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Abstract 

In this paper geometric life time model is considered under competing risks. The causes of failures are assumed 

independent. Type-I progressive interval censoring scheme is used for inference. Point estimation and 

confidence intervals based on maximum likelihood and bootstrap methods are also proposed. Non parametric 

method for estimation and confidence interval for survival function is also considered. A real life example is 

provided to illustrate the theoretical results. 
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1. Introduction 

A problem frequently faced by statistician is the analysis of time to event data such as failure time data and 

incubation time data. Such data arise in many fields including medicine, engineering, economics and several 

other fields like: the time to AIDS for HIV positive individuals, the time to death for cancer patients, life of 

electrical; or electronic component etc. 

The failure of an item may be due to single cause or more than one cause. When failure is observed due to 

multiple causes the analysis of time to event data becomes more complicated. In medical studies or in the 

analysis of reliability data the failure of individuals or items may be attributable to more than one cause or factor.  

According to Hoel (1972), during a laboratory experiment, mice were given a dose of radiation of 6 weeks of 

age. The causes of death were recorded as Thymic Lymphoma, Reticulum Cell Sarcoma, or other. Another 

example due to Boag (1949) is from a breast cancer patient, where the cause of death was recorded as “cancer” 

or “other”.  The data for these “competing risk models” consist of the failure time and an indicator random 

variable denoting the specific cause of failure of the individual or item. The causes of failure may be assumed 

independent or dependent. In most situations the analysis of competing risk data assumes independent causes of 

failure. Even though the assumption of dependence may be more realistic, there is some concern about the 

identifiability of the underlying model. 

Suppose that a device exhibits k modes (risks) of failures. When the device begins operation,  each failure mode 

simultaneously generate a random life that is independent of the other modes. Thus, in effect, k life times 

denoted by  ,1, 2,...,
  

X X Xk simultaneously begin, life time Xi corresponding to the i-th mode of failure.  

Failure of the device occurs, as soon as any one of the life times say Xi is realized. Then if the life length of the 

device is denoted by a random variable X then X = min {  1, 2,...,
  

X X Xk } X(1) and the cumulative 

distribution function(cdf) of X, FX(x)  is given by  

k
( ) = 1- 1- ( )

i=1

F x F xX Xi
 
 

                                                                                  (1) 

Here each failure mode can have any failure distribution that not all the failure distribution need be alike; but all 

the k modes operate independently of each other such a model is called competing risk failure model.  

In mixture model only one of the k possible modes generates a random life that causes part failure. The different 

identifiable causes of failures may be attributed to electrical, thermal, climatic sand mechanical stresses applied 

to an item. 

Peck (1966)has considered epitomical transistors used in the telephone industry with two types of failure: 

electrical degradation of certain parts (cause I) and faulty banding of the leads (cause II). Boardman and Kendell 

(1970), Mendenhall and Hader( 1958), Patel and Gajjar (1992) have considered continuous life time model for 

mixture or competing risk failure model. 

Recently considerable attention and interest is being focuses on the analysis of discrete data. Discrete time data 

arise when  we wish to investigate the ability of electron tubes of withstand successive voltage overloads, the 

performance of switches which are repeatedly turned on and off or the ability of a mattress to withstand repeated 

pounding in a torture test.  
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In each of these causes, failure can occurs at the x-th trial ( X = 1,2,....) and it is often assumed that the 

probability of failure at the x-th trial is equal to some constant 1-q, provided the unit has not failed prior to that 

trial. Obviously the probability of failure at the x-th trial is given by the geometric distribution with probability 

function 
1( , ) (1 ) ,    1,2,....;  0 1.xf x q q q x q                                                               (2) 

Such discrete failure time model has been found to be useful in engineering, medical and biological studies. For 

instance, the number of genes in operon follows geometric distribution 

(See: DeHoon et al (2004)). Yaqub and Khan (1981), Patel and Gajjar(1990), Patel and Patel (2006) have 

considered geometric distribution as a discrete life time model to study a problem of life testing. 

 

2. Competing risk failure model 

Suppose that the device exhibits 2 modes of failures and each failure mode simultaneously generate a random 

life time X1 and X2 respectively. i.e. Xi is the time of failure of an item due to cause i then the pmf of Xi is given 

by 

                                1( ) (1 ) ,    1,2,....;  0 1,   i = 1,2.xf x q q x qi i i i
                                                   (3) 

And corresponding cdf is  

                               ( ) (  x) =  1 ,    i 1,2. 
xF x P X qi i i                                                                          (4) 

Let T be the time of failure of an item regardless of cause, then T = min(X1, X2). The pmf of T will be  

                                1( ) (1 )( ) ,    t 1,2,.....1 2 1 2
th t q q q qT
                                                                       (5) 

With its cdf,          ( ) (  t) =  1 ( ) ,    t 1,2......1 2
tH t P T q qT                                                                        (6) 

Let Pi(t) be the probability that an item failed by cause i at time t and it must not failed by the cause 
'i i  up to 

time t with two independent causes only. Then 

                              '( ) [1 ( )],   i 1,2.( ) 'P t f F t ii i t i
                                                                               (7) 

Hence the probability of failure of an item is given by                             

                            

( ) ( ) ( )1 2

        =  f ( )[1 ( )] f ( )[1 ( )]1 2 2 1

1 1        = (1- ) ( ) (1- ) ( )1 21 2 2 1

1 1        = (1 )( ) (1 )( )2 1 1 2 1 2 1 2

P t P t P t

t F t t F t

t t t tq q q q q q

t tq q q q q q q q

 

  

 

   

                                     (8)                     

 Hence the pmf of t regardless of cause of failure defined in (5) can be obtained from (8) after adjusting the 

normalizing factor C as  

                     ( ) ( )h t CP tT                                                                                                                         (9) 

         Such that            ( ) 1.

1

h tT
t






 

Which gives,  1 1 2

(1 (12 1) 1 2)

q q
C

q q q q




 

. 

Substituting C in (9), we have  

(1 ) (1 )1 12 1 1 2( ) (1 )( ) (1 )( )1 2 1 2 1 2 1 2
(1 ) (1 ) (1 ) (1 )2 1 1 2 2 1 1 2

q q q qt th t q q q q q q q qT
q q q q q q q q

     
     

 

          = g1(t) + g2(t)                                                                                                                              (10) 

The failure model in (10) is called geometric competing risk failure model. 

 

3. Interval Censoring: 

Interval censored data arise when observations are known to lie only in some interval between time points a and 

b. Here experimental units are not monitored continuously. Such data may arise in a verity of circumstances but 

are commonly encountered in medical studies, where patients are only monitored at regular interval ( e.g. weekly 

or quarterly checkup). Several authors have discussed application of interval censoring in clinical, medical, 

biomedical and engineering studies like Odell et al (1992), Samuelson and Kongerud( 1994), Scallan( 1999), 

Rao (1998), Aggarwala (2001) etc.  

Patel and Patel (2007) have considered progressive grouped censored samples from geometric competing risk 

failure model with different parameters at each stage of censoring. 

Here we consider geometric competing risk failure model and apply progressive type-I interval censoring 

without changing the parameters at different stages of censoring. 
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Under progressive type-I interval censored sample the likelihood is proportional to expression 

 
     

1 2
( , )  ( ) ( ) ( ) ( ) 1 ( )1 2 1 1 1 2 2 1

1 1 1

x x ri i im m m
L q q G N G N G N G N H Ni i i i i

i i i

      
  

                                                                   (11) 

With N0 =0,        1

1 2
1 1 1

m m m
r n x x rm i i i

i i i


     

  

. 

Based on g1(t) , defined in  (10),  we define 
( ) ( )1 1

N
           = g ( )1

t=1

(1 )2 1           = (1 ( ) )1 2
(1 ) (1 )2 1 1 2

G N P X N

t

q q Nq q
q q q q

 






  

 

Similarly,                             (1 )1 2( ) (1 ( ) )2 1 2
(1 ) (1 )2 1 1 2

q q NG N q q
q q q q


 

  

 

Hence the likelihood function given in (11) becomes 

 

1 21 1 2 1
1 11 1 1( ) ( ) ( )1 2 1 2 1 21 2

1 2        (1 ( ) ) (1 ( ) )1 2 1 2
1

m mm m m
x xx N x N r Ni ii i i i i i

i ii i iL C q q C q q q q

m S x S xi i i iq q q q

i

    
    

 


                            (12) 

where    C1 = (1 )2 1

(1 ) (1 )2 1 1 2

q q

q q q q



  

       and      C2= (1 )1 2

(1 ) (1 )2 1 1 2

q q

q q q q



  

. 

Hence we get    
1 2

( )(1 2 )log 11 1 1 22

1 21 1 1 2 1 1 1 1 1 ( )12 1 2

m m
x xi i Sm ix S q qB qL Ai i i i

Sq q q q q q q q q iq qi

  
       

    

                       

(13)  

and, 
1 2

( )(1 2 )log 11 1 1 21

2 12 2 1 2 1 2 2 2 1 ( )12 1 2

m m
x xi i Sm ix S q qB qL Ai i i i

Sq q q q q q q q q iq qi

 
       

    

.                             

(14) 

where    
( ) ,          ( )        and    1 1 2 1 2 1.

1 1 1

m m m
A N x x N r B x x S N Ni i i i i i i i i i

i i i

         
  

 

From (13) and (14), after some algebraic manipulation we get 
2 01 2 1 31

A q A q A                                                                                                                                      (15) 

where 

(1 )1 2 1 2 2
1 1

2 2(1 3 2 ) (3 1) (1 )2 2 1 2 22 2
1 1

and

( 2)3 2 2 2
1

m m
A q x q xi i

i i

m m
A q q x q x q Bi i

i i

m
A q q x i

i

    
 

       
 

  


 

Solving equation (15)  we get        
2 42 1 32

1
2 1

A A A A
q

A

  


                                                                            

(16)                 

Assuming equal length interval censoring with Ni =iN i.e. Si = N = length of i-th interval, i=1,2,...,m, and again 

from (13), we get 

( )1 2 1
21 1 1 2 1 2 .2

1 11 ( )1 2

m m
NN x q q xi i

q q q qi iq A
N q Bq q

 
  

            
  

                                                      (17) 

q2 = ψ(q2).                                                                                                                               (18) 
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Solving equation (18) by any method of iteration like: Newton –Raphson etc we get MLE of q2, say ˆ2q , and 

substituting it in (16) we get MLE of q1, say 1̂q ,  

The survival function at time t0 is given by   

S(t0) = (q1q2)
t
0, 

 

whose MLE can be obtained by replacing the parameters by their MLEs 

 i.e.      ˆ 0ˆ ˆ( ) ( )0 1 2
t

S t q q .                                                                        (19)    

 

4. Standard Errors of the Estimators: 

The asymptotic variances and covariances of the MLE for the parameters q1 and q2 are given by elements of the 

inverse of the Fisher information matrix 
2

1 2

log
ij

L
I E

q q

 
  

  

;  i, j = 1, 2. 

Unfortunately, the exact mathematical expressions for the above expectations are very difficult to obtain. 

Therefore, we give the observed (approximate) asymptotic variance-covariance matrix for the MLE, which is 

obtained by dropping the expectation operator E 

 
1

2 2log log

2 1 2 ˆ ˆ ˆ( ) ( , )1 1 1 2

ˆ ˆ ˆ( , ) ( )2 2 1 2 2log log

21 2
2 ˆ ˆ( , )1 2

L L

q qq V q Cov q q

Cov q q V q
L L

q q q
q q


  
 

   
    
    
 

 
 

                   

          (20) 

where                                                                       

 1 222 (1 2 ) ( )log 1 12 1 2 1
2 2 2 2 2 2(1 ) ( 2 ) 1 ( ) 1 ( )1 1 2 1 2 1 2 1 21 1 1 1

m m
x xi i NB q q qL A NB Ni i

N Nq q q q q q q q q qq q q

  
            
         

 

1 222 (1 2 ) ( )log 1 11 1 2 1
2 2 2 2 2 2( 2 ) 1 ( ) 1 ( )1 2 1 2 1 2 1 2(1 )2 2 2 2 2

m m
x xi i NB q q qL A NB Ni i

N Nq q q q q q q q q qq q q

  
            
        

      and 

22 ( )log 1 2
2 21 2 ( 2 ) (1 ( ) )1 2 1 2 1 2 1 2

NBN q qL B

Nq q q q q q q q q q


 

   

.                                                                                                 

(21) 

Hence the  asymptotic variance of survival function is given by  
2 2 2

ˆ ˆ ˆ ˆ ˆ( ( )) ( ) ( ) 2 ( , )0 1 2 1 2
1 2 1 2

ˆ ˆ( , )1 2

S S S
V S t V q V q Cov q q

q q q q
q q

             
           

                                                       

(22) 

Standard errors of the estimators are nothing but a positive square root of their asymptotic variances. 

 

5. Simulation Algorithm: 

Simulation studies will aid in the competing risk modelling of the lifetime distribution and in investigating the 

behavior of the estimated parameters when samples are collected according to progressive interval censoring  

schemes. A short algorithm for simulating a random sample of size n put on a life test at time 0  is given below. 

Here we use the following properties if the progressive interval censoring. 

                     ))1(1,(11 NGnBX   and ))1(2,(21 NGnBX   

And for i = 2,3, … , m 
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 

 

, , 1 , 2 ,1 1 2 1

1
1

1 2 1
1

1

1

1
1

1 2

1 1

    , ,....., , , ,....,

( ) ( )
           B ,

1 ( ( ) ( ))

( ) ( )
           =B ,

1 ( )

j i j i j i j i i

i
j i j i

s s s i
s

j i j i

s

i
j i j i

s s s

s j i

X X X X R R R

G N G N
n X X R

G N G N

G N G N
n X X R

G N

   














 

 
 
   
   
 

 
    




 ;    j = 1,  2.

   

Here B(n, p) denotes binomial distribution with parameters n and p, 0<p<1. 

On the basis of the algorithm given in Aggarwala (2001) we suggest the following algorithm for simulation for 

competing risk failure model. 

1. Set I = 0, X1sum = 0, X2sum = 0, rsum = 0   

2. Next i 

3. If  i = m+1, exit the algorithm 

4. Generate X11 and X12 as binomial random variables with parameters 1 1( , ( ))n G N  and 2 1( , ( ))n G N  

respectively. 

5. Generate X1i and X2i as binomial variates with parameters (n- X1sum - X2sum – Xrsum,   

1 1 1

1 1

( ) ( )

1 ( )

i i

i

G N G N

G N








)  and (n- X1sum - X2sum – Xrsum, 

2 2 1

2 1

( ) ( )

1 ( )

i i

i

G N G N

G N








) respectively. 

6. Calculate 
obs

iR = Floor[pi(n- X1sum - X2sum – Xrsum – Xi)] or min( Ri, n- X1sum - X2sum –Xrsum – Xi) 

7. Set X1sum = X1sum + X1i,  X2sum = X2sum + X2i,  Xrsum = Xrsum + 
obs

iR  

8. Go to step 2 

This algorithm generates m binomial random variables. Here either the values p1, p2, …. , pm-1 or proposed 

values of  R1,  R2, ……., Rm-1 are fixed in advance by the experimenter. Here  pm = 1  and  

Rm = 
1

1 2

1 1 1

m m m

i i i

i i i

n X X R


  

     . 

 

6. Confidence Interval Estimation: 

6.1 Approximate confidence interval 

The asymptotic normality of the MLE can be used to compute the approximate confidence intervals for 

parameters q1 and q2 and survival function. 

Therefore, (1-α)100% confidence intervals for  θ become 

                         
/2  Z var( )                                                                                           (23) 

where Zα/2 is the percentile of the standard normal distribution with right-tail probability α/2. 

         

6.2 Bootstrap confidence intervals 

A. Percentile Bootstrap Method 

  1. From the original data x compute the ML estimates of the parameters  2ˆ and 1ˆ qq  by solving  

      the equations (16) and (17). 

  2. Use 
1

q̂ and 
2

q̂  to generate a bootstrap sample x
*
 with the same values of Ni, ri and m;( i =  

      1,2,….,m.) using the algorithm given in the Section 5. 

  3. As in step 1, based on x
*
 compute the bootstrap sample estimates of q1,  q2 and S(t0) , say   

      )0(t*Ŝ and *
2q̂ ,*

1q̂ . 

  4. Repeat steps 2-3 S times representing S bootstrap MLE’s of  (q1, q2, and S(t0)) based on S  

      different bootstrap samples. 

  5. Arrange all  )0(t*Ŝ and *
2q̂ ,*

1q̂ in an ascending orders to obtain the bootstrap sample  

     
      1 2 * * *

1 1 2 2 0
ˆ垐, ,..., ,   l = 1, 2, 3 ( where ,   and S (t )). 

S

l l l q q       

  6. Let ( ) ( )  lG z P z  be the cumulative distribution function of l . Define 
1( )lboot G z  for  
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       given z. The approximate bootstrap 10(1-α)100% confidence interval of l  is given by             

( ),  (1 ),
2 2

lboot lboot

 
 
 

 
 

 

 

B. Bootstrap-t method 

  1. From the original data x compute the ML estimates of the parameters 
1

q̂ and 
2

q̂  by solving  

      the equations (16) and (17). 

  2. Use 
1

q̂ and 
2

q̂  to generate a bootstrap sample x
*
 with the same values of Ni, ri and m;( i =  

      1,2,….,m.) using the algorithm given in the above method. 

  3. As in step 1, based on x
*
 compute the bootstrap sample estimates of q1,  q2 and S(t0) , say   

      )0(t*Ŝ and *
2q̂ ,*

1q̂ . 

  4. Compute the following statistics 

              
** *

* * * 0 01 1 2 2
1 2 3

* * *
1 2 0

ˆ ˆˆ ˆ ˆ ˆ ( ( ) ( ))( ) ( )
,      and   

ˆˆ ˆ( ) ( ) ( ( ))

n S t S tn q q n q q
T T T

Var q Var q Var S t

 
    

       where var( . ) can be  obtained using the Fisher information matrix in (20) and (22). 

  5.   Repeat step 3 and 4 S boot times. 

  6. For 
*,  i = 1, 2, 3iT values obtained in step 4  determine the upper and lower bounds of the  

     100(1-α)% confidence interval of the parameters and survival function as follows: 

     Let *( ) ( ),  1,2,3iH x P T x i   be the cumulative distribution function of 
*

iT . For a given x,  

      define  

                 1

1 1 1
ˆ ˆ ˆ( ) ( ) ( )Boot tq x q n Var q H x

    

The approximate (1-α) 100% confidence interval for q1 can be constructed as  

                1 1
ˆ ˆ( / 2),  (1 ( / 2))Boot t Boot tq q     

Similarly we can define for other parameters. 

 

7. Non-parametric Estimation of Survival Function and its Confidence Interval Estimation: 

Kaplan Meier estimate of survival function S(t0)  can be obtained according to Miller et al (1981) ( Page:47, 51) 

the estimate and estimate of its variance can be obtained as follow. 

( )
ˆ( )0

1
( ) 0

in i
S t

n iY ti


 

   
  

                                                                                              (24)                                                            

And,           ( )2ˆ ˆˆ( ( )) ( )0 0
( )( 1)

( ) 0

i
AsyV S t S t

n i n iY ti


 

  

                                                                     (25)             

Using the results (24)-(25) in (23) (1-α)100% asymptotic confidence interval for S(t0)   can be  obtained.  

                                                                                                                 

8. APPLICATION: 

The following example relates to the two types of failure namely electrical degradation of certain parts ( Cause-I) 

and faulty bounding of the leads( Cause-II) leading to failure of transistors under accelerating testing considered 

by Peck(1966). The data is considered as censored at time 599 hrs. and 52 out of 369 items were censored at 599 

hrs. Here we modify the data including withdrawals as follows. 
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 Table:1. Failure data 

 

Number 

         i 

Time interval 

    (Ni-1,  Ni) 

Failures due to 

Cause-I :  x1i 

Failures due to 

Cause-II :  x2i 

Withdrawals 

           Ri 

1 0-49 25 14 2 

2 50-99 27 15 3 

3 100-149 27 20 3 

4 150-199 35 10 3 

5 200-249 15 10 3 

6 250-299 20 07 2 

7 300-349 10 06 2 

8 350-399 09 05 2 

9 400-449 10 03 2 

10 450-499 06 04 1 

11 500-549 05 01 1 

12 550-599 08 02 52 

 

 As per our notations we have N = Si = Ni – Ni-1 = 50, m =12, Nm = 599, N0 = 0, n = 369,  

 rm=52, Solving the equations (16) to (18) of section 3 we find MLEs of q1 and q2 as 

垐 0.997986862               and         0.9990179651 2q q  .                                                                           (26) 

From (19) we get MLE for survival function at time t0 = 150 as 

   
0

ˆ( 150) 0.637849587S t    

Using (20) the asymptotic variance –covariance matrix of the MLE s for parameter q1 and q2 is given by 

                            垐 ?( ) ( , )2.05478E-08 2.15179E-11 1 1 2
    =

垐 ?( , ) ( )2.15179E-11 1.00332E08 1 2 2

V q Cov q q

Cov q q V q

  
    

   

 

Hence the asymptotic standard errors of the MLEs of the parameters will be 

                  SE( 1̂q ) = 0.000143345              and SE( ˆ 2q ) = 0.000100166 

Hence from (22) we get 0
ˆ( ( 150) 0.016771357SE S t    

To apply bootstrap confidence interval estimation for the parameters we have made 1000 simulations based on 

the MLEs of q1 and q2 given in (26) and fixing the other values N = Si = Ni – Ni-1 = 50, m =12, Nm = 599, N0 = 0, 

n = 369 of the given real life data. 

The summary statistics for our simulation are given in the following table: 

Based on the simulated  results the confidence interval based on MLE and bootstrap confidence intervals for 

parameters and survival function are computed using the methods described in the Section 5.2, which are given 

in the following table. 

 

 Table 1.  Confidence intervals        

                 

Method Parmeter Estimate Confidence Interval  Length of the Interval 

 

         MLE 

q1 0.99798686 (0.99770590,     0.99826781) ( 0.00056190 ) 

            q2 0.99901796 (0.99882163,       0.99921429)      ( 0.00039265 ) 

     S(t0 = 150) 0.63784956 (0.60497770,      0.67072144) (0.06574374 ) 

 

Percentile 

Bootstrap 

            q1 0.99846346 (0.99818577,      0.99869169)          ( 0.00050592 ) 

            q2 0.99935030 (0.99918874,      0.99948722) ( 0.00029848 ) 

     S(t0 = 150) 0.72046432 (0.68205851,      0.75095647)      ( 0.06889796 ) 

 

    Bootstrap - t 

            q1 0.99846346 (0.99820016,      0.99895763)             ( 0.00075747 ) 

            q2 0.99935030 (0.99921542,      0.99972760)            ( 0.00051218 ) 

     S(t0 = 150) 0.72046432 (0.68392038,      0.77170121)             ( 0.08778083 ) 
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Table 2. Estimate of of survival (Reliability) function (S(t0)), Its asymptotic variance and asymptotic confidence 

interval using MLE:  

 

Table 3. Estimate of survival (Reliability) function (S(t0)), Its asymptotic variance and asymptotic confidence 

interval using nonparametric estimation: 

 

 

Here we see that from time 199 and onwards asymptotic variance of the estimate of survival function and length 

of confidence interval based on non parametric estimation are smaller than that of based on MLE. 
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