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Abstract

This work considers the direct solution of general third order ordinary differential equation of the form

Yy )=FY,Y,Y ) Y(%) =Y Y (%) =Y;, Y (X,) =Y, . The method is derived by collocating and
interpolating the approximate solution in power series. Two methods were derived-the hybrid three-step and
four-step non-hybrid methods using the block method to generate the independent solution at selected grid and
off grid points. The order, error constant, zero stability and convergence of the methods were investigated. The
two schemes derived are tested on standard problems; the hybrid scheme is more superior to the non-hybrid
scheme in terms of accuracy and efficiency.

Keywords: collocation, interpolation, power series, hybrid, linear multistep method, block method and zero
stability

1. Introduction
Differential equations which are applicable to our day to day life are frequently encountered in areas of sciences,
social sciences and engineering. In this research work, general third order of initial value problems (IVP) of
ordinary differential equation of the form:

y ()=f(xy.y.y) 1

is considered. Customarily, third order ordinary differential equations are solved by reducing it to a system of
first order ordinary differential equations and then an appropriate numerical method for first order will be used to
solve the system.

This reduction approach has been extensively discussed by several authors such as Lambert (1973), Fatunla
(1988), Awoyemi (1999) and Jator (2001). In spite of the success of this approach, there are several setbacks.
Writing computer programs for these methods is often complicated especially when subroutines are incorporated
to supply starting values required for the methods. The consequence is in longer computer time and more human
effort. Many authors have developed methods for the direct solution of (1) without reducing it to systems of first
order ordinary differential equations which will be of the form

y () =F0y YY) y(%) = Yo Y (%) =Y, Y (%) =Y, )
However, this approach has its own disadvantages; some of which are non-economization of computer time,
implementation cost and computational burden. Methods of linear multistep method (LMM) have been
considered by Brown (1977), Lambert (1973), Awoyemi (1999, 2001, 2003,), Olabode (2007), Adesanya et al.
(2008) for problem (1). They independently proposed linear multistep methods with continuous coefficients to
solve (2) in the predictor-corrector mode based on collocation method and used Taylor’s series expansion to
supply starting values. Ibijola, Skwame and Kumleng (2011) also worked on hybrid-block method but with
application to first order ordinary differential equations.

Despite the improvement by different authors in developing schemes that can directly solve (1), there is still the
setback of lower accuracy when used to solve problems due to the low order of the methods developed. As a
result of the above challenges, we propose a direct method based on collocation and interpolation of power series
approximate solution to derive a three-step hybrid block method and a four-step block method for direct solution
of general third order ordinary differential equations.
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2. Methodology

We consider power series as an approximate solution to the general third order ordinary differential equation:
Yy (0=T0Y. Y, Y ) Y(X) =0, Y (%) =Y. Y (%) =Y, )

To be of the form

C+i

y(x)=> a;x! 3
j=0
where c is the collocation points and i is the interpolation points

The third derivative of (3) gives

C+i

y" () =2 i(i-2(-Dax* = f(x,y,y,y)
j=0 4
Collocate equation (4) at X = X, :, where j =0(1)k,V, and interpolate equation (3) at X = X, :, where

n+j? n+j?

J =0k —1,v,.v,,V, are the off-step interpolation and collocation point. Collocation and interpolation

equation at some selected grid and off-grid points is consider generating system of non-linear equations which
can be solved using Gaussian elimination method. The resulting values generated is substituted back to the
power series to give a continuous linear multi step method (LMM) of the form

y(X) = Zaj (X) yn+j + hS {Z ﬁj (X) fn+j + ﬂv(x) fn+v] 5

Where Y(X) is the numerical solution of the initial value problem and v = —. a;and ﬂj are constant.

fn+j = y(Xn+j ' yn+j,yr'1+j,yr'1’+j) J = O(l)k

And that ¢, and ﬂo are not both zero since (4) is continuous and differentiable; hence it is evaluated along
with its derivatives at all the grid points. This generate a block method for the general third order ordinary

differential equation of the form

AQY =AY +h“[BOF +BOF ]

where

Ym = [yn+1’ yn+2""1 yn+r]T Ym—l = [yn—1' yn—2""! yn]T ! I:m = [Fn7 fn+l, fn+2""’ fn+k]T

F o =[f  f f ...f] u=
=L Toa T ] H 3 which is the order of the differential equation.
This gives the independent solution {y,,;}, 1=1(1)k without overlapping

3. Derivation of the Three-Step Hybrid Scheme
A three-step single hybrid implicit method is developed. Here below is the sketch of the scheme.
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Xn Xn+1 Xn+3/2 Xn+2 Xn+3
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Where,
C = Points of collocation, | = Points of interpolation, E = Point of evaluation
Thus we consider an approximate solution for (2) in the form
C+i _
y(x)=> a;x’ 3
j=0
Where aj-parameters to be determined and k=3 which is the step length
The first, second and third derivatives are
C+i
' : -1
y ()= ja,x! 6
j=1
. C+i o o
y () =2 i(i—Dax! 7
j=2
C+i o g
y"0) =>i(i-2)(j—-Dax" 8
j=3
Substituting (1.8) into (1.2) we obtain
C+i o ] g ) i
y"0)=>i(i-2(j-Da,x* = f(x,y,y,y) 9
j=0
Collocating (9) at X,.., €=0,1,3/2,2,3 and interpolating (3) at X,,;,1 =1,3/2,2 give
B 2 3 Ma 1 T ,
1 Xn+1 Xn+1 Xn+1 X:+1 Xr\?+1 Xr?+l XrZ+1 aO yrH-l
2 3 4 5 6 7
1 Xn+3/2 Xn+3/2 Xn+3/2 Xn+3/2 Xn+3/2 Xn+3/2 Xn+3/2 al yn+3/2
2 3
1 Xn+2 Xn+2 Xn+2 X:+2 Xr?+2 Xr?+2 XZ+2 a2 yn+2
0 O 0 6 24X, 60x:  120x  210x, |l& | | f,
0 0 0 6  24x., 60x, 120x%, 210x', |la, f .
0 0 O 6 24'Xn+3/2 60X§+3/2 120Xr31+3/2 210X:+3/2 a5 fn+3/2
0 O 0 6  24x,., 60x°, 120x3, 210x%, ||l & f .
0 0 0 6  24x,., 60x%, 120x}, 210x;, ||& | [ f.s 10

Solving for a;, J =0(1)7 in equation (10) using Gaussian elimination method and substituting into (3) gives

a linear multistep method with continuous coefficients in the form;
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y(X) = Zaj (X) yn+j + h3 [Zﬁ] (X) fn+j +IBV(X) fn+vj 11

: : : I 3
where Yy(X) is the numerical solution of the initial value problem and v = E . jand jare constants.

fn+j = f(Xn+j,yn+j,yr,1+j,yr'1'+j) 12

. . X—X dt 1
Using the transformation t = ——12 — — E 13

h dx
The coefficients of Y, . and f, ; are obtained as:
a,(t) =2t° +t
ay (t) = —(4t° + 4t)
a, (t) = (1+3t + 2t2)

3

t) = ATt +175t* —560t" —448t> +112t° +128t’
A 241920[ ]
h3 2 4 5 6 7
t) = —61t — 7t? +112t* + 672t° —336t° —128t 14
AW 241920[ ]
h3 2 4 5 6 7
t) = —[ 62t +154t% — 35t* — 28t° + 28t° + 8t
EAS 945[ ]
3
B, (t) = h | 541t + 2653t° -+ 4480t" + 2800t* —560t° 128t |
26880
3
B,(t) = h | 79t — 287t +1120t" +1568t° +112t° +128t" |
241920

Evaluating (14) at the non-interpolation points i.e. t =1,—2, gives

Evaluating (14) at the non-interpolation points i.e. t =1, gives

Yoz =0V + 8yn+% -3y, = 57—160[77 f..,+2097f ,+512f ., +207f  —13f, ] (15)

The order of the scheme (15) is p = 6 with error constant C,, =—0.000439453125. And also evaluating
(14) at t = —1 gives
1

Yo — 6yn+1 +8y 3 _3yn+2 = —[13 fn+3 —207 fn+2 —512 fm

—2097f . —77f 16
: 5760 et o] (16)

%

Finding the first derivative of (14) gives:
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a,(t) =4t+1
oy, (t) =8t -4
a,(t) =4t+3
. h?
A= 01920
h3
26880

[47-%350t—-2240t3—-2440t44—672t54—896t6]

Bi(t) = [ -61-14t +4490t" + 3360t* — 2016t" |

, h?
t) =~ [ 62+ 308t —140t* ~140t* +168t° + 56t°
ﬂE/?_() 945[ :|

3
B, (t) = h [541+5306t+13440t2+11200€-—3360P-—896ﬁ}
26880
3
Bi(t) = h [ ~79-574t+4480t° + 7840t* + 672t° + 896t° |
241920
17
While the second derivative of (14) gives:
a,(t) =4
0‘;/2 (t)=-8
a,(t)=4
. h?
t) = 350 — 6720t? —9760t° + 3360t +5376t°
A 241920[ ]
] h?
t) = —14+13470t* +13440t° —10080t* —5376t°
A 26880[ ]
. h® p 3 4 5
;gm(ozzézg[308—420t —560t° +840t* +336t" |
3
B (t) = h | 5306+ 26880t + 33600t” ~16800t* —5376t° |
26880
3
Bi(t) = h | ~574+13440t° + 31360t°3360t* +5376t" |
241920
18

Evaluating (17) at the entire grid and off-grid points i.e att =—2,—1,—1/ 2,0,1 gives the following equations:
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, L[17267, +236079f, , — 271361, ,,
241920y’ +1693440y, ,, — 2903040y, .., +1209600y,, = h (19)
+38385f , — 2515f,

241920hy’ . + 725760 967680 241920 h? 79T +48691,., +158721,., (20)
+ - + =
yn+l yn+l yn+3/2 yn+2 _549 fn+2 + 47 fn+3
, ,[5f, —549f, , —8992f .,
1734082560hy! . ,,, +1734082560y, ., —1734082560y, ., = h (21)
—549f , +5f .
241920hy’ ., — 241920 967680 725760 h? 47T, =549, +15872 1,4, (22)
J— + — —
yn+2 yn+l yn+3/2 yn+2 +4869 fn+2 _ 79 fn+3

,| —2515 f, +38385f, , —27136f .,
241920hy, , —1209600y, ,, + 2903040y,,,,,, —1693440y, ., =h (23)
+236079f ., +17267f .,
While evaluating equation (18) at all the grid and off grid pointsi.e att = —2,—1,—1/ 2,0,1gives the following
equations:
, —-1741f —9345f , +4608f .,
5760h°y; — 23040y, , + 46080y, ,, —23040y,., =h (24)
-2319f, ., +157f,
17280h%y” , — 69120 138240 69120 | 411 — 34111, ~56321,.5, (25)
— + — p—
yn+1 yn+l yn+3/2 yn+2 —6525 fn+2 _ 25 fn+3
1440h* yr:'+3/2 —5760 You T 115ZOYn+3/2 - 5760yn+2 =h [_ fn +33 fn+1 —24 1En+2 + fn+3 ] (26)
17280h%y" , — 69120 138240 69120 h 251, ~3871,, +56321,.4, (27)
— + —_ =
yn+2 yn+1 yn+3/2 yn+2 +3411 fn+2 _ 41 fn+3
5760h%y" . — 23040 46080 23040 | o7t + 23191, ~ 460801, 4, (28)
—_ _|_ —_ =
yn+3 yn+1 yn+3/2 yn+2 +11649 fn+2 + 1741 fn+3

4. Derivation of Block for Three-Step Method

Combining equations (15), (16), (19) and (24) give the block below.
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-17280 46080 -34560 5760 Y,.. 0 0O 0 Yoo
—34560 46080 —17280 O |[Y,n| |O O O —57601 Y, 4,
1693440 —2903040 1209600 O ||y, | [0 0 0 0O Yot
—23040 46080 —23040 0 Ynis 0 0O 0 A

000 0 Yo 000 O Yo
;000 0 y;:m L0000 yé’;g,z

0 0 0 -241920( v,, 0 0O 0 Yo,

0 0O 0 y, 0 0 0 -5760 vy

207 512 2097 77 fa 0 00 -13 f,

N -2097 512 =207 13 fa0 e 0O 00 -77 [

23079 -27136 38385 -2515| f 0 0 0 17267 f_,

-9345 4608 -2319 157 fs 0O 0 0 -1741 f,
Using matrix inversion
10 0 O Voo 000 1y, 000 1y, 0 00 % Yo,
010 0¥z [0 00 1lly,| 1000 3/2|ly;| oo o o grgll Ve
001 0(VY,| |000 1]y,, 000 2|y, 000 2 |Vis
0 0 0 1| V,.s 0 00 1} vy, 000 3 |y, 000 9/2/L%

(67 -188 11  -83 ] 0 0 0 88

336 945 140 15120 945

880 -9 145 -157 || fou 337 || fos

1213 14 578 9061 | f 000 Tz f
+h3 n+3/2 +h3 n-2

58 -1216 11 =34 || f, 0 0 0 29| fs

35 945 21 945 || f . 945 || f,

2673 -108 243 -9 81

== == =2 = 000 =

L560 35 140 112 | L 70 | 30
Writing out (30) explicitly, we have

: 1 " 88 67 118 11 83

=y +hy +| = P2y +h| —f +—f —=—f 4y f - f

yn+l yn yn [2] yn (945 n 336 n+1 945 n+3/2 140 n+2 15120 n+3j

31

337 f 880 9 145 157 )

Yoize =Y +§hy'+gh2y"+h3(— + o et o f oo
32 = In T Tg I 1368 " 1213 " 14 "** 578 "* 9061 "°

32

16
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449 58 1216 11 34
+2hy +2h*y +h¥ —f +—f ———f  +—f ———
yn+2 yn yn yn (945 35 n+l 945 n+3/2 21 n+2 945 n+3j
33
9 81 2673 108 243 9
+3hy +— h2 +h? —f +—f,——f +—f  ——
yn+3 yn yn yn ( 70 560 n+l 35 n+3/2 140 n+2 112 n+3 j

34

Substituting (31)-(34) into (19)-(23) gives the following

2

Y, = yn+hy”+%[83f +240f,,, 2241, ., +87f ,—6f ]

2

Yz =Yh+ % !+ [489 f +1863f, 6 —1440f ., +567f ,—39 fms]

1280

h? 35
y =Y +2hy" + —5[24 f,+102f,, —64f ., +30f ,—2f ]

h2
Y =Y, +3hy’ + m [33f,+162f , —96f ., +81f ,]
While substituting (31)-(34) into (24)-(28) gives the following equations:

h
Yo=Y+ %[329 f,+1539f ,-1216f ,,+452f ,— 31fn+3]
" " h

Vieao = Yo t %[193 f, +1053f , —-512f ., +243f ,-17 fM] 36

YL, =Y+ %[411‘n +216f,,, —64f, ,,+81f ,—4 fn+3]

Y = yﬁ%[llf +81f, , —64f ,,+81f ,+11f

n+2 n+3]

5. Derivation of Four-Step Non-Hybrid Scheme

C C C C C
| | | | |
| | | | |
Xn Xn+1 x;;+3 xn+3 xi7+4
| | | E

Collocating and interpolating (1) and (8) respectively at the points indicated in the sketch above yields a system of
equations with unknown ai,i =0(2)7 . Using the same method of solution of scheme one, we obtained the second

scheme as:
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3

yn+4 - 3yn+3 + 3yn+2 yn+l 240 [ fn+4 +116 fn+3 +126 fn+2 —4f na T f ] 37
With the order p =6, Error constant C ., = 2.08333x10°° .
Evaluating at X also gives the scheme

3
Yo — 3yn+l + 3yn+2 Yniz = 240 [ fn+4 +4 fn+3 —126 fn+2 —-116 fn+1 - fn ] 38

Evaluating the first derivative of the continuous scheme at all the grid points gives the following schemes:

, 1( 5 3 h?
yn = E(_E yn+1 + 4'ynJrZ - E yn+3j 10080 n+1 + 7254 fn+2 +64 fn+3 +5 fn+4] 39
v =3y Loy y AL [-29f, +452f, , +1296f, , ~52f, . +13f,,] 4o
n+l h 2 n+1 n+2 n+3 5040 n n+l n+2 n+3 n+4
Voo == -1y y ” [5f, —104f , —1482f , —104f . +5f ] 41
n+2 h 2 n+l n+3 10080 n n+l n+ n+3 n+4
1(1 3 h?
yn+3 E (E Yo — 2yn+2 +5 2 yn+3j 5040 [13 fn+ —52 fn+1 +1296 fn+2 +452 fn+3 -29 fn+4] 42

. +64f

+7254f ,+10480f . +677f ,] 43

n+1

=3y ay 42
yn+4 h 2yn+l yn+2 2yn+3 10080

While the evaluation of the second derivatives of the continuous scheme at all the grid points yields the following
schemes:

vy :h—lz(yM —2Y..s +3yn+3)+£ho[—118fn —477f,,, —-96f, ,, —35f +6fn+4] 44
) 1 h

yn+1 = h_z(ym-l - 2yn+2 + yn+3 ) + 7_20[15 fn —308 fn+1 — 456 fn+2 +36 fn+3 =7 fn+4] 45

y”zzi(y AR 3)+L[—21‘ +19f ,, —19f ., +2f ] 46
n+ h2 n+ n+ n+ 360 n n+ n+ n+
y 1 h

Yoiz = h_z(yml - 2yn+2 * Yz ) + %[7 fn —36 fn+l +456 fn+2 +308 fn+3 -15 fn+4] 47
14 l h

Ynia = F(ynﬂ - 2yn+2 + Yois ) + %[_6 fn +35 fn+l +96 fn+2 +477 fn+3118 fn+4] 48

The combination of equation (37), (38), (39) and (44), gives the block which after using matrix inversion yields the
following equations:
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h? 113 107 103 43 47
+hy’ +—y"+h? f o+ ——f .+ f .- f
Yoa = Yo 1, g I {1120 " 1008 " 1680 "7 1680 "° 10080 ”*4}
331 332 8 52 19
+2hy’ +2h%y” +h? f +=f ——f +—f  —— 49
yn+2 yn yn y |:63O n 315 n+l 21 n+2 315 n+3 630 n+4:|
9 1431 1683 243 45 81
+3h+h2”h f + f .- f o o+—f - f
yn+3 yn yn y [1120 n 560 n+1 560 n+2 112 n+3 1120 n+4:|
248 2176 32 128 8
=y +4hy +8h’y" +h? f+——f +—f +—f  ——
yn+4 yn yn yn ‘:105 n 315 n+1 105 n+2 105 n+3 63 n+4j|
Substituting equation (49) into equations (39)-(43) and (44)-(48) yield the following equations:
hZ
y ., =Yy +hy’+ 20 [367f, +540f , —282f , +116f , —21f ,]
h2
Y., =Y. +2hy’ +—0[35f +144f,,, -30f , +16f . —3f ,]
h2
Y .=V +3hy"+ 160 [147f, +468f ,, +54f , +60f , —9f ,]
hZ
Y., =Y. +4hy” + —5[56 f, +192f , +48f , +64f ]
Y=y + %[25“n +6461,,, —264f, , +106f, . —19f ] 51

Y, =Y+ 9—hO[29 f +124f  +24f ,+4f .- fn+4]
h
Y .=yl + 0 [27 f +102f , +72f , +42f -3 fn+4]

Y, = yn+ h [14f +64f , +24f , +64f ,+14f ,]

Finally, we use Taylor series expansion to calculate the values of Y, ; i =1(1)3 and their first and second
derivatives

atX = X, In (31)-(34), (35) and (36);
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3 _ W, (iny? (ih)* (ih)* (ih® ., (ih°  »
Yoi = YOXn+h) =y, +ihy;, + T Yom + 3 f+ 2 £+ i £+ I £+
, (ih)? (ih? ¢, (ih)* ., (ih)° " (ih)°
Yoi = Y'(xn+ih) = yi., +ihylo + T f,+ 3 )+ 2 )+ =) f ol £+
v n SN on @ih? o, (hy° ., (h)* ., (ih)° (Ih) v
Yoi = Y"(xn+ih)=y/, +ihf + —f+ 3 fr+ 2 fr+ 5l f, 5 £+

H 2
£ oymonainy= £ it 4 O g G 0w )T (0 ey G0
n+i n n | n 31 a1 51 6! 52

6. Analysis of the Block

6.1 Order of the Block

In this section, we discuss the estimation of the order and error constant of the block with the difference equation
of the form:

[y(x),h]= Za y(x+ jh)—h Zb y"(x+ jh) 53

If we assume that y(X) has as many higher derivatives as we require, we can expand the terms in (45) as a Taylor
series about the point X to obtain the expansion;

L[y(x),h]=Coy(x,)+Chy'(x,) +C,h?y"(x,) +C;h*y" (X)) +....+C hPy P (x,) 54

Where the constant coefficient Cq ,d=0,1,....... are given as follows

k
CO:ZaJ-

=0

1 & -
Co =gl 0" —al@-) 2 i*4]
] j=L

Definition: The method (53) are said to be of order p if, in (54) C, =C, =C, =C; =....C, =C,,; =0 and

C,.2 #0.Thus C,, is the error constant.

For our hybrid method, expanding (4.1)-(4.4) in Taylor series expansion gives
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_53 hqy Yo = Yo — hy-—niy 88
n+l n n 945

ql

h3ym]

2 (hid [ 26001 1
) ) j 35840 1

(yn+2 Y, — 2hyn _2h2y

8991

3/ya_ 2992 (gya 4
(A) 35840()

449h®
945

hes 0 188 4 /., 83
_ g+ 3q
23( )( 336 945(//) 15120()
« ( (35 h)° 3 9., 82 .
leéT—y“—(wﬁm—w——h%——hW; hWC
= q! 2 8 35840

621y
35840

y :]NJ

J

3mqu [yg aw’—%ﬁ—SHﬁj

q+3 q q 1216 q__ E q — q
Y ] a5 02" 5@ 945() j

" 14 70 0]
= hq+3 q 2673 Q 108 q 243 a qj
Zq:( 560 M+ (/) 140( ) 112( ) |
T
Hence the block is of order 6, with error constant of [— 47 , 3461 ,—ﬁ,%}
1400 1000000 175 1960

While for the non-hybrid method, we expand equation (49) in Taylor series as done above. The block is also of
139 1 243 7
40320 45’ 4480 315

order 6, with error constant [

6.2 Zero Stability of the Block

Definition: The block is said to be zero stable if the roots Z;S= 1,2,3,...,n of the characteristics polynomial

p(2) defined by p(z) = det(zA— E) satisfies |ZS| <1 and the roots |ZS| =1 is simple.

For our hybrid method,

o o R o
o r O o
o o o o
o o o o
o o o o
O o o o
s

A=2"-7°=0,2=0,0,0,1

Hence the block is zero stable. The non-hybrid method is also zero stable.

Theorem 1: Convergence (Lambert (1973)
The necessary and sufficient condition for a linear multistep method to be convergent is for it to be
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consistent and zero stable. From the theorem above, the two block methods are convergent

7. Numerical Examples

Our methods are adopted on some initial value problems of general third order ordinary differential equations to
test the accuracy of the scheme and our results are compared with the results of other researchers. Our scheme is
found to compare favorably with the existing ones.

Problem 1: We consider the non-linear 1\VVP which was solved by Awoyemi (2003) for the step-size h=0.1
y"=-y. y(0)=1 y'(0)=-1y"(0)=1h=0.

Exact solution: y(X) =€

In this example, our method of order p=6 is compared with the method in Awoyemi (2003). In terms of accuracy,
our result performs better than those given in Awoyemi (2003). The details of the numerical result at some selected
points are given in table 1 below

Table 1: Comparison of the numerical results of hybrid and non-hybrid method with Awoyemi (2003) for problem

1.

X | Exact-Solution Computed-Solution Error in Error in Error in
Hybrid Non-hybrid Awoyemi (2003)
K=3, h=0.1 K=4, h=0.1, K=3,0rder=5,
Order=6, Order=6 h=0.1 (P-C)
method
0.10 | 0.904837418035959520 | 0.904837418026245840 | 9.713674E-12 | 4.038414E-11 | 4.165922496E-09
0.20 | 0.818730753077981820 | 0.818730753015859850 | 6.212197E-11 | 2.576643E-10 | 9.577831017E-08
0.30 | 0.740818220681717770 | 0.740818220522834860 | 1.588829E-10 | 5.283249E-10 | 3.991507930E-07
0.40 | 0.670320046035639330 | 0.670320045749979720 | 2.856596E-10 | 2.272178E-10 | 1.036855911E-06
0.50 | 0.606530659712633420 | 0.606530659251041330 | 4.615921E-10 | 2.416383E-10 | 2.128500409E-06
0.60 | 0.548811636094026390 | 0.548811635406465050 | 6.875613E-10 | 1.468228E-09 | 3.789530170E-06
0.70 | 0.496585303791409470 | 0.496585302838955580 | 9.524539E-10 | 4.085009E-09 | 6.130076711E-06
0.80 | 0.449328964117221560 | 0.449328962847427850 | 1.269794E-09 | 6.779826E-09 | 9.253856792E-06
0.90 | 0.406569659740599050 | 0.406569658101199830 | 1.639399E-09 | 1.099445E-08 | 1.325713611E-05
1.00 | 0.367879441171442220 | 0.367879439119434160 | 2.052008E-09 | 1.651192E-08 | 1.822776743E-05
1.10 | 0.332871083698079500 | 0.332871081181678460 | 2.516401E-09 | 2.337009E-08 | 2.424431283E-05
1.20 | 0.301194211912202030 | 0.301194208881219510 | 3.030983E-09 | 3.159917E-08 | 3.137525869E-05
Problem 2:

Y =y (2x7+y), YO =1 y'(0) =2,y"(0) =0, =001

22



http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) l'H.i.l
Vol.5, No.3, 2015 IIS E

Exact solution: y(X) =1+ % In (?j

Our result was compared with Adesanya 2011 which is of order 6. Using thesame step size (h=0.01), it is
observed that our result performs better. The details of the numerical result at some selected points are in table 2
below:

Table 2: Comparison of the numerical results of hybrid and non-hybrid method with Adesanya (2011) for problem

2.
X Exact Solution Computed Solution Error in Hybrid | Error in Error in
k=3, h=0.01, Non-hybrid Adesanya 2011
Order=6 K=4,h=0.01, | K=3,0rder =6,
Order, P=6 h=0.01
(block method)
0.21 | 1.105388447838498800 1.105388447838482300 | 1.643130E-14 | 2.042810E-14 | 8.037948 E — 11
0.31 | 1.156259497799360100 1.156259497799276400 | 8.371082E-14 | 1.023626E-13 | 6.043090 E — 10
0.41 | 1.207946365635211800 | 1.207946365634930500 | 2.813305E-13 | 3.421707E-13 | 2.581908 E — 09
0.51 | 1.260753316593162600 1.260753316592395900 | 7.667200E-13 | 9.259260E-13 | 8.158301E — 09
0.61 | 1.315023237096001100 1.315023237094148600 | 1.852518E-12 | 2.214229E-12 | 2.141286 E — 08
0.71 | 1.371153208259014500 1.371153208254851700 | 4.162892E-12 | 4.922729E-12 | 4.969641 E — 08
0.81 | 1.429615588111108300 1.429615588102143500 | 8.964829E-12 | 1.047873E-11 | 1.620387 E — 07
Problem 3:

y"=3sinx, y(0)=1 y'(0)=0,y"(0)=—2,h=0.1

2
X
Exact solution: y(X) =3C0SX + > 2

Our result was compared with Olabode 2007 which is of order 5. Using thesame step size (h=0.1), it is observed
that our result is more accurate. The details of the numerical result at some selected points are in table 2 below:
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Table 3: comparison of the numerical results of hybrid and non-hybrid method with Olabode (2007) for problem

3.
X Exact-Solution Computed-Solution Error in Hybrid | Error in Error in
K=3, h=0.1, Non-hybrid Olabode (2007)
Order, P=6 K=4, h=0.1, block method
Order, P=6 K=3,h=0.1,
Order P=5
0.10 | 0.990012495834077020 | 0.990012495800901000 | 3.317602E-11 | 1.017524E-10 | 1.6592250E-10
0.20 | 0.960199733523725120 | 0.960199733311422500 | 2.123026E-10 | 6.558604E-10 | 4.7627491E-10
0.30 | 0.911009467376818090 | 0.911009466839369340 | 5.374488E-10 | 1.601112E-09 | 6.2318195E-10
0.40 | 0.843182982008655380 | 0.843182981081771250 | 9.268841E-10 | 2.998699E-09 | 2.9134462E-10
0.50 | 0.757747685671118280 | 0.757747684220156700 | 1.450962E-09 | 5.670582E-09 | 8.7111829E-10
0.60 | 0.656006844729034810 | 0.656006842619148880 | 2.109886E-09 | 9.092473E-09 | 3.9290352E-09
0.70 | 0.539526561853465480 | 0.539526559026371920 | 2.827094E-09 | 1.347564E-08 | 9.5534655E-09
0.80 | 0.410120128041496560 | 0.410120124384088290 | 3.657408E-09 | 1.950064E-08 | 1.8041497E-08
0.90 | 0.269829904811993430 | 0.269829900210842190 | 4.601151E-09 | 2.673002E-08 | 3.0311993E-08
1.00 | 0.120906917604418850 | 0.120906912010654510 | 5.593764E-09 | 3.533854E-08 | 4.7304419E-08
1.10 | 0.034211635723267797 | 0.034211642392915083 | 6.669647E-09 | 4.580460E-08 | 7.0036732E-08
1.20 | 0.19292673656997961 | 0.192926744399186780 | 7.829207E-09 | 5.781661E-08 | 9.9630021E-08

8. Discussion of Result

We have proposed two direct methods for the solution of general third order initial value problems of ordinary
differential equations using the three-step hybrid block method and the four-step block method. In table 1, the
results of the three-step hybrid block method and the four-step block method are more accurate than that of

Awoyemi 2003 which was executed by predictor-corrector method. It was also seen that the three-step hybrid

block method has the best result.

In table 2, the two methods also perform better than Adesanya 2011 block method implemented scheme. Though
we used the same parameters with that of Adesanya 2011 that is, order, P=6, K=3 and h=0.01 except for the step
length, K=4 for scheme two, our methods are still more accurate. The three-step hybrid block method also has

the best performance.

Table 3 shows the comparison of the results of our two methods with that of Olabode 2007 block method
implemented scheme. It is only the three-step hybrid block method that has better accuracy than that of Olabode

2007.
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9. Conclusion

In this study, we have shown that the hybrid scheme solves third order ordinary differential equation more
accurately than non-hybrid four step scheme. Hence, the hybrid block method is recommended for the general
solution of third order initial value problem ordinary differential equation.
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