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Abstract  In the paper, we begin by introducing the origin of fractional calculus and the consequent application 

of the Elzaki transform on fractional derivatives. The Elzaki transformation may be used to solve mathematical 

problems without resorting to a new frequency domain. Once we establish this connection firmly in the general 

setting, we turn our attention to the application of the Elzaki transform method to some non-homogeneous 

fractional, ordinary differential equations. Ultimately, we acquire the graphical solution of the problem by using 

Matlab 2013a, developed by MathWorks 
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1.  Introduction 

 

In the literature, there are many integral transforms being used in engineering and applied sciences. It is 

undoubtedly an effective tool for solving differential equations, integral equations. The fact that makes the 

integral transform so effective is that it can convert systems of differential equations and integral equations into 

algebraic equations. 

 

Initially, the Elzaki transform was introduced by Elzaki [1] as a modification of the classical Sumudu Transform. 

The author [1-5] derived this transform for ordinary and partial derivatives. The main purpose of the presentation 

of this paper is to demonstrate how applicable the Elzaki transform is in solving fractional differential equation. 

 

2 Fundamental Properties of ETM and Fractional Calculus 

 

In this section, we will shed light on some properties of Elzaki Transformation and Fractional Calculus. 

 

2.1 Fundamental Facts of the Elzaki Transformation Method 

 

The Elzaki transform of the function’s belonging to a class B , 

where          ,01tifMetfthatsuch0k,k,M|tfB
jkt

21
j , where  tf  is denoted by 

    uTtfE   and is defined [1, 2] as 

    0k,k;dteutfuuT 21

0

t2  



            (1) 

Or equivalently 

     21

0

ut k,ku;dtetfuuT  



            (2) 

 

The following results can be obtained from the definition and simple calculations 

1)   
 

 0uf
u

uT
tfE                (3) 

2)   
 

   0fu0f
u

uT
tfE

2
             (4) 

3)   
 

 uuT
u

uT

du

d
utftE 2              (5) 
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4)     uT
du

d
utftE

2

2
42               (6) 

5)     
 

 
 
















 0uf

u

uT
u0uf

u

uT

du

d
utftE 2

        (7) 

6)     
 







 0uf

u

uT

du

d
utftE

2

2
42

           (8) 

7)   
 

   
 

   
















 0fu0f

u

uT
u0fu0f

u

uT

du

d
ut''ftE

22

2
     (9) 

8) Song, Y. & Kim,H. (2014|0, Legendre’s Equation Expressed by the Initial Value by Using Integral 

Transforms, Applied Mathematical Sciences, 8 (2014) 531 – 540.  For      uTtfE     

 (10) 

9)   2nn u!ntE                 (11) 

 

2.2 Fundamental Facts of the Fractional Calculus: 

 

Firstly, we mention some of the fundamental properties of the fractional calculus. Fractional derivatives as well 

as integral definition may different, but the most widely used definitions are those of Abel-Riemann [6]. 

Following the nomenclature in [7], a derivative of fractional order in the Abel-Riemann [6] is defined by 

    
 

 

 





















 


mtf
dt

d

m1md
t

f

dt

d

m

1

tfD

m

m

t

0

1mm

m

       (12) 

Where 
Zm and 

 R [6]. 
D Is a derivative operator here and 

  
 

    10,0t,dft
1

tfD

t

0

1



 


        (13) 

On the other hand, according to Abel-Riemann, an integral of fractional order is defined by implementing the 

integration operator 
J in the following manner 

  
 

    





t

0

1
dft

1
tfJ   0,0t,          (14) 

When it come to some of the fundamental properties of fractional integration and fractional differentiation, then 

have been introduced to the literature by Podlubny [8]. Among these, we mention 

   
 










 nn t

n

n
tJ

1

1
              (15) 

   
 










 nn t

n

n
tD

1

1
              (16) 

Another main definition of the fractional derivative is that of Caputo [8, 9] who defined it by 

    
 

 

 





















 


m,tf
dt

d

m1m,d
t

f

m

1

tfD

m

m

t

0

1m

m

c
       (17) 

A fundamental feature of the Caputo fractional derivative [10] is that 

       




 

0k

k
kc

!k

t
0ftftfDJ             (18) 

Theorem 1: 
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If  uT  is the Elzaki transformation of  tf , we knows that the Elzaki transformation of the derivatives with 

integral order is given as follows [11] 

 
 

 0uf
u

uT
tf

dt

d
E 








              (19) 

Proof: 

Let us take the Elzaki transform [11] of    tf
dt

d
tf   as follows 

     















p

0

ut

0

ut dttf
dt

d
eu

p

lim
dttf

dt

d
eutf

dt

d
E  

   
























 



p

0
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p

0

ut dttf
u

1
edttf

dt

d
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p
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   
















 



p

0

utp

0

ut dttfe
u

1
tfeu

p

lim
 

   






























 



p

0

ut

2
dttfeu

u

1
0fu

p

lim
 

 
 0uf

u

uT
               (20) 

Equation (20) gives us the proof of theorem 1. When we continue in the same manner, we get the Elzaki 

transform of the second order derivative as follows [11]; 

    




























tf

dt

d

dt

d
Etf

dt

d
E

2

2

 

     
0t2

2

tf
dt

d
utf

dt

d
E

u

1
tf

dt

d
E
























 

 
    0ttf

dt

d
u0uf

u

uT

u

1









  

 
    0t2

tf
dt

d
u0f

u

uT
            (21) 

If we go on the same way, we get the Elzaki transform of the nth order derivative as follows: 

    











 tf

dt

d
EuT

n

n
n

 

    
0t

k
1n

0k

kn2

n
tfu

u

uT







   for 1n   

Or 

     


































 
0t

n

n
2k

1n

0k

n

n

n

tf
dt

d
uuTutf

dt

d
E          (22) 

Theorem 2: 

 

If  uT  is the Elzaki transformation of  tf , one can take into consideration the Elzaki transform of the 

Riemann-Liouville derivative [10] as follow: 
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       











 






n

1k

0t
k2 tfDuuTutfDE ; n1n1      (23) 

Proof: Let us take the Laplace transformation of    tf
dt

d
tf   as follows: 

       













1n

0k
0t

1kk tfDSsTStfDL  

    












n

0k
0t

k1k tfDSsTS  

    












n

1k
0t

k2k tfDSsTS  

    
















n

1k
0t

k

2k
tfD

S

1
sTS  

    
















n

1k
0t

k

2k
tfD

S

1
sTS  

    
















n

1k
0t

k

2k
tfD

S

1
SsTS  

       



























 








n

1k
0t

k
2k

tfD
S

1
sTStfDL         (25) 

Therefore, when we substitute 
u

1
for S , we get the Elzaki transformation of fractional order of  tf as 

follows: 

       

























 








n

1k
0t

k2k tfDuuT
u

1
tfDE  

       
















 





n

1k
0t

k2k tfDuuTutfDE         (26) 

3.  Elzaki Transform Method on General Linear Fractional Differential Equation: 

 

We will now apply ETM (Elzaki Transform Method) for solving Fractional Ordinary Differential Equations. We 

take into consideration a general linear ordinary differential equation with fractional order as follows: 

     
  ctU

t

tU

t

tU

t

tU
2

2



















            (27) 

Being subject to the initial condition 

   0f0U                   (28) 

Then, we will obtain the analytical solutions of some of the fractional ordinary differential equation by using 

ETM. When we take the Elzaki Transformation of (27) under the terms of (22) and (26), we obtain the Elzaki 

transformation of (27) as follows: 

     
    cEtUE

t

tU
E

t

tU
E

t

tU
E

2

2



















































 

        
 

       cuT0fuuT
u

1

t

tf
u0fuuT

u

1
tfDuuTu

2

0t

32

2

n

1k
0t

k2k






































 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.1, 2015 

 

93 

        
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
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 

   

    
























n

1k
0t

k2u

11

0t

12

tUDucuuTu

0UuuTu
t

tU
u0UuuTuuT

 

              

 
cu

t

tU
u

tUDu0Uu0UuuTuuTuuTuuT

0t

1

n

1k
0t

k2u112














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

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        cu0Uu0Uuut
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


        (29) 

Where  ut is defined by   
 

0t

1

0t

k2k
n

1k
t

tU
utUDu



















 . When we take the inverse Elzaki 

transformation of (29) by using the inverse transform table in [1-5], we get the solution of (27) by using ETM as 

follows: 

        










 



 cu0Uu0Uuut
uuu1

1
EtU 1

12

1      (30) 

4.  Applications of ETM to Non-homogeneous Fractional Ordinary Differential Equation’s: 

 

In this section, we have applied Elzaki Transform Method to the non-homogeneous fractional ordinary 

differential equations as follows: 

 

Example 1: Firstly, we consider the non-homogeneous fractional ordinary differential equation as follows [12]: 

    
   

10;0t;ttt
2

1
t

3

2
tUtUD 212 





 

 (31) 

With the initial condition being   00U             (32) 

In order to solve (31) by using ETM, when we take the Elzaki transform of both sides of (31), we get the Elzaki 

transform of (31) as follows: 

     
    














  ttt

2

1
t

3

2
EtUtUDE 212

      (32) 

     
   

   tEtEt
2

1
Et

3

2
EtUEtUDE 212 





















 

 

   
 

 
 

 
     tEtEtE

2

1
tE

3

2
uT

u

tUD

u

uT 212

0t

1







 






   (33) 

 
 

 
 

 
  3423 uu!22u

2

1
3u

3

2
uT

u

uT






 


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  3434 uu2uu2uT1
u

1









 


 

      3434 uu2uu2uTu1  

        uuu1u2uTu1 33
 

        u11u2uuTu1 3
 

   123  uuuT  

  34 uu2uT                  (34) 

When we take the inverse Elzaki Transform of (34), we get the analytical solution of (31) by ETM as follows: 

   34 uu2tUE   

  tttU 2                   (35) 

If we take the corresponding values for some parameters into consideration, then the solution of (31) is in full 

agreement with the solution mentioned in [14]. 

 

 
Fig 1: Analytical solution by Elzaki transform method of 

Example 1 

 

 

Example 2: 

Firstly, we consider the non-homogeneous fractional ordinary differential equation as follows [12]: 

    
 
 

0t;t
5.2

3
ttUtUD 5.125.0 




          (36) 

With the initial condition being   00U             (37) 

In order to solve (36) by using ETM, when we take the Elzaki transform of both sides of (36), we get the Elzaki 

transform of (36) as follows: 

         
 

 5.125.0 tE
5.2

3
tEtUEtUDE




  

         5.125.0 5045.1 tEtEtUEtUDE   

    
  5.34

0t

1

5.0
u2u!2uT

u

tUD

u

uT






 

 
  5.34

5.0
u2u!2uT

u

uT
           

  5.34

5.0
u2u2uT1

u

1









  

    45.45.0 u2u2uTu1   
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 
5.0

45.4

u1

u2u2
uT




  

 
 

5.0

5.04

u1

1uu2
uT




  

   4u2uT                   (38) 

When we take the inverse Elzaki Transform of (38) by the inverse transform table, we get the analytical solution 

of (36) by using ETM as follows: 

     4u2tUEuT   

  2ttU                   (39) 

The solution (39) obtained by using the Elzaki transform method for (36) has been checked by the Matlab 2013. 

 
Fig 2: Analytical solution by Elzaki transform method of 

Example 2  

 

 

4.  Concluding Remarks 

 

Various methods have been developed, preceding this study, in order to derive approximate solutions to a 

number of fractional differential equations. In the course of this paper, non-homogeneous, fractional and 

ordinary differential equations have been addressed and solved by using the Elzaki transform after yielding 

related formulae for fractional integrals, derivatives, and the Elzaki transform of Fractional Ordinary Differential 

Equations. The Elzaki technique may be applied to solve multiple types of problems, such as initial-value 

problems and boundary-value problems in applied sciences, engineering fields, mathematical physics, and 

aerospace sciences. In consequence, this newly hatched approach has been implemented successfully on 

fractional ordinary differential equations, which proves to be interesting. As such and practically so, it augments 

the library of integral transform approaches. There remains little doubt, based on our findings demonstrated in 

Figures 1 and 2, that the ETM technique remains a direct, strong and valuable tool for the solution of same 

fractional differential equations. 
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