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Abstract 

The aim of this paper is to compute the eigenvalues for a class of linear Sturm-Liouville problems (SLE) with 

Dirichlet and mixed boundary conditions applying Galerkin Weighted Residual methods. We use Legendre 

polynomials over [0,1] as trial functions to approximate the solutions of second, third and fourth order SLE 

problems. We derive rigorous matrix formulations and special attention is given about how the polynomials 

satisfy the corresponding homogeneous form of Dirichlet boundary conditions of Sturm-Liouville problems. The 

obtained approximate eigenvalues are compared with the previous computational studies by various methods 

available in literature. 
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1.  Introduction: 

Geneneralized eigenvalue problem arise in connection with many problems in mechanics, theory of vibrations 

and stability, optimal control, mathematical and theoretical physics, hydrodynamics, acoustics,dynamics of 

atmosphere and ocean, elasticity etc. In Physics they describe BVP corresponding to simple harmonic standing 

waves. For the solution of SLE’s, some studies have been carried out . 

 

Chawla and Shivakumar (1993) presented fourth-order finite-difference method for computing eigenvalues of 

fourth-order two-point boundary value problems. The differential Transform method is applied to compute 

eigenvalues and eigenfuctions of second order regular SLE’s by (Chen and Ho, 1996). Chanane (1998, 2002, 

2010) introduced a novel series representation for the boundary/characteristic function associated with fourth-

order Sturm-Liouville problems using the concepts of Fliess series, iterated integrals and also Extended 

Sampling method. The Weighted residual collocation method using Chebyshev points are investigated for 

approximate eigenvalues of second order SLE’s by (Ibrahim, 2005).  

In the recent years numerical solution of eigenvalues and eigenfunctions of the fourth-order Sturm-Liouville 

problems have studied by many researchers. Different algorithms have applied to reduce the convergence rates. 

Jia, Song and Li (2005) approximated the eigenvalues of fourth order BVP for a class of crosswise vibration 

equation of beam using Galerkin method and obtained the estimation of errors using the trigonometric 

polynomials that satisfies all the boundary conditions directly. Attili and Lesnic (2006) used the Adomian 

decomposition method (ADM) to solve fourth-order eigenvalue problems. 

In recent years (Al Quran and Al-Khaled, 2010) have presented a comparative study of Sinc galerkin and 

Differential Tranform method to solve second order SLE's. Recently, Abbasbandy and Shirzadi (2011) applied 

the homotopy analysis method (HAM) to numerically approximate the eigenvalues of the second and fourth 

order SLE problems. Ycel, and Boubaker ( 2012) applied differential quadrature method (DQM) and Boubaker 

polynomial expansion scheme (BPES) for efficient computation of the eigenvalues of fourth-order SLE 

problems. Finally (Gamel and Sameeh, 2012) applied Chebychev method for finding eigenvalues of fourth order 

nonsingular Sturm-Liouville problems compared the results to the other methods available in the literature. Very 

recently (Taher, Malek, and Mousuleh, 2013) applied Chebychev spectral collocation method where Chebychev 

differentiation matrix is defined to compute the eigenvalues of SLE’s. 

Orthogonal polynomials are incredibly useful mathematical tools as they are simply defined, can be calculated 

quickly on computer system and can be modified to any desired form so as to satisfy the essential boundary 

conditions of BVP’s. This motivates our attention to compute the eigenvalues of the SLE's using Legendre 

polynomials.  

However, in section 2 of this paper, Legendre polynomials together with properties are exemplified in brief. In 

section 3, matrix formulations of Galerkin WRM are presented for solving linear Sturm-Liouville problems. 
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Convergence analysis is given in section 4. Numerical examples and results for the second, third and fourth order 

eigenvalue problems are regarded as to verify the efficiency of proposed method and results are compared with 

the existing methods available in the literature in section 5. Conclusions is given in section 6. 

2. Legendre polynomials  

The Legendre polynomials of degree n is  defined on [-1, 1] as follows:    
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where the sum converges to  112 ,L   norm. Legendre polynomial which are orthogonal in the interval 

 [-1,1] satisfy the following recurrence relation.  
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We modified the above basis as  
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so as to satisfy the homogeneous form of the Dirichlet boundary conditions to derive the matrix 

formulations of the fourth order Sturm-Liouville problems over the interval [0,1].   

3.  Matrix Formulation 

(i) SLE with Dirichlet boundary conditions: 

Consider the following general fourth order nonsingular Sturm-Liouville problem (SLE)  
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here b,a  are finite numbers; )(xp , )(xq , )(xr  and )(x  are all piecewise continuous functions and )(xp , 

0)( x  subject to some specified conditions and at  these conditions mean that equation (8) is regular, i.e, 

nonsingular. 

We can rewrite the equation (8) in the following form as a general second order Sturm-Liouville  problem as 
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Let us consider the fourth order SLE (9) subject to the two types of  homogeneous boundary conditions:   
Type 1:  

0)(0)(0)(   uu,u   .u 0)(                            (9a)           
 

Type 2:  

0)(0)(0)(   uu,u   .u 0)(                 (9b)

 
 

To approximate the solution of SLE (9), we express in terms of Legendre polynomials basis as    
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Finally, the eigenvalues are obtained in matrix form as below 
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Hence, the eigenvalues can be obtained by solving the determinant of the coefficient matrix in equation, such 

that, 
 

  .DAdet j,ij,i 0                             (20) 

 Similarly for the boundary conditions of the type 2 , the formulation can be obtained easily.       
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Integrating each term of equation (24) by parts and using equations (25) we obtain the  Galerkin Weighted 

residual equations : 
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


1

1

0

)()()()()()(   
       

1

0 111



 ji LLp~
  

                                                                                                                                            

       
i

ji
c

LLp~







1

0 000



            

1

1

1

2 0011







 jj Lp~Lp~ 



                              (26) 

or, equivalently in matrix form  

  


n

i
jij,ij,i DcBA

1

 ,  j=1, 2, 3,…………, n             (27a)  

where, 

       

1

0
1

0

111
)()()()(



 ji
ji

ji
j,i

LLp~

dxxLxLxq~

dx

dL

dx

dL
xp~A











    

 
       

1

0 000



 ji LLp~
                                      (27b) 

dxxLxLxr~B jij,i 
1

0

)()()(                                                (27c) 

           

1

1

1

2 0011







 jj

j

Lp~Lp~

D





                           (27d) 

n,,,j,i 321
 

     Equivalently eigenvalues can be obtained by solving the determinant of this coefficient matrix of equ. (27) 

.BIDAdet j,ijj,i 0)(                                                                                                        (28)    

Solving this determinant we find the values of  . 

4. Convergence and error estimation 

Consider the exact and be approximate solutions be )(xu  and nu~ respectively. 

 where, 

    )()(
1

0 xcxc,xu~ i

n

i
in  



                                           (29) 

Completeness condition states that the sequence of approximate eigenfunctions will converge to the exact 

solution if degree polynomials increase indefinitely. 

Mathematically, 

 0)()(  xu~xu n   as  n       x ,                       (30) 

A set of trial functions form a complete set of functions and they are  complete in a space if any function in the 

space can be expanded in terms of the set of functions , for sufficiently large n [Finlayson (1972)]. 

 


1i
iicu                                (31)  

The convergence theorem required the trial functions to satisfy the two conditions in equ. (29) and equ.(31). 

To assess convergence, we observe uniform convergence that requires the maximum value of    xu~xu n in 

the domain vanish as n . This requires a uniform rate of convergence at every point in the domain. 

Besides, we minimize the residual error with eigensolution defined as 

     u~uxE                              (32) 
The approximate eigensolutions are arbitrarily close to the exact solutions which is measured by the energy error 

which involves derivatives of u. Convergence in energy requires  u~u  

Energy error =   dxxELxE 2
1

)()(


               (33a) 
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where u~uxE )(  and  















2

2

2

2

dx

d
xp

dx

d
L                           (33b) 

Therefore, from the above arguments we examine that our polynomial trial solution in equ. (29) will converge in 

energy as n because the powers of Legendre polynomials and their derivatives (n=1, 2, 3,......) have 

sufficient continuity and they form an infinite sequence of functions which is complete in energy for equ.(33a) 

and its boundary conditions. The convergence of the eigenvalues by Galerkin WRM method is measured by the 

relative error 

 





 




Exact

.ApproxExact

k                (34) 

where  .Approx  denotes the approximate solution using n-th polynomials and   1010  depends upon the of 

the problems. 

4. Numerical Examples  :    

In this section we will present six numerical examples of second order SLE problems, using the  method outlined 

in the previous section. The convergence of the our existing method is measured   by the  two errors 

Absolute error  .Galexact
k    ,    Relative error 

 

.
exact

..Galexact

k






           (35) 

Example 1: We compute the eigenvalues of the Sturm-Liouville Problem work out by Al-Quran and Al-Khaled 

(2010) given below.  

Consider, 

 













0)()0(

)()(2

2

2





yy

xyxyxcos
dx

ud

                           (36) 

Table 1: Comparison of absolute errors of Galerkin Weighted Residual method with the sinc Galerkin and 

differential Transform method for example 3.

 

Exact 

eigevalues 

Absolute         

error 

 Sinc Gal. 

    N=32 

  Absolute   

    error 

Legn.Gal. 

   N=20 

Absolute error 

Diff.Transform 

    N=10 

Absolute error 

 Legn.Gal. 

    N=10 

 1.24242  1.42e-005

 

 8.826e-006    3.19e-005    8.826e-006

  4.49479  4.85e-004  3.079e-006    1.70e-004 

   

3.122e-006 

 9.50366  9.91e-003  4.867e-006    1.83e-003    2.365e-005 

16.50208  1.31e-001  1.901e-006    3.81e-001    1.336 e-004 

 
Table 1, lists the first four eigenvalues. From Table 1, it has been noticed that the absolute errors for N=10 in 

case of our present method showing the better accuracy than that of the Differential Transform method by Chen 

and Ho (1996), for N=10. Also when we use n=32 grid points, the maximum absolute error is 
610

 which  is 

more accurate than Galerkin method for N=32.This proves
 
that our present method is much more efficient than 

that of Sinc Galerkin method and Differential Transform method (2010). 

Example 2: Consider the second order SLE with constant co-efficients  boundary conditions are of mixed types. 

   

   




















011

000

2

2

uu

uu

u
dx

ud


                         (37a)
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   

   




















011

011

4
2

2

yy

yy

y
dx
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

                        (37b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                            Figure 1: Convergence of eigenvalues  321  ,,  . 

Here 
n

k is k-th estimated eigenvalue corresponding to n and the differences between the k-th and (k-1)-th 

eigenvalues are given by  1- k
i

k
i , where   is very small and 0 . 

      
       Table 2: Absolute  errors between the successive eigenvalues for example 2 

 

   i 

Exact eigevalues 

  Chen and Ho  

      (1996) 

    Absolute   

  error present 

     
56 - ii   

   Absolute   

  error present 

1112 - ii   

     1        1.71    3.66e-004     4.80e-012 

     2       13.49    2.32e-003     3.22e-008 

     3       43.36    8.70e-001     1.70e-004 

It is noticed from table 2, that the errors decreased with the  increasing degree of n and  differences between 

successive eigenvalues converge to zero as the node number inceased and is given as follows: 

100000000000- 11
1

12
1 . ,   00000000010- 11

2
12
2 .  and 0000010- 11

3
12
3 .  

Example 3: Consider  the SLP studied by Celik (2005)is given below
 

 














0)()0(

10
2

2

2





uu

u.xu
dx

yd

                                  (38) 
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Table 3: Relative errors of the  smallest eigenvalues in present method for example 3 for different values of n. 

 

  k 

  Exact 

eigenvalues 

   Rel. err    

   n=30 

  Rel. err        

   n=35 

   Rel. err          

    n=40 

  Rel. err    

   n=45 

1  1.51986582 7.332e-09 8.333e-09 1.278e-08
 

    1.310e-08 

2 4.9433098 1.662e-08 4.342e-09 7.486e-09 8.010e-09 

3 10.284663 1.010e-08 1.979e-08  3.783e-08 2.9707-08 

4 17.559958 4.251e-09 7.497e-08 1.418e-09 8.416e-09 

5 26.782863 2.391e-08 2.322e-08 3.252e-08 1.872e-08 

6 37.964426 1.343e-09 8.356e-09 8.025e-09 3.977e-09 

7 51.113358 7.851e-010 9.999e-09 1.085e-09 3.024e-09 

8 66.236448 2.169e-09 2.350e-09 5.443e-09 5.951e-09 

9 83.338962 1.348e-09 1.859e-09 8.711e-09 5.517e-09 

10 102.42499 2.178e-07 1.655e-08 1.031e-08 9.059e-09 

11 123.49771 9.131 e-07 6.853e-07 5.111e-07   1.984e-09 

12 146.55961 1.797e-05 5.681e-05 8.022e-06 7.318e-06 

13 171.61264 6.080e-04 5.551e-04 9.201e-05
 

5.481e-05 

14 198.65837 2.585e-03 2.050e-03 1.406e-03
 

5.140e-04 

15 227.69803 2.401e-02 1.342e-02 3.657e-03  2.819e-03 

 

Table 3 lists the first 15 eigenvalues for different values of n. It is clearly noticed that the convergence rate does 

not improve much with the  increasing degree of n. For the range  n=30 to 40 , the first 11 eigenvalues converge 

at the same rate. For n=45, the convergence rate slightly improves but not as much as we expect. Our computed 

results for the first 11 eigenvalues are correct up to 8 significant figures which is much compatible with the result 

of Celik (2005).This indicates that the existing method is efficient  for obtaining smaller harmonics than that of 

larger. 

 

Example 4: 

     011
22




uxxu                             (39a)
 

        011000  uu;uu                                   (39b) 
   
Table 4: Relative errors of the  smallest eigenvalues in present method for example for different values of n.

 

 

Exact smallest 

eigenvalue 

Chawla(1983) 

      

  x                       

No of grid   points  

Chawla (1983) 

          N 

 rel. error        

Chawla 

  (1983) 

 

D  Degree of 

 polynomials  

  present method  

            n 

 rel. error 

  present    

    

 1 8 1.65e-004 8   4.548e-009 

5.833767621 2 16 1.97e-005 12  4.097e-009 

 3 32 2.32-006 16  4.098e-009 

 4 64 2.81-007 20  4.098e-009 

xample 

Relative error norms are listed in table 4 .We computed approximate eigenvalues  by symmetric finite difference 

method for the smallest  eigenvalue  of the problem above by the present method. The maximum absolute error 

achieved by the present method is about 4.54× ,910 whereas error attained by Chawla and Shivakumar(1993) of 

order 710 .Besides using only eight Legendre polynomials the accuracy is achieved and finite difference 

method attained the less accuracy applying 64 grids. It is also observed that, relative errors remain constant and 

not decreasing with the increased number of degree of polynomials.  

Example : 5 

We calculate the ten eigenvalues of third order problem as illustrated in Gheorghiu (2007). 
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    





















01

011

0
3

3

)(u

uu

u
dx

ud


                             (40a) 

To Change the boundary points from -1 to 1 into -1 to 1, we transfer the equation (40a) by changing the variables 

12  tx ,the Sturm-Liouville  problem transforms leads the SLE as follows: 

    





















0)0(

01)0(

0
8

1
3

3

u

uu

u
dx

ud


                         
                          (40b) 

Using eigencondition 0
6

323 3

1
3

1


















 sine ,                     (41a)  

The exact eigenvalues are found from the relation  

 

3

36

1




















 kk  , n........,,.........,,k 321                                        (41b) 

We calculate the ten eigenvalues of third order problem as illustrated in Gheorghiu(2007). 

Table 5: Comparison of relative errors of  Legendre spectral collocation with the results of Gheorghiu (2007) for 

example  5. 

Exact 

eigenvalues 

Gal. Legn (present). Spect. Tau (2007) Rel. error 

Error 

(present) 

 n=29 

Rel.error (Tao) 

Error (2007) 

N=64 

-9.47563023219617 -9.48240693552001 −9.48240693549165e+ 00 7.152e-004      7.152e-004 

-60.6937598254664 -60.6936584118949 −6.06936584119385e+ 01 1.671e-006      1.671e-006 

-189.484978899806 -189.484979838545 -1.89484979838051e+ 02 4.954e-009      4.952e-009 

-431.652251831094 -431.652251824051 −4.31652251829144e+ 02 1.632e-011      4.517e-012 

-822.998542995207 -822.998542995237 -8.22998542950849e+ 02  3.633e-014      5.389e-011 

-1399.32681676803  -1399.32681676847 -1.39932681708419e+ 03 3.113e-013 2.259e-010 

-2196.44003752543 - 2196.44003751879 -2.19644003549006e+ 03 3.025e-012 9.267e-010 

-3250.14116964328 -3250.14117085548 -3.25014118218594e+ 03 3.730e-010 3.859e-009 

−4596.23310058846 -4596.23385177037 -4.59623310058847e+ 03 4.440e-007 1.673e-008 

-6270.51902546391 - 6270.51347261484 -6.27051950319929e+ 03 8.856e-007 7.619e-008 

From table 5, it has been examined that the first eight computed eigenvalues using Legendre polynomials are 

very close to the exact results and the values for the lower eigenvalues have a better accuracy than those for the 

higher eigenvalues Gheorghiu (2007). Smaller eigenvalues  converge more rapidly than those of  larger ones. 

Example 6: We first consider the Sturm-Liouville BVP Yucel and Boubaker (2012), Gamel and Sameeh (2012) 

and Chebychev spectral collocation method of Taher et al (2013). 

100
4

4

 x,)x(u
dx

ud
                       (42a) 









0)1()1(

0)0()0(

uu

uu
 ,                     (42b) 

which corresponds to the case 03210  )x(a)x(a)x(a)x(a  , 0a  and 1b  in equation (9). 
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The exact solution of (42a) can be obtained by solving     0  tantanh .  

Table 6: Observed relative errors of the eigenvalues for example 6 

                                                                                                                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is observed in Table 6, that all 10 eigenvalues obtained using Legendre polynomials converge more rapidly are 

very close to the exact results than those obtained by the other methods. In fact relative error decreases as the 

degree of polynomials increase from 20n  to 26n  in the case of Legendre basis. 

Example 7: Consider the Sturm-Liouville EVP (2006, 2009, 2010,2012, 2013)  

)()()02000010(040020 4

2

2
2

4

4

xuxu.x.
dx

dy
x.

dx

yd
x.

dx

yd
                                 (43a)

           

 







0)5()5(

0)0()0(

uu

uu
                 (43b) 

Table 7 :  Comparison of eigenvalues for example 7 

 

     
 galerkin
k  

  Present ( n=18) 

          
 

  
Result of  

Spect. Coll.(2013) 
 

    Result of    

   coll.(2012)
 

  Result of     

  ADM(2006)
 

   Result of     

    (2012)
 

Result of (2010)
 

 0.2150508643697      0.2150508643160           0.2150508643697             0.2150508643697             0.21505086437                                          0.21505086437 

 2.7548099346830            2.7548099336169            2.7548099346829            2.7548099346829         2.75480993468                2.75480993468 

 13.215351540558          13.215351540581          13.215351540416       13.215351540558         13.2153515406           13.2153515406 

 40.950819759161                 40.950819758144                 40.950820029821         40.950819759137          40.9508197591                                                                                                                                                             40.9508193487 

 99.053478067698           99.053478038354             ………………       99.053478138138          99.0534780633                                                                   ……………… 

 204.355734247 63     204.35573547934         ………………..        204.35449348957         204.355732256                                                                                                                                                                                                                                                                                                                                                                                                                                                         ……………… 

Table7, illustrates the comparison of our result obtained using n=18, for Legendre polynomials and  the first six 

eigenvalues of the problem with the results of various methods. From table 7, it is noticed that using Legendre 

polynomials the eigenvalues obtained using the present method show better performance and fairly close to the 

results of the other available methods. 

6. Conclusions 

In this paper a novel formulation of the Galerkin method using Legendre polynomials is proposed. The main 

reason why the Galerkin method is chosen, are its flexibility and simple implementation. Excellent agreement 

Exact eigenvalues Relative error 
     

 present 

   n=26 

Relative        

error (2013)  

           
 

  Relative 

errors            

  (2012) 

Relative errors 

    (2012) 
 

     PDQ 

  N=20 

Relative errors     

 
 PDQ 

  (2012)   

   N=30
 

237.72106753                    4.6974e-012 2.03E-009 4.697 E-012     7.59E-009     7.59 E-09 

  2496.48743786                           2.703E-012 7.93E-010  3.046E-12                4      4.44E-008       4.45E-08 

  10867.58221698              2       2.139E-013      2.33E-010  5.104E-12                           1.94E-009   1.71E-08 

  31780.09645408           3.388E-014   8.605E-09      8.605E-09                              4.50E-008   2.36E-08                                                                        

  74000.849349156                         6.686E-015 7.51E-011 …     ………….      3.97E-005   2.99E-08    

  148634.47728577               1.       1.958E-015  2.24E-010 …       …………    1.43E-004    4.77E-08                                                                                                                                                                                                                                              

  269123.43482664                          9.517E-015 ..      ……………     …….…….      4.08E-003   9.61E-10            

  451247.99471928              2.93     2.933E-013 ……………     ………….      1.11E-002      1.74E-08   

  713126.24789600           1.920E-010    …………       ……     ………..     9.02E-002    3.16E-06 

 1075214.10347396          4.809E-009 ….. .      .…..... …….   ……….     2.06E-002    9.31E-06                                                                                                                                    

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.2, 2015 

 

206 

and better accuracy is achieved even with small number of basis polynomials for some SLE which sometimes 

minimizes the cost of computational time for some problems. The disadvantage of the current method is that, in 

case of huge number of eigenvalues computation, higher eigen modes are less convergent than the lower modes 

and with increasing of the degree of polynomials the computational time highly increases. In spite of this 

disadvantage, we can conclude that for a relatively small n, i.e., n = 18, fairly accurate numerical results are 

obtained using the proposed method. 

The results of the previous section shown in all the tables signify that Galerkin method using Legendre  

polynomials shows very accurate results compared to the other numerical methods with degree of polynomials 

not greater than 10. Furthermore, the smallest eigenvalue which characterizes  potentially the most visual 

structures of the dynamical systems arises in vibration of a deformable bodies can be computed very accurately 

applying WRM .Our proposed method is much superior in the sense of accuracy and applicability specially for 

higher order problems.  
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