Generalized Jordan (σ, τ) - Higher Homomorphisms of a ring R into a ring R^{\prime}

Salah Mehdi Salih Fawaz Ra'ad Jarullah
Mathematical Department, Education college, Al-Mustansiriya University, Iraq

Abstract

Let R, R^{\prime} be two prime rings and σ^{n}, τ^{n} be two higher homomorphisms of a ring R for all n $\in \mathrm{N}$, in the present paper we show that under certain conditions of R , every generalized Jordan (σ, τ)-higher homomorphism of a ring R into a prime ring R^{\prime} is either generalized (σ, τ) higher homomorphism or (σ, τ)-higher anti homomorphism.

Key Words: prime ring , homomorphism , generalized Jordan higher homomorphism. mathematic subject classification : $16 \mathrm{~N} 60,16 \mathrm{U} 80$.

1.Introduction

A ring R is called a prime if $a \mathrm{Rb}=(0)$ implies $a=0$ or $\mathrm{b}=0$, where $a, \mathrm{~b} \in \mathrm{R}$, this definition is due to [2] , [5].

A -ring R is called semiprime if $a \mathrm{R} a=(0)$ implies $=0$, such that $a \in \mathrm{R}$, this definition is due to [2] , [5].

Let R be a 2-torsion free semiprime ring and suppose that $a, \mathrm{~b} \in \mathrm{R}$ if $a \mathrm{rb}+\mathrm{br} a=0$, for all $\mathrm{r} \in \mathrm{R}$, then $a \mathrm{rb}=\mathrm{b} r a=0$, this definition is due to [2].

Let R be a ring then R is called 2-torsion free if $2 a=0$ implies $a=0$, for every $a \in \mathrm{R}$, this definition is due to [2].

Let R be a ring and $\mathrm{d}: \mathrm{R} \longrightarrow \mathrm{R}$ be an additive mapping (that is $\mathrm{d}(a+\mathrm{b})=\mathrm{d}(a)+\mathrm{d}(\mathrm{b})$) of a ring R into itself then d is called a derivation on R if :
$\mathrm{d}(a \mathrm{~b})=\mathrm{d}(a) \mathrm{b}+a \mathrm{~d}(\mathrm{~b})$, for all $a, \mathrm{~b} \in \mathrm{R}$.
d is called a Jordan derivation on R if $\mathrm{d}\left(a^{2}\right)=\mathrm{d}(a) a+a \mathrm{~d}(a)$, for all $a \in \mathrm{R}$, [2], [4].
Let R be a ring and $\mathrm{f}: \mathrm{R} \longrightarrow \mathrm{R}$ be an additive map (that is $\mathrm{f}(a+\mathrm{b})=\mathrm{f}(a)+\mathrm{f}(\mathrm{b})) \quad$ Then f is called a generalized derivation if there exists a derivation $d: R \longrightarrow R$ such that $\mathrm{f}(a \mathrm{~b})=\mathrm{f}(a) \mathrm{b}+a \mathrm{~d}(\mathrm{~b})$, for all $a, \mathrm{~b} \in \mathrm{R}$.

And f is called a generalized Jordan derivation if there exists a Jordan derivation $\mathrm{d}: \mathrm{R} \longrightarrow \mathrm{R}$ such that
$\mathrm{f}\left(a^{2}\right)=\mathrm{f}(a) a+a \mathrm{~d}(a)$, for all $\mathrm{a} \in \mathrm{R},[2]$.

Let θ be an additive mapping of a ring R into a ring $\mathrm{R}^{\prime}, \theta$ is called a homomorphism if $\quad \theta(a$ b) $=\theta(a) \theta(b)$.

And θ is called a Jordan homomorphism if for all $a, b \in R$
$\theta(a \mathrm{~b}+\mathrm{b} a)=\theta(a) \theta(\mathrm{b})+\theta(\mathrm{b}) \theta(a)$ for all $a, \mathrm{~b} \in \mathrm{R},[2],[3]$.
Let F be an additive mapping of a ring R into a ring R ', F is called a generalized homomorphism if there exists a homomorphism θ from a ring R into a ring R^{\prime}, such that $\mathrm{F}(a b)=\mathrm{F}(a) \theta(b)$, for all $a, b \in \mathrm{R}$, where θ is called the relating homomorphism .

F is called a generalized Jordan homomorphism if there exists a Jordan homomorphism $\quad \theta$ from a ring R into a ring R^{\prime}, such that
$\mathrm{F}(a b+b a)=\mathrm{F}(a) \theta(b)+\mathrm{F}(b) \theta(a)$, for all $a, b \in \mathrm{R}$, where θ is called the relating Jordan homomorphism , [1] .

Let $\mathrm{F}=\left(f_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mappings of a ring R into a ring R ' and there exists a higher homomorphism $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ from a ring R into a ring R^{\prime} then f is said to be a generalized higher homomorphism (resp. generalized Jordan higher homomorphism) on a ring R into a ring R^{\prime} if for all $\mathrm{n} \in \mathrm{N}$, (resp. Jordan higher homomorphism) on a ring R into a ring R' if for all $\mathrm{n} \in \mathrm{N}, f_{\mathrm{n}}(a \mathrm{~b})=\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}(a) \phi_{\mathrm{i}}(\mathrm{b})\left(\operatorname{resp} . f_{\mathrm{n}}(a \mathrm{~b}+\mathrm{b} a)=\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}(a) \quad \phi_{\mathrm{i}}(\mathrm{b})+\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\right.$ (b) $\phi_{\mathrm{i}}(a)$, for all $\mathrm{a}, \mathrm{b} \in \mathrm{R},[1]$.

Now, the main purpose of this paper is that every generalized Jordan (σ, τ)-higher homomorphism of a ring R into a prime ring R^{\prime} is either generalized (σ, τ)-higher homomorphism or (σ, τ)- higher anti homomorphism and every generalized Jordan (σ, τ)-higher homomorphism from a ring R into a 2 -torsion free ring R ' is a generalized Jordan triple (σ, τ)-higher homomorphism.

2. Generalized Jordan (σ, τ)- Higher Homomorphisms On Rings

Definition(2.1):

Let $\mathrm{F}=\left(f_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mappings of a ring R into a ring R^{\prime} and σ, τ be two homomorphisms of a ring R. F is called a generalized (σ, τ)-higher homomorphism if there exists a (σ, τ)-higher homomorphism $\theta=\left(\phi_{i}\right)_{i \in \mathrm{~N}}$ from a ring R into a ring R^{\prime}, such that for all $a, b \in \mathrm{M}$ and $\mathrm{n} \in \mathrm{N}$
$f_{\mathrm{n}}(a b)=\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b)\right)$
Where θ is called the relating (σ, τ)-higher homomorphism.

Example (2.2):

Let $\mathrm{S}_{1}, \mathrm{~S}_{2}$ be two rings and $f=\left(f_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a generalized (σ, τ)-higher homomorphism from a ring S_{1} into a ring S_{2}, then there exists a higher homomorphism $\theta=\left(\theta_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ from a ring S_{1} into a ring S_{2}, such that for all $\mathrm{n} \in \mathrm{N} f_{\mathrm{n}}(a b)=\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \theta_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b)\right)$, for all $a, b \in \mathrm{~S}_{1}$.

Let $R=S_{1} \oplus S_{1}$ and $R^{\prime}=S_{2} \oplus S_{2}$. Let $F=\left(F_{i}\right)_{i \in N}$ be a family of additive mappings from
ring R into a ring R ', such that for all $a, b \in \mathrm{R}$
$\mathrm{F}_{\mathrm{n}}((a, b))=\left(f_{\mathrm{n}}(a) \quad f_{\mathrm{n}}(b)\right)$.
Then there exists a (σ, τ)-higher homomorphism $\phi=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mappings of a ring R into a ring R^{\prime}, such that
$\phi_{\mathrm{n}}((a, b))=\left(\theta_{\mathrm{n}}(a), \theta_{\mathrm{n}}(b)\right)$, for all $(a, b) \in \mathrm{R}$.
Let $\sigma_{1}^{\mathrm{n}}, \tau_{1}^{\mathrm{n}}$ be two homomorphism of a ring R , such that
$\sigma_{1}^{\mathrm{n}}((a, b))=\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right), \tau_{1}^{\mathrm{n}}((a, b))=\left(\tau^{\mathrm{n}}(a), \tau^{\mathrm{n}}(b)\right)$.
be two homomorphism of a ring R, such that
$\sigma_{1}^{\mathrm{n}}((a, b))=\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right), \tau_{1}^{\mathrm{n}}((a, b))=\left(\tau^{\mathrm{n}}(a), \tau^{\mathrm{n}}(b)\right)$.
Then F generalized (σ, τ)-higher homomorphism .

Definition(2.3):

Let $\mathrm{F}=\left(f_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mappings of a ring R into a ring R^{\prime} and σ, τ be two homomorphisms of a ring R.F is called a generalized Jordan (σ, τ)-higher homomorphism if there exists a Jordan (σ, τ)-higher homomorphism $\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ from \quad a ring R into a ring R^{\prime}, such that for all $a, b \in \mathrm{R}$ and $\mathrm{n} \in \mathrm{N}$
$f_{\mathrm{n}}(a \mathrm{~b}+\mathrm{b} a)=\sum_{i=1}^{n} f_{\mathrm{i}}\left(\mathrm{\sigma}^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(\mathrm{b})\right)+\sum_{\mathrm{i}=1}^{n} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(\mathrm{b})\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right)$
Where θ is called the relating Jordan (σ, τ)-higher homomorphism.

Definition (2.4):

Let $\mathrm{F}=\left(f_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mappings of a ring R into a ring R^{\prime} and σ, τ be two homomorphisms of a ring R. F is called a generalized Jordan triple (σ, τ)-higher homomorphism if there exists a Jordan triple (σ, τ)-higher homomorphism $\theta=\left(\phi_{i}\right)_{i \in \mathrm{~N}}$ from a ring R into a ring R^{\prime}, such that for all $a, b \in \mathrm{R}$ and $\mathrm{n} \in \mathrm{N}$
$f_{\mathrm{n}}(a b a)=\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right)$
Where θ is called the relating Jordan triple (σ, τ)-higher homomorphism.

Definition (2.5):

Let $\mathrm{F}=\left(f_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a family of additive mappings of a ring R into a ring R ' and σ, τ be two homomorphisms of a ring R. F is called a generalized (σ, τ)-higher anti homomorphism if there exists a (σ, τ)-anti higher homomorphism
$\theta=\left(\phi_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ from a ring R into a ring R ', such that for all $a, b \in \mathrm{R}$ and $\mathrm{n} \in \mathrm{N}$, we have:
$f_{\mathrm{n}}(a b)=\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right)$
Where θ is called the relating (σ, τ)-higher anti homomorphism.

Lemma (2.6):

Let $\mathrm{F}=\left(f_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a generalized Jordan (σ, τ)-higher homomorphism of a ring R into a ring R', then for all $a, b, c \in \mathrm{R}$ and for every $\mathrm{n} \in \mathrm{N}$
(i)

$$
\begin{aligned}
f_{\mathrm{n}}(a b c+c b a)= & \sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(c)\right)+ \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(c)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right)
\end{aligned}
$$

(ii) In particular , if $\mathrm{R}, \mathrm{R}^{\prime}$ are commutative rings and R^{\prime} is a 2 -torsion free ring

$$
f_{\mathrm{n}}(a b c)=\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(c)\right)
$$

Proof:

(i) Replace $a+c$ for a in definition (2.4), we get :

$$
\begin{align*}
& f_{\mathrm{n}}((a+c) b(a+c))=\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a+c)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a+c)\right) \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)+\sigma^{\mathrm{i}}(c)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)+\tau^{\mathrm{i}}(c)\right) \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(c)\right)\right.\right. \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(c) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(c) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(c)\right)\right.\right. \tag{1}
\end{align*}
$$

On the other hand:

$$
\begin{aligned}
& f_{\mathrm{n}}((a+\mathrm{c}) \mathrm{b}(a+\mathrm{c}))=f_{\mathrm{n}}(a b a+a \mathrm{bc}+\mathrm{cb} a+c b c) \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{ni}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(c)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{ni}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(c)\right)+f_{\mathrm{n}}(a b c+c b a)
\end{aligned}
$$

Compare (1) and (2), we get:

$$
\begin{aligned}
& f_{\mathrm{n}}(a b c+c b a)=\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(c)\right)+ \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(c)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right)
\end{aligned}
$$

(ii) By (i) and since R, R' are commutative rings and R^{\prime} is a 2-torsion free ring

$$
f_{\mathrm{n}}(a b c+a b c)=2 f_{\mathrm{n}}(a b c)=\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(c)\right)
$$

Definition (2.7):

Let $\mathrm{F}=\left(f_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a generalized Jordan (σ, τ)-higher homomorphism from a ring R into ring R^{\prime}, then for all $a, b \in \mathrm{R}$ and $\mathrm{n} \in \mathrm{N}$, we define $\delta_{\mathrm{n}}(a, b): \mathrm{R} \times \mathrm{R} \longrightarrow \mathrm{R}$ ' by:

$$
\delta_{\mathrm{n}}(a, b)=f_{\mathrm{n}}(a b)-\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b)\right) .
$$

Lemma (2.8):

Let $\mathrm{F}=\left(f_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a generalized Jordan (σ, τ)-higher homomorphism from a ring R into a ring R^{\prime}, then for all $a, b, c \in \mathrm{R}$ and $\mathrm{n} \in \mathrm{N}$:
(i) $\delta_{\mathrm{n}}(a, b)=-\delta_{\mathrm{n}}(b, a)$
(ii) $\delta_{\mathrm{n}}(a+b, c)=\delta_{\mathrm{n}}(a, c)+\delta_{\mathrm{n}}(b, c)$
(iii) $\delta_{\mathrm{n}}(a, b+c)=\delta_{\mathrm{n}}(a, b)+\delta_{\mathrm{n}}(a, c)$

Proof:

(i) By Definition(2.3)

$$
\begin{gathered}
f_{\mathrm{n}}(a b+b a)=\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b)\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right) \\
f_{\mathrm{n}}(a b)-\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b)\right)=-\left(f_{\mathrm{n}}(b a)+\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right)\right) \\
\delta_{\mathrm{n}}(a, b)=-\delta_{\mathrm{n}}(b, a)
\end{gathered}
$$

(ii) $\delta_{\mathrm{n}}(a+b, c)=f_{\mathrm{n}}((a+b) c)-\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a+b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(c)\right)$

$$
\begin{aligned}
& =f_{\mathrm{n}}(a c+b c)-\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(c)\right)-\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(c)\right) \\
& =f_{\mathrm{n}}(a c)-\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(c)\right)+f_{\mathrm{n}}(b c)-\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(c)\right) \\
& =\delta_{\mathrm{n}}(a, c)+\delta_{\mathrm{n}}(b, c)
\end{aligned}
$$

(iii) $\delta_{\mathrm{n}}(a, b+c)=f_{\mathrm{n}}(a(b+c))-\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b+c)\right)$

$$
\begin{aligned}
& =f_{\mathrm{n}}(a b+a c)-\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b)\right)-\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(c)\right) \\
& \left.=f_{\mathrm{n}}(a b)-\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b)\right)+f_{\mathrm{n}}(a c)\right)-\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(c)\right)
\end{aligned}
$$

$$
=\delta_{\mathrm{n}}(a, b)+\delta_{\mathrm{n}}(a, c)
$$

Remark (2.9):

Note that $\mathrm{F}=\left(f_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ is a generalized (σ, τ)-higher homomorphism from a ring R into a ring R^{\prime} if and only if $\delta_{\mathrm{n}}(a, b)=0$ for all $a, b \in \mathrm{R}$ and $\mathrm{n} \in \mathrm{N}$.

Lemma (2.10):

Let $\mathrm{F}=\left(f_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a generalized Jordan (σ, τ) - higher homomorphism of a ring R into a ring R^{\prime}, such that $\sigma^{\mathrm{n}^{2}}=\sigma^{\mathrm{n}}, \tau^{\mathrm{n}} \sigma^{\mathrm{n}}=\sigma^{\mathrm{n}}, \sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}=\tau^{\mathrm{i}} \sigma^{\mathrm{i}}$ and $\sigma^{i} \tau^{i}=\tau^{i} \sigma^{i}$ for all $\mathrm{i} \in \mathrm{N}$, then for all $a, b, \mathrm{~m} \in \mathrm{R}$ and $\mathrm{n} \in \mathrm{N}$

$$
\begin{aligned}
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathbf{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)+ \\
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(b), \sigma^{\mathrm{n}}(a)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathbf{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(a), \tau^{\mathrm{n}}(b)\right)=0
\end{aligned}
$$

Proof: We prove by using the induction, we can assume that:

$$
\begin{aligned}
& \delta_{\mathrm{s}}\left(\sigma^{\mathrm{s}}(a), \sigma^{\mathrm{s}}(b)\right) \phi_{\mathrm{s}}\left(\sigma^{\mathrm{s}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{s}}\left(\tau^{\mathrm{s}}(b), \tau^{\mathrm{s}}(a)\right)+ \\
& \delta_{\mathrm{s}}\left(\sigma^{\mathrm{s}}(b), \sigma^{\mathrm{s}}(a)\right) \phi_{\mathrm{s}}\left(\sigma^{\mathrm{s}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{s}}\left(\tau^{\mathrm{s}}(a), \tau^{\mathrm{s}}(b)\right)=0
\end{aligned}
$$

for all $a, b, \mathrm{~m} \in \mathrm{R}$, and $\mathrm{s}, \mathrm{n} \in \mathrm{N}, \mathrm{s}<\mathrm{n}$.
Let $\mathrm{w}=a b \mathrm{~m} b a+b a \mathrm{~m} a b$, since F is a generalized Jordan (σ, τ)-higher homomorphism

$$
\begin{aligned}
& f_{\mathrm{n}}(\mathrm{w})=f_{\mathrm{n}}(a(b \mathrm{~m} b) a+b(a \mathrm{~m} a) b) \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(b \mathrm{~m} b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}(a \mathrm{~m} a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b)\right) \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right)\left(\sum_{\mathrm{j}=1}^{\mathrm{i}} \phi_{\mathrm{j}}\left(\sigma^{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{n}-\mathrm{j}}(b)\right)\right) \phi_{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{n}-\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{n-j}}(\mathrm{~m})\right)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{n}-\mathrm{j}}(b)\right)\right)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right)+ \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(b)\right)\left(\sum_{\mathrm{j}=1}^{\mathrm{i}} \phi_{\mathrm{j}}\left(\sigma^{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{n}-\mathrm{j}}(a)\right)\right) \phi_{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{n}-\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{n}-\mathrm{j}}(\mathrm{~m})\right)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{n}-\mathrm{j}}(a)\right)\right)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b)\right) \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(b)\right)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}(\mathrm{~m})\right)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}(b)\right)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right)+ \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(a)\right)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(a)\right)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b)\right) \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}(b)\right)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{ni}}(\mathrm{~m})\right)\right) \sum_{\mathrm{j}=1}^{\mathrm{i}} \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{n}-\mathrm{j}}(b)\right)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}(a)\right)+ \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(a)\right)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}(\mathrm{~m})\right)\right) \sum_{\mathrm{j}=1}^{\mathrm{i}} \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{n}-\mathrm{j}}(a)\right)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}(b)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & f_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}\left(\sigma^{\mathrm{n}}(b)\right)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right)\right) \sum_{\mathrm{j}=1}^{\mathrm{i}} \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{n}-\mathrm{j}}(b)\right)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}(a)\right)+ \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}-1} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(b)\right)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right)\right) \sum_{\mathrm{j}=1}^{\mathrm{i}} \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{n}-\mathrm{j}}(b)\right)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}(a)\right)+ \\
& f_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a)\right)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right)\right) \sum_{\mathrm{j}=1}^{\mathrm{i}} \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{n}-\mathrm{j}}(a)\right)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}(b)\right)+ \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}-1} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(a)\right)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right)\right) \sum_{\mathrm{j}=1}^{\mathrm{i}} \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{n}-\mathrm{j}}(a)\right)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}(b)\right) \ldots
\end{aligned}
$$

On
the other hand:

$$
\begin{aligned}
& f_{\mathrm{n}}(\mathrm{w})=f_{\mathrm{n}}((a b) \mathrm{m}(b a)+(b a) \mathrm{m}(a b)) \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b a)\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(b a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a b)\right) \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right)\left(\sum_{\mathrm{j}=1}^{\mathrm{i}} \phi_{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{j}}(a)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}^{2}}(b)\right)+\sum_{\mathrm{j}=1}^{\mathrm{i}} \phi_{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{j}}(b)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}^{2}}(a)\right)-\phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a b)\right)\right) \\
& +\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\sum_{\mathrm{j}=1}^{\mathrm{i}} f_{\mathrm{j}}\left(\sigma^{\mathrm{j}^{2}}(a)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}} \sigma^{\mathrm{j}}(b)\right)+\sum_{\mathrm{j}=1}^{\mathrm{i}} f_{\mathrm{j}}\left(\sigma^{\mathrm{j}^{2}}(b)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}} \sigma^{\mathrm{j}}(a)\right)-f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a b)\right)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}(\mathrm{~m})\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a b)\right) \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{ni}}(\mathrm{~m})\right) \sum_{\mathrm{j}=1}^{\mathrm{i}} \phi_{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{j}}(a)\right) \phi_{\mathrm{j}}\left(\tau^{j^{2}}(b)\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{ni}}(\mathrm{~m})\right) \\
& \sum_{\mathrm{j}=1}^{\mathrm{i}} \phi_{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{j}}(b)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}^{2}}(a)\right)-\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{ni}}(\mathrm{~m})\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a b)\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{\sigma}^{2}}(a)\right) \\
& \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}} \sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{ni}}(\mathrm{~m})\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a b)\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{\sigma}^{\mathrm{i}}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}} \sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{ni}}(\mathrm{~m})\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a b)\right) \\
& -\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}(\mathrm{~m})\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a b)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{ni}}(\mathrm{~m})\right)\left(\phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a b)\right)-\sum_{\mathrm{j}=1}^{\mathrm{i}} \phi_{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{j}}(b)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}^{2}}(a)\right)\right)+ \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}^{2}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}} \sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a b)\right)+ \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}^{2}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}} \sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}(\mathrm{~m})\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a b)\right) \\
& =-\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a), \tau^{\mathrm{i}}(b)\right)- \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b), \tau^{\mathrm{i}}(a)\right)+ \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}^{2}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}} \sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a b)\right)+ \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}^{2}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}} \sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}(\mathrm{~m})\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a b)\right)
\end{aligned}
$$

$$
\begin{align*}
& =-f_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(a), \tau^{\mathrm{n}}(b)\right)- \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}-1} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a), \tau^{\mathrm{i}}(b)\right)- \\
& f_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)- \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}-1} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b), \tau^{\mathrm{i}}(a)\right)+ \\
& f_{\mathrm{n}}\left(\sigma^{\mathrm{n}^{2}}(a)\right) \phi_{\mathrm{n}}\left(\tau^{\mathrm{n}} \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \phi_{\mathrm{n}}\left(\tau^{\mathrm{n}}(a b)\right)+ \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}-1} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}^{2}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}} \sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a b)\right)+ \\
& f_{\mathrm{n}=1}^{\mathrm{n}}\left(\sigma^{\mathrm{n}^{2}}(b)\right) \phi_{\mathrm{n}}\left(\tau^{\mathrm{n}} \sigma^{\mathrm{n}}(a)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \phi_{\mathrm{n}}\left(\tau^{\mathrm{n}}(a b)\right)+ \\
& \left.\sum_{\mathrm{i}}^{\mathrm{n}-1} f^{\mathrm{i}^{2}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}} \sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a b)\right) \ldots(\tag{2}
\end{align*}
$$

Compare (1), (2) and since $\sigma^{n^{2}}=\sigma^{n}, \tau^{n} \sigma^{n}=\sigma^{n}, \sigma^{i} \tau^{n-i}=\tau^{i} \sigma^{i}, \sigma^{i} \tau^{i}=\tau^{i} \sigma^{i}$

$$
\begin{aligned}
& 0=-f_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(a), \tau^{\mathrm{n}}(b)\right)-f_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)+ \\
& f_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right)\left(\phi_{\mathrm{n}}\left(\tau^{\mathrm{n}}(a b)\right)-\sum_{\mathrm{i}=1}^{\mathrm{n}} \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(b)\right)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right)\right)+ \\
& f_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right)\left(\phi_{\mathrm{n}}\left(\tau^{\mathrm{n}}(a b)\right)-\sum_{\mathrm{i}=1}^{\mathrm{n}} \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(a)\right)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b)\right)\right)- \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}-1} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a), \tau^{\mathrm{i}}(b)\right)-\sum_{\mathrm{i}=1}^{\mathrm{n}-1} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \\
& \mathrm{G}_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b), \tau^{\mathrm{i}}(a)\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}-1} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}} \sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right)\left(\phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a b)\right)-\right. \\
& \left.\sum_{\mathrm{j}=1}^{\mathrm{i}} \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{n}-\mathrm{j}}(b)\right)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}(a)\right)\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}-1} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}} \sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right)\left(\phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a b)\right)-\right. \\
& \left.-\sum_{\mathrm{j}=1}^{\mathrm{i}} \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{n}-\mathrm{j}}(a)\right)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}}(b)\right)\right) \\
& 0=-f_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(a), \tau^{\mathrm{n}}(b)\right)-f_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \\
& \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)+f_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)+ \\
& f_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(a), \tau^{\mathrm{n}}(b)\right)-\sum_{\mathrm{i}=1}^{\mathrm{n}-1} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \\
& \mathrm{G}_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a), \tau^{\mathrm{i}}(b)\right)-\sum_{\mathrm{i}=1}^{\mathrm{n}-1} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b), \tau^{\mathrm{i}}(a)\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}-1} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}} \sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \\
& \mathrm{G}_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b), \tau^{\mathrm{i}}(a)\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}-1} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}} \sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a), \tau^{\mathrm{i}}(b)\right) \\
& 0=-\delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(b), \sigma^{\mathrm{n}}(a)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(a), \tau^{\mathrm{n}}(b)\right)-\delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)- \\
& \sum_{\mathrm{i}=1}^{\mathrm{n}-1} \delta_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(b), \sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a), \tau^{\mathrm{i}}(b)\right)-\sum_{\mathrm{i}=1}^{\mathrm{n}-1} \delta_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a), \sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b), \tau^{\mathrm{i}}(a)\right) \\
& 0=-\left(\delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(b), \sigma^{\mathrm{n}}(a)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(a), \tau^{\mathrm{n}}(b)\right)+\right. \\
& \left.\delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)\right)- \\
& \left(\sum_{\mathrm{i}=1}^{\mathrm{n}-1} \delta_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(b), \sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a), \tau^{\mathrm{i}}(b)\right)+\right. \\
& \left.\sum_{\mathrm{i}=1}^{\mathrm{n}-1} \delta_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a), \sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b), \tau^{\mathrm{i}}(a)\right)\right)
\end{aligned}
$$

By our hypothesis, we have:

$$
\begin{aligned}
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)+ \\
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(b), \sigma^{\mathrm{n}}(a)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(a), \tau^{\mathrm{n}}(b)\right)=0 .
\end{aligned}
$$

Lemma (2.11):

Let $\mathrm{F}=\left(f_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a generalized Jordan (σ, τ)-higher homomorphism from a ring R into
2- torsion free prime ring R^{\prime}, then for all $a, b, \mathrm{~m} \in \mathrm{R}$ and $\mathrm{n} \in \mathrm{N}$

$$
\begin{aligned}
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)= \\
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(b), \sigma^{\mathrm{n}}(a)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(a), \tau^{\mathrm{n}}(b)\right)=0
\end{aligned}
$$

Proof:

By Lemma (2.10), we have:

$$
\begin{aligned}
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)+ \\
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(b), \sigma^{\mathrm{n}}(a)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(a), \tau^{\mathrm{n}}(b)\right)=0
\end{aligned}
$$

And by Lemma (Let R be a 2-torsion free semiprime ring and suppose that $a, b \in \mathrm{R}$ if $a \mathrm{r} b+b \mathrm{r} a=0$, for all $a \in \mathrm{R}$, then $a \mathrm{r} b=b \mathrm{r} a=0)$.

$$
\begin{aligned}
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)= \\
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(b), \sigma^{\mathrm{n}}(a)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathbf{m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(a), \tau^{\mathrm{n}}(b)\right)=0
\end{aligned}
$$

Theorem (2.12):

Let $\mathrm{F}=\left(f_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a generalized Jordan (σ, τ)-higher homomorphism from a ring R into
prime ring R^{\prime}, then for all $a, b, c, d, \mathrm{~m} \in \mathrm{R}$, and $\mathrm{n} \in \mathrm{N}$

$$
\delta_{n}\left(\sigma^{n}(a), \sigma^{n}(b)\right) \phi_{n}\left(\sigma^{n}(m)\right) G_{n}\left(\tau^{n}(d), \tau^{n}(c)\right)=0
$$

Proof:

Replacing $a+c$ for a in Lemma (2.11), we get :

$$
\begin{aligned}
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a+c), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a+c)\right)=0 \\
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)+ \\
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(c)\right)+ \\
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(c), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)+ \\
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(c), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(c)\right)=0
\end{aligned}
$$

By Lemma (2.11), we get :

$$
\begin{aligned}
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(c)\right)+ \\
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(c), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)=0
\end{aligned}
$$

Therefore, we get:

$$
\begin{aligned}
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(c)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \\
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(c)\right)=0 \\
& =-\delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(c)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \\
& \quad \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(c), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)=0
\end{aligned}
$$

Since R^{\prime} is a prime ring and therefore:

$$
\begin{equation*}
\delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(c)\right)=0 \tag{1}
\end{equation*}
$$

Replacing $b+d$ for b in Lemma (2.11), we get:

$$
\begin{aligned}
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b+d)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b+d), \tau^{\mathrm{n}}(a)\right)=0 \\
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)+ \\
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(d), \tau^{\mathrm{n}}(a)\right)+ \\
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(d)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)+ \\
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(d)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(d), \tau^{\mathrm{n}}(a)\right)=0
\end{aligned}
$$

By Lemma (2.11), we get :

$$
\begin{aligned}
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(d), \tau^{\mathrm{n}}(a)\right)+ \\
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(d)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)=0
\end{aligned}
$$

Therefore, we get:

$$
\begin{aligned}
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(d), \tau^{\mathrm{n}}(a)\right)_{\alpha} \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \\
& \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(d), \tau^{\mathrm{n}}(a)\right)=0 \\
& =-\delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(d), \tau^{\mathrm{n}}(a)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \\
& \quad \delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(d)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)=0
\end{aligned}
$$

Since R^{\prime} is a prime ring and therefore:

$$
\begin{equation*}
\delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(d), \tau^{\mathrm{n}}(a)\right)=0 \tag{2}
\end{equation*}
$$

Now, $\delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right)_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b+d), \tau^{\mathrm{n}}(a+c)\right)=0$

$$
\delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(a)\right)+
$$

$$
\delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(b), \tau^{\mathrm{n}}(c)\right)+
$$

$$
\delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(d), \tau^{\mathrm{n}}(a)\right)+
$$

$$
\delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(d), \tau^{\mathrm{n}}(c)\right)=0
$$

Since by Lemma (2.11) and (1), (2), we get:

$$
\delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(d), \tau^{\mathrm{n}}(c)\right)=0
$$

3.The Main Result

Theorem (3.1):

Every generalized Jordan (σ, τ)-higher homomorphism from a ring R into a prime ring R^{\prime} is either generalized (σ, τ)-higher homomorphism or (σ, τ)-higher anti homomorphism.

Proof:

Let $\mathrm{F}=\left(f_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a generalized Jordan (σ, τ)-higher homomorphism of a ring R into prime ring R', then by Theorem (2.12):

$$
\delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right) \phi_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(\mathrm{~m})\right) \mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(d), \tau^{\mathrm{n}}(c)\right)=0
$$

Since R' is a prime ring therefore either $\delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right)=0$ or $\mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(d), \tau^{\mathrm{n}}(c)\right)=0$, for all $a, b, c, d \in \mathrm{R}$ and $\mathrm{n} \in \mathrm{N}$.

If $\mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(d), \tau^{\mathrm{n}}(c)\right) \neq \mathrm{O}$ for all $c, d \in \mathrm{R}$ and $\mathrm{n} \in \mathrm{N}$ then $\delta_{\mathrm{n}}\left(\sigma^{\mathrm{n}}(a), \sigma^{\mathrm{n}}(b)\right)=\mathrm{o}$. Hence, we get F is a generalized (σ, τ)-higher homomorphism.

But if $\mathrm{G}_{\mathrm{n}}\left(\tau^{\mathrm{n}}(d), \tau^{\mathrm{n}}(c)\right)=\mathrm{O}$ for all $c, d \in \mathrm{R}$ and $\mathrm{n} \in \mathrm{N}$ then we get F is a $(\sigma, \tau)-$ higher anti homomorphism.

Proposition (3.2):

Let $\mathrm{F}=\left(f_{\mathrm{i}}\right)_{\mathrm{i} \in \mathrm{N}}$ be a generalized Jordan (σ, τ)-higher homomorphism from a ring R into
2-torsion free ring R', $\sigma^{\mathrm{i}^{2}}=\sigma^{i}, \tau^{\mathrm{i}^{2}}=\tau^{\mathrm{i}}, \sigma^{\mathrm{i}} \tau^{\mathrm{i}}=\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}$ and $\sigma^{\mathrm{i}} \tau^{i}=\tau^{\mathrm{i}} \sigma^{i}$ for all $\mathrm{i} \in \mathrm{N}$, then F is a generalized Jordan triple (σ, τ)-higher homomorphism.

Proof:

Replace $a b+b a$ for b in Definition (2.3), we get :

$$
\begin{align*}
& f_{\mathrm{n}}(a(a b+b a)+(a b+b a) a) \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a b+b a)\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a b+b a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right) \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a) \tau^{\mathrm{i}}(b)+\tau^{\mathrm{i}}(b) \tau^{\mathrm{i}}(a)\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a) \sigma^{\mathrm{i}}(b)+\sigma^{\mathrm{i}}(b) \sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right) \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right)\left(\sum_{\mathrm{j}=1}^{\mathrm{i}} \phi_{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{j}}(a)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}^{2}}(b)\right)+\sum_{\mathrm{j}=1}^{\mathrm{i}} \phi_{\mathrm{j}}\left(\sigma^{\mathrm{j}} \tau^{\mathrm{j}}(\mathrm{~b})\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}^{2}}(a)\right)\right)+ \\
& \left.\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\sum_{\mathrm{j}=1}^{\mathrm{i}} f_{\mathrm{j}}\left(\sigma^{\mathrm{j}^{2}}(a)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}} \sigma^{\mathrm{j}}(b)\right)+\sum_{\mathrm{j}=1}^{\mathrm{i}} f_{\mathrm{j}}\left(\sigma^{\mathrm{j}^{2}}(b)\right) \phi_{\mathrm{j}}\left(\tau^{\mathrm{j}} \sigma^{\mathrm{j}}(a)\right)\right) \phi_{\mathrm{i}} \tau^{\mathrm{i}}(a)\right) \\
& \sigma^{\mathrm{i}^{2}}=\sigma^{\mathrm{i}}, \tau^{\mathrm{i}^{2}}=\tau^{\mathrm{i}}, \sigma^{\mathrm{i}} \tau^{\mathrm{i}}=\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}} \text { and } \sigma^{\mathrm{i} \tau^{\mathrm{i}}=\tau^{\mathrm{i}} \sigma^{\mathrm{i}}} \\
& =\sum_{i=1}^{n} f_{\mathrm{i}} \quad\left(\sigma^{\mathrm{i}}(a)\right) \quad \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(a)\right) \quad \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(\mathrm{~b})\right) \quad+\quad 2 \sum_{i=1}^{n} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \quad \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(\mathrm{~b})\right) \quad \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right) \quad+ \\
& \sum_{i=1}^{n} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(\mathrm{~b})\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right) \ldots(1) \tag{1}
\end{align*}
$$

On the other hand:

$$
\begin{align*}
& f_{\mathrm{n}}(a(a \mathrm{~b}+\mathrm{b} a)+(a \mathrm{~b}+\mathrm{b} a))=f_{\mathrm{n}}(a a \mathrm{~b}+a \mathrm{~b} a+a \mathrm{~b} a+\mathrm{b} a a) \\
& =\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n-i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(b)\right)+\sum_{\mathrm{i}=1}^{\mathrm{n}} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(b)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{n}-\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right)+2 f_{\mathrm{n}}(a b a) \tag{2}
\end{align*}
$$

Compare (1) and (2), we get:

$$
2 f_{\mathrm{n}}=2 \sum_{i=1}^{n} f_{\mathrm{i}}\left(\sigma^{\mathrm{i}}(a)\right) \phi_{\mathrm{i}}\left(\sigma^{\mathrm{i}} \tau^{\mathrm{ni}}(\mathrm{~b})\right) \phi_{\mathrm{i}}\left(\tau^{\mathrm{i}}(a)\right) .
$$

Since R'is a 2-torsion free ring, then F is a generalized Jordan triple (σ, τ)-higher homomorphism .

References:

[1] A.K.Faraj, A.H.Majeed, C.Haetinger and N.Rehman , " Generalized Jordan higher homomorphisms",Palestine Journal of Mathematics ,Volume(3),No.3, 2014, pp. 406 - 421.
[2] I.N.Herstien , "Topics in ring theory", Univ.Of Chicago Press, Chicago,1969.
[3] N.Jacobson andC.E.Rickart,"Jordan homomorphism of rings", Trans.Amer.Math.
Soc.Volume(69)1950,pp.479-502.
[4] E.Posner ," Derivation in prime ring "Proc.Amer.Math.Soc,Volume(8)1957, pp.10931100.
[5] N.U.Rehman, A.Z.Ansari and C.Heatinger, "A Note On Homomorphism and AntiHomomorphism on *-Ring", Tahi Journal of Mathematics, Vol.11, No.3, pp.741-750, 2013

The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage: http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.
Prospective authors of journals can find the submission instruction on the following page: http://www.iiste.org/journals/ All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/
Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar

