Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) JJH.i.l
Vol 5, No.2, 2015 IIS'E

A Fixed Point Theorems for a Contractive Condition of Integral
Type by Using Altering Distance Functions

Rajesh Shrivastava*,Manish Sharma** Ramakant Bhardwaj***

*Professor, Department of Mathematics, Institute for Excellence in Higher Education, Bhopal-462042 (INDIA)
**Department of Mathematics, Truba Institute of Engg. And Information Technology, Bhopal-462038(INDIA)
***Department of Mathematics, TIT Group of Institute (TIT-Excellence), Bhopal-462038(INDIA)

Abstract

In this article, we prove some fixed point theorems in metric space by using altering distance function. Our
result are generalization of many previously known results
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Introduction
A new category of contractive fixed point problem was introduced by M.S. Khan, M. Swalech and S.Sessa
[10]. In this work, they introduced the concept of altering distance function which is a control function that
alters distance between two points in a metric space.

2 Preliminary
Definition 2.1: If T is a mapping of a complete metric space (X, d) into itself satisfying the condition:
d(Tx,Ty) < kd(x,y)
Forall x,y € X and forsome k,0 < k < 1 then T has a unique fixed point. A mapping satisfying above
condition is called contraction mapping.
Definition 2.2: The function : [0, ) — [0, ) is called an altering distance function if the following properties
are satisfied:
(i) 1 is continuous and non-decreasing.
(i) () =0ifandonlyift = 0.

Definition 2.3: If &: [0, 00) — [0, o) is subadditive on each [a, b] c [0, ) then
[P e@de < [ E@de + f) €.

Lemma 2.4: Let (X, d) be a metric space. Let {x,,} be a sequence in X such that
limy, o0 P[d (X, Xp41)] = 0
If {x,,} is not Cauchy sequence in X, then there exist an €, > 0 and sequence of integer positive {m(k)} and
{n(k)} with m(k) > n(k) > k such that
d(XmGiy Xni)) 2 €0 A(Xmaa-1 Xn(0)) < €o-
Main Results
Theorem 3.1: Let (X, d) be a complete metric space, let S: X — X be a mapping which satisfies the following

condition:
da(Sx,Sy)

v, E)dt) < P(M(x,y)) — @ (M(x,))
(3.1.1)
For each x,y € X with a,b,c > 0 suchthat a + b + 2c < 1, where y, ¢ are altering distance functions, and

M(xy) =afy ™ e@)ae
d(y,Sy)[1+d(x,Sx)] d(x,Sx).+d(y,Sy)
+b [ Y E()de +c [T g () de (3.1.2)
Where &: RT — R* is a lesbesgue- integrable mapping which is summable, sub-additive on each compact subset
of R*, non-negative and such that for each ¢, > 0,
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J 2 E@®dt > 0.
Then S has a unique fixed point z, € X.
Proof: Let x, € X be an arbitrary point and let {x,,} be a sequence defined as follow:
Xn41 = Sx, foreachn > 0.
Now
d(xn,Sxn)[1+d(xn—1,5xn-1)]

M(q,20) = a [l e@de 4+ [ T gt

d(xn—1,5xn—1).+d(xn.Sxn)

+C f01+d(xn_1,xn).d(xn,5xn_1)f(t)dt
= a [ £(e)de 4 b [ gy g g [AER D) £ () gy
By sub-additivity of &, we get
M1, %) < (a+ ) [L7 7 e()de +(b +¢) [ g1t
From (3.1.1), we have
v ([ e @de) = (SO g0t
< w(M(xn—i'xn)) - (p(M(xn—lr xn))
(a+ ) f{ o g)ae
+(b + ) [ (1) dt

Since ¥ is non-decreasing, we get

d(xnXn+1) atc d(xn-1,%n)
Jo §Odt < =) £(t)dt

_(p(M(xn—lx xn))

Continuing this process, we get in general
a+tc

d(en,xn+1) n d(xox1) _
Js §(t)dt < k™ &(t)dt Let k = oo < 1
Taking n — oo, we get
limy, o [V % £(0)de = 0 .Therefore lim d(xy, Xp41) = 0. (3.1.3)
n—oo

Now, we will show that {x, } is a Cauchy sequence in X. suppose that {x,,} is not a Cauchy sequence, which
means that there is a constant €, > 0 such that for each positive integer k, there are positive integer m(k) and
n(k) with m(k) > n(k) > k such that

d (%m0 Xn (i) = €0, d(Ximgir-1, %ni) < €0
By triangle inequality
€0 < d(Xm@0 Xn)) < A, Xmo-1)  +A(Xma-1 %) < AT, Xmo-1) + €0
Letting k — oo and using (3.1.3), we get

1im d (X, Xnci)) = €o. (3.1.4)
Similarly, we have
,li_,rgd(xm(k)+1'xn(k)+1) = €op. (3.1.5)

For x = Xy and y = xp(y from (3.1.2), (3.1.3) and (3.1.4) we have,

+1im M (Xm0, %ngo) = af5§(0dt - (3.1.6)
From (3.1.1), we have

1/) (fod(xm(k)+1rxn(k)+1) f(t)dt) — 1/) (J'Od(SXm(k)'SJCn(k)) {:(t)dt)

<y (M(xm(k)'xn(k))) -9 (M(XM(k)' xn(k)))
Taking k — oo and using (3.1.5), (3.1.6) and the continuity of 1 and ¢, we get
([ Ewde) <y(afPE@)dt) —g(af°e@®adt) <[ E®)dt) —o(a [’ E(t)dt)
This leads to ¢(a f,° £(t)dt) = 0, and property of ¢ we get [ ° £(t)dt = 0.
This is contradiction. Thus {x,,} is a Cauchy Sequence in (X, d), which is complete. Thus, there is z, € X such

that
limx, =z, ,
n—-oo

Setting x = x,, and y = z, in (3.1.2) we have
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d(z9,5z0)[1+d(xn,Sxn)] d(xn,Sxn)+d(z0.520)
d ) .
M(x,,2,) = a fo (*n.20) £(t)dt +h fo 1+d(n,z0) £(t)dt te f01+d(x71'20)d(20'sx”)f(t)dt

d(z0,5z9)[1+d(xnxn+1)]

=a [ ede+b [ T g(nde

0
d(xnxn+1)+d(20,520)

+c [ (m E(t)dt

Let n — oo and using (3.1.3) and (3.1.7), we get
1im M (G, 20) = (b +©) [ESE e()dt (3.1.8)
From (3.1.1) we have
W ([0 ey ) = (7 g0t

< P(M(xn, 20)) — (M (x, 7))
Using (3.1.7) and (3.1.8), we get

¥ (I e@de) < v (0 +0) [ £t ) ¢ (b +0) [ e)de)
< (J7 4 g (t)de) —p (b +0) [ e(t)at)

Which impliese ((b +¢) fod(z"‘sz")f(t)dt) = 0,50 d(z,5z,) = 0, that is Sz, = z,.

Uniqueness: Let y,, z, be two fixed point of S such that y, # z,.
Putting x = y, and y = z, in (3.1.2) we have

a( ) d(20,520)[1+d(y0.Sy0)] d(y0.5y0)+d(z0,520)
M(yO’ZO) — afo Yo,Zo f(t)d +b fo 1+d(¥0.20) f(t)dt +c f01+d(yo,zo).d(zo,5yo)f(t)dt
d(¥0,20)
M(yo,20) = a [y "% E(t)dt (3.1.9)

0
Theorem 3.2: Let (X, d) be a complete metric space, let S: X — X be a mapping which satisfies the following

condition:
da(Sx,Sy)

¥, §0)dt) sp(M(x,y) —p(M(x,y))  (321)
Foreachx,y € X,x # y,a,8 > 0,2a + 38 < 1, where 1), ¢ are altering distance functions, and
[dz (x,5x)+d? (y,Sy)+d? (y,5x) [dz (x,5y)+d? (y,5x)+d? (x,y)
M(x y) — af d(x,Sx)+d(y,Sy)+d(y,Sx) f(t)dt +,8f d(x,Sy)+d(y,Sx)+d(x,y) f(t)dt
’ 0 0

(3.2.2)

Where &: RT — R* is a lesbesgue- integrable mapping which is summable, sub-additive on each compact subset

of R*, non-negative and such that for each ¢, > 0,

J 2 E®dt >0
Then S has a unique fixed point z, € X.
Proof: Can be proved easily as theorem 3.1
Theorem 3.3: Let (X, d) be a complete metric space, let S, T: X — X be a mapping which satisfies the following

condition:
da(Sx,Sy)

¥, §@)dt) < p(M(x,)) — o(M(x,y)) (33.1)
Foreachx,y € X,x # y,a, > 0,2a + 38 < 1, where 1, ¢ are altering distance functions, and
d? (x,5x)+d?(y,Ty)+d?(y,5x) d? (x,Ty)+d?(y,Sx)+d?(x,y)

M(x y) — (Xf[ d(x,Sx)+d(y,Ty)+d(y,Sx) f(t)dt +ﬁ f[ d(x,Ty)+d(y,Sx)+d(x,y) E(t)dt (3 3 2)
! 0 0 =
Where &: RT — R* is a lesbesgue- integrable mapping which is summable, sub-additive on each compact subset
of R*, non-negative and such that for each ¢, > 0,
foe" &(t)dt > 0.Then S and T have a common fixed point z, € X.

Proof: Can be proved easily as theorem 3.1 and 3.2
Acknowledgement: One of the Author (RKB) is thankful to MPCST, Bhopal for motivation

So ¢ (a fd(yo'z")f(t)dt) =0, s0 d(y,, 2,) = 0, that is y, = z,.
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