradiction. So gqgp = . From Theorem 2.1, f and g have a 

unique common fixed point.  

Theorem 3.2 generalizes Theorems 2.3 and 2.4 in [1] for S -metric spaces.  

Corollary 3.3 Let X  be a S -metric space. Suppose the maps XXgf :,  satisfy on following 

inequality:  

 ),,(),,(),,(),,( fygygycSfxgxgxbSgygxgxaSfyfxfxS   

for all Xyx , , where 1<cba  . If )()( XgXf   and )(Xg  is a closed subspace of X , then 

f  and g  have a unique point of coincidence in X . Moreover, if f  and g  are weakly compatible, then 

f  and g  have a unique common fixed point.  

Proof. For Xyx , , suppose  

 )}.,,(),,,(),,,({max=),,( fygygySfxgxgxSgygxgxSyxxH  

Then  

 ).,,()(),,(),,(),,( yxxHcbafygygycSfxgxgxbSgygxgxaS   

So if,  
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 ),,(),,(),,(),,( fygygycSfxgxgxbSgygxgxaSfyfxfxS   

then ),,()(),,( yxxHcbafyfxfxS  . Define )[0,)[0,:   by tcbat )(=)(  . 

Then   is a nondecreasing function. Also, if 1<cba   then 0=)(lim tn
n   for all 0>t . Hence 

by Theorem 3.2, we get the result.  

Corollary 3.4 Let X  be a S -metric space. Suppose the maps XXgf :,  satisfy on following 

inequality:  

 )},,(),,,({max),,( fygygySfxgxgxSkfyfxfxS   (11) 

for all Xyx , , where 1<0 k . If )()( XgXf   and )(Xg  is a complete subspace of X , then 

f  and g  have a unique point of coincidence in X . Moreover, if f  and g  are weakly compatible , then 

f  and g  have a unique common fixed point.  

Proof. For all Xyx , , we let  

 )}.,,(),,,({max=),,( fygygySfxgxgxSyxxH  

if inequality (11) is hold, 

then ),,(),,( yxxkHfyfxfxS  . Define )[0,)[0,:   by ktt =)( . Then its clear that   is 

nondecreasing and 0=)(lim tn
n   for all 0>t . The result follows from Theorem 3.2.  
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