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Abstract:- In the paper, we define a random fuzzy cyclic contraction and prove the existence and uniqueness of 

fixed points in a random fuzzy metric space.  

Introduction and preliminaries  

In 1965, Zadeh [1] introduced the concept of fuzzy sets, as a new way to represent the vagueness in everyday 

life. Kramosil and Michalek [2] investigated the notion of fuzzy metric space which is closely related to a class 

of probabilistic metric spaces. In [3,4], George and Veeramani modified the concept of fuzzy metric space of 

Kramosil and Michalek, and obtained a Hausdorff and first countabletopology on the modified ramdom fuzzy 

metric space. Grabiec [7] obtained a fuzzy version of the Banach contraction principle in fuzzy metric spaces in 

Kramosil and Michalek’s sense. Many mathematicians proved several fixed point results in fuzzy metric spaces. 

Gregori and Sapena [19] introduced the concept of fuzzy contractive mapping and proved some fixed point 

results for such mappings. Kirk et al. [20] introduced the notion of a cyclic representation and characterized the 

Banach contraction principle in the context of a cyclic mapping. Some interesting fixed point results for cyclic 

contration in fuzzy metric spaces can be seen in [21-23] In this paper, we generalize and exend the concept of 

fuzzy contractive mappings to random fuzzy cyclic contraction and prove some fixed point result for taking 

random fuzzy metric spaces.  

For the sake of completeness, we write some definitions and properties of random fuzzy metric spaces.  

Definition 1.1 [1]. A fuzzy set A in a nonempty set X is a function with domain X and values in [0,1]. 

Definition 1.2 [24]. A binary operation ⋆∶ [0,1] × [0,1] → [0,1] is a continuous t-norm if {[0,1],⋆} is an abelian 

topological monoid with unit 1 such that a ⋆ b ≤ c ⋆ d whenever a ≤ c and b ≤ d, a, b, c, d ∈ [0,1]. A typical 

example of t-norm is a ⋆ b = min {a, b} (minimum t-norm) 

Definition 1.3 [3]. The triplet (X, M,⋆) with measurable function ξ is called a random fuzzy metric space if X is 

an arbitrary set, ⋆ is a continuous t-nom and M is a fuzzy set in X2 × (0, ∞) satisfying the following conditions: 

for all x(ξ),y(ξ), z(ξ) ∈ X and s, t > 0)  

(M1) M(x(ξ),y(ξ), t) > 0;  

(M2) M(x(ξ),y(ξ), t) = 1 if and only if x(ξ) = y(ξ);  

(M3) M(x(ξ),y(ξ), t) = M(y(ξ),x(ξ), t); 

(M4) M(x(ξ),y(ξ), t) ⋆  M(y(ξ),z(ξ), s) ≤ M(x(ξ), z(ξ), t + s); 

(M5) M(x(ξ),y(ξ), . ):(0, ∞) → [0,1] is continuous.  

Here M with ⋆ is called a random fuzzy metric on X. Note that, M(x(ξ),y(ξ), t) 

 can be thought of as the definition of nearness between x(ξ)  and y(ξ)  with respect to t.  It is known that 

M(x(ξ),y(ξ), . ) is nondecreasing for all x(ξ),y(ξ) ∈ X . 

Let (X, M,⋆)  be a random fuzzy metric spaces with. For t > 0,  the open ball B(x(ξ), r, t) with center x(ξ) ∈ X 

and radius 0 < 𝑟 < 1 is defined by  

B(x(ξ), r, t) ={ y(ξ) ∈ X: M(x(ξ),y(ξ), t) > 1 − 𝑟}.  

The collection{(x(ξ),y(ξ), t): x(ξ) ∈ X, 0 < 𝑟 < 1, 𝑡 > 0} is a neighborhood system for a topology τ on X induced 

by the random fuzzy metric M. This topology is hausdorff and first countable.  
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Lemma 1.1 ([4, 26]). Let (X, M,⋆)  be a random fuzzy metric space. Then M  is a continuous function on 

X2 × (0, ∞).  

Definition 1.4[3]. A sequence {xn(ξ)} in a random fuzzy metric space (X, M,⋆)  is said to be convergent to x(ξ) 

∈  X if for each ε ∈ (0,1) and each t > 0 there exists n0 ∈ ℕ such that M(xn(ξ) , x(ξ), t) > 1 − 𝜀 for all n > n0.  

 Definition 1.5[3]. A seuence {xn(ξ)}  in a random fuzzy metric space (X, M,⋆)  is said to be a Cauchy sequence 

if for each ε ∈ (0,1) and each t > 0 there exists n0 ∈ ℕ such that M(xn(ξ) , xm(ξ) , t) > 1 − 𝜀 for all n, m > n0.  

A random fuzzy metric space in which every Cauchy seuence is convergent is called a complete random fuzzy 

metric space.  

 Definition 1.6[7]. A sequence {xn(ξ)} in a random fuzzy metric space (X, M,⋆)   is called G-Cauchy if  

limn→∞ M( xn+p(ξ) , xn(ξ) , t) = 1  

For each t > 0 and p > 0.  

Theorem 1.1 [3]. A sequence {xn(ξ)} in a random fuzzy metric space (X, M,⋆)    

 Converges to x(ξ)  if and only if M(xn(ξ), x(ξ) ,t)→ 1 as n → ∞. 

It is clear that every closed subset of a complete random fuzzy metric space is complete.  

Gregori and Sapena [19], motivating by we introduced the concept of random fuzzy contractive mappings as 

follows: 

Let (X, M,⋆) be a random fuzzy metric space. We say that the mpping T: X → X is random fuzzy contractive if 

there exists k ∈ [0,1) such that 

1

M(T(ξ,x(ξ)),T(ξ,y(ξ)),t)
− 1 ≤ k [

1

M(x(ξ),y(ξ),t)
− 1]           (1.1) 

for all x(ξ), y(ξ) ∈  X and t > 0. Here k is called the random fuzzy contractive constant of T.  

2. Main results  

In this section we define a class of cyclic operators on random fuzzy metric spaces and investigate the existence 

and uniqueness of fixed points of these operators.  

In [20], the following concept of cyclic representation of a set is defined.  

Let X be a nonempty set and T: X → X be an operator, A1, A2, … . , Am  be subsets of X. Then X = ⋃ Ai
m
i=1   is a 

cyclic representation of X with respect to T if  

a) Ai i = 1,2, … . , m are nonempty sets; 

b) T(A1) ⊂ A2, … . , T(Am−1) ⊂ Am, T(Am) ⊂ A1.  

Definition 2.1. Let (X, M,⋆)  be a random fuzzy meric space, A1, A2, … . , Am be subsets of X and Y = ⋃ Ai
m
i=1 . An 

operator T: Y → Y is called random fuzzy cyclic contraction if the following conditions hold: 

(i) Y = ⋃ Ai
m
i=1  is a cyclic representation of Y with respect to T; 

(ii) There exists k ∈ [0,1) such that 
1

M(T(ξ,x(ξ)),T(ξ,y(ξ)),t)
− 1 ≤ k [

1

M(x(ξ),y(ξ),t)
− 1]   (2.1) 

for all x(ξ) ∈ Ai, y(ξ) ∈ Ai+1(i = 1,2, … . , m, where Am+1=A1
  and each t > 0.   

Definition 2.2 Let (X, M,⋆)  be a random fuzzy metric space, A1, A2, … . , Am be subsets of X and Y = ⋃ Ai
m
i=1 . A 

self operator T of Y is said to belong to the class DM
C (k1, k2, k3) if the following concitions hold: 

(i) Y = ⋃ Ai
m
i=1  is a cyclic representation of Y with respect to T;  

(ii) There exist 0 ≤ k1, k2, k3 < 1 such that  
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1

M(T(ξ,x(ξ)),T(ξ,y(ξ),t)) 
− 1 ≤ k1 [

1

M(x(ξ),y(ξ),t)
− 1]  

+K2 [
1

M(x(ξ), T(ξ, x(ξ)), t)
− 1] + K

3[
1

M(y(ξ),T(ξ,y(ξ)),t)
−1]

    

 

for any x(ξ) ∈ Ai, y(ξ) ∈ Ai+1(i = 1,2, … . , m, where Am+1=A1
  and each t > 0.   

It is obvious that if an operator T is in the class DM
C (k, 0,0) with 0 ≤ k < 1, Then T is a random fuzzy cyclic 

contraction. The first proposition gives uniqueness conditions of the fixed point of an operator provided that the 

fixed point exists.  

Proposition 2.1 Let (X, M,⋆)  be a random fuzzy metric space. A1, A2, … . , Am be subsets of X and Y = ⋃ Ai
m
i=1 . 

Let T be a self operator of Y and belongs to DM
C (k1, k2, k3)   if  

 F(T) = {x(ξ) ∈ Y: T(ξ, x(ξ)) = x(ξ)} ≠ ∅, then F(T) consists of a single point. 

Proof. Assume the contrary, that u(ξ), v(ξ) ∈ F(T) ⊂ Y = ⋃ Ai
m
i=1 , u(ξ) ≠ v(ξ).  Note that,  u ∈ Ai  for some 

1 ≤ i ≤ m, so u = Tu ∈ Ai+1 and so on. Hence, u ∈ ⋂ Ai
m
i=1  and  similar result holds for v therefore, it follows 

from (2.2) that 

1

M(u(ξ),v(ξ),t)
− 1 =

1

M(T(ξ,u(ξ)),T(ξ,v(ξ)),t)
− 1  

≤ k1 [
1

M(u(ξ), v(ξ), t)
− 1] + k2 [

1

M(u(ξ), T(ξ, u(ξ), t)
− 1] + k3 [

1

M(v, T(ξ, v(ξ), t)
− 1] 

      ≤ k1 [
1

M(u(ξ),v(ξ),t)
− 1] <

1

M(u(ξ),v(ξ),t)
− 1,  

a contradiction. Therefore we must have u(ξ) = v(ξ).  

Definition 2.3. Let (X, M,⋆)  be any random fuzzy metric space, T be a self mapping of X and x(ξ) ∈ X. The 

mapping T is said to be asymptotically regular at point x(ξ) if  

limn→∞ M(Tn(ξ, x(ξ)),  Tn+1 (ξ, x(ξ)), t) = 1 for all t > 0.  

Proposition 2.2. Let (X, M,⋆)  be a random fuzzy metric space, A1, A2, … . , Am be subsets of X and Y = ⋃ Ai
m
i=1 . 

Let T be a self operator of Y and belongs to DM
C (k1, k2, k3) with k1 + k2 + k3 < 1. Then T is asymptotically 

regular at every point x(ξ) ∈ Y. 

Proof. Take an arbitrary point x0(ξ) ∈ Y and define the sequence of Picard’s iterates xn(ξ) = T(ξ, xn−1(ξ) =
Tn(ξ, x0(ξ) for all ∈ N . As 

x0(ξ) ∈ Y = ⋃ Ai
m
i=1 ,  so for all n ∈ ℕ  there exists i  such that 1 ≤ i ≤ m  and xn(ξ) ∈ Ai  and so xn+1(ξ) =

T(ξ, xn(ξ)) ∈ Ai+1. Therefore for all t > 0, it follows from (2.2) that 

1

M(xn+1(ξ), xn+2(ξ), t)
− 1 =

1

M(T (ξ, xn(ξ)) , T(ξ, xn+1(ξ)), t)
− 1 

 

 ≤ k1 [
1

M(xn(ξ), xn+1(ξ), t)
− 1] + k2 [

1

M (xn(ξ), T(ξ, xn(ξ))
 
, t)

− 1] 

+k3 [
1

M(xn+1(ξ), T(ξ, xn+1(ξ)), t)
− 1] = k1 [

1

M(xn(ξ), xn+1(ξ), t)
− 1] 
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+k2 [
1

M(xn(ξ), xn+1(ξ), t) 
− 1] + k3 [

1

M(xn+1(ξ), xn+2(ξ), t)
− 1], 

That is,  

(1 − k3) [
1

M(xn+1(ξ),xn+2(ξ),t)
− 1] ≤ (k1 + k2) [

1

M(xn(ξ),xn+1(ξ),t)
− 1]  

1

M(xn+1(ξ),xn+2(ξ),t)
− 1 ≤

k1+k2

1−k3
[

1

M(xn(ξ),xn+1(ξ),t)
− 1]  

By repetition of this process we obtain  

1

M(xn+1(ξ),xn+2(ξ),t)
− 1 ≤ (

k1+k2

1−k3
)

n+1

 [
1

M(x0(ξ),x(ξ),t)
− 1]     (2.3) 

Since k1 + k2 + k3 < 1, so 
k1+k2

1−k3
< 1 and hence,  

lim
n→∞

 M(xn+1(ξ), xn+2(ξ), t) = 1.  Therefore for any arbitrary x0(ξ) ∈ Y  we have 

lim
n→∞

 M(Tn+1(ξ, x0(ξ)), Tn+2(ξ, x0(ξ)), t) = 1 for all t > 0, and result follows. ∎ 

 We now prove the existence of fixed point of operators in the class  DM
C (k1, k2, k3) for random fuzzy metric 

motivated by [28 ]    

Theorem 2.1. Let (X, M,⋆)  be a random fuzzy metric space, A1, A2, … . , Am be subsets of X and Y = ⋃ Ai
m
i=1  is 

such that every G-Cauchy sequence in Y is convergent in Y. Let T be a self operator of Y and belongs to 

DM
C (k1, k2, k3) with k1 + k2 + k3 < 1. Then T has a unique fixed point u ∈ Y  and the sequence of picard’s 

iterates xn(ξ) = T(ξ, xn−1(ξ)) = Tn(ξ, x0(ξ)) for all n ∈ ℕ, where x0(ξ) ∈ Y is arbitrary, converges to the fixed 

point of T.  

Proof. Let n ∈ ℕ then for any p ≥ 1 we have  

        M(xn(ξ), xn+p(ξ), t) ≥ M(xn(ξ), xn+1(ξ), t/2) ⋆ M(xn+1(ξ), xn+p(ξ), t/2) 

  ≥ M(xn(ξ), xn+1(ξ), t/2)) ⋆ M(xn+1(ξ), xn+2(ξ), t/22) 

⋆ M(xn+2(ξ), xn+p(ξ), t/22) 

 ≥ M(xn(ξ), xn+1(ξ), t/2) ⋆ M(xn+1(ξ), xn+2(ξ), t/22) 

⋆ M(xn+2(ξ), xn+3(ξ), t/23) 

⋆ … .⋆  M (xn+p−1(ξ), xn+p(ξ),
t

2p−1).                (2.4) 

Setting λ =
k1+k2

1−k3
 and Mn(t) = M(xn(ξ), xn+1(ξ), t) for all t > 0 and n ≥ 0, it follows from inequality (2.3) of 

Proposition 2.2 that  
1

Mn+1(t)
≤

λn+1

M0(t)
+ 1 − λn+1 ≤

λn+1

M0(t)
+ 1,  

That is,  
1

λn+1

M0(t)
+1

≤ Mn+1(t) for all t > 0 and n ≥ 0.  

   

Using the above inequality in (2.4) we obtain 

M(xn(ξ), xn+p(ξ), t) ≥ Mn (
t

2
) ⋆ Mn (

t

22) ⋆ Mn+2 (
t

23)  

⋆ … .⋆  Mn+p−1(
t

2p−1))  
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≥
1

λn

M0(t/2)
+ 1

⋆
1

λn+1

M0(t/22)
+ 1

⋆ … ⋆
1

λn+p−1

M0(t/2p−1)
+ 1

 

≥
1

λn

M0(t/2)
+1

⋆
1

λn

M0(t/22)
+1

⋆ … ⋆
1

λn

M0(t/2p−1)
+1

.  

As ,λ < 1, letting n → ∞, we obtain from the above inequality that  

lim
n→∞

 M(xn(ξ), xn+p(ξ), t) = 1 for all t > 0, 𝑝 ≥ 1.                                    (2.5) 

Thus, {xn(ξ)}  is a G-Cauchy sequence in Y therefore by the assumption there exists u ∈ Y  such that 

lim
n→∞

 M(xn(ξ), u, t) = 1 for all t > 0.  

We shall show that u is the fixed point point of T.  

Note that, As Y = ⋃ Ai
m
i=1  is a cyclic representation of Y with repect to T, the sequence {xn(ξ)} has infinite terms 

in each Ai for i ∈ {1,2, … . , m}. Suppose that u ∈ Ai then we have Tu ∈ Ai+1,  also take a subsequence {xnk
(ξ)} 

suh that xnk
(ξ) ∈ Ai+1. Then, for any t > 0. we have 

1

M(xnk+1(ξ),T(ξ,u(ξ)),t)
− 1 = 

1

M(T(ξ,xnk
(ξ),T(ξ,u(ξ)),t)

− 1  

≤ k1 [
1

M(xnk
(ξ),u(ξ),t)

− 1] +k2 [
1

M(xnk
(ξ),T(ξ,xnk

(ξ),t)
− 1]     

 +k3 [
1

M(u(ξ),T(ξ,u(ξ),t)
− 1] ≤ k1 [

1

M(xnk
(ξ),u(ξ),t)

− 1]  

+k2 [
1

M(xnk
(ξ),xnk+1

(ξ),t)
− 1] +k3 [

1

M(u(ξ),T(ξ,u(ξ)),t)
− 1]  

 

Letting k → ∞ in the above inequality and using (2.5) and (2.6), we obtain  

[
1

M(u(ξ),T(ξ,u(ξ),t) 
− 1] ≤ k3 [

1

M(u(ξ),T(ξ,u(ξ)),t) 
− 1].  

As, 0 ≤ k3 < 1  we must have 
1

M(u(ξ),T(ξ,u(ξ)),t) 
− 1 = 0.  that is,  M(u(ξ), T(ξ, u(ξ)), t) = 1 for all t > 0,  hence 

T(ξ, u(ξ))  = u(ξ). Thus, u(ξ) is a fixed point of T. Therefore,  

F(T) = {x(ξ) ∈ Y: T(ξ, x(ξ)) = x(ξ)} ≠ ∅, and then by proposition 2.1, F(T) consists of a single point, that is, 

the fixed point of T is unique. ∎  

Following corollaries are immediate consequence of the above theorem.  

Corollary 2.1. Let (X, M,⋆)  be a random fuzzy metric space, A1, A2, … . , Am be subsets of X and Y = ⋃ Ai
m
i=1  is 

such that every G-Cauchy sequence in Y is convergent in Y. Let T be a random fuzzy cyclic contraction on Y. 

Then T has a unique fixed point u ∈ Y  and the sequence of picard’s iterates xn(ξ) = T(ξ, xn−1(ξ)) =

Tn(ξ, x0(ξ))
 
 for all n ∈ ℕ, where x0(ξ) ∈ Y is arbitrary, converges to the fixed point of T.  

Corollary 2.2. Let (X, M,⋆)  be a random fuzzy metric space, A1, A2, … . , Am be subsets of X and Y = ⋃ Ai
m
i=1  is 

such that every G-Cauchy sequence in Y is convergent in Y. Let T be a self operator of Y such that the following 

conditions hold: 

(i) Y = ⋃ Ai
m
i=1  is a cyclic representation of Y with respect to T; 

(ii) There exist 0 ≤ k1, k2 < 1 such that k1 + k2 < 1 and  
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1

M(T(ξ,x(ξ)),T(ξ,y(ξ)),t)
− 1 ≤ k1 [

1

M(x(ξ),T(ξ,x(ξ)),t) 
− 1] +k2 [

1

M(y(ξ),T(ξ,y(ξ)),t)
− 1]   

for any x(ξ) ∈ Ai+1(i = 1,2, … . . , m where Am+1 = A1) and each t > 0.  

Then T has a unique fixed point u ∈ Y and the sequence of Picard’s iterates  

xn(ξ) = T(ξ, xn−1(ξ)) = Tn(ξ, x0(ξ))  for all  n ∈ ℕ, where x0 ∈ Y is arbitrary, converges to the fixed point of 

T.  
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