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Abstract 

In this paper, the biological process is utilized to formulate a discrete-time homogeneous model for the dynamics 

of weed population density. Steady state solutions were obtained and analyzed them for local and global 

stabilities. The results revealed that our model is locally asymptotically stable but globally unstable. This result is 

contrary to the interesting property of the most standard biological one-dimensional discrete models, which 

display global stability if they are locally stable.  Although, our model equation falls within the category of 

population models that exhibit local stability but globally not stable. It is concluded that, the weed population 

may exhibit unexpected behaviours. 
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1. Introduction 

Weed is generally defined as uncultivated plant species that proliferate in agricultural setting thereby, interfering 

with crop production. In fact, weed is a term applied to any plant that grows naturally in a place it is not wanted. It 

exists only in natural environments that have been disturbed by humans such as agricultural lands, recreational 

parks, and irrigation dams (Akobundu 1987). Weeds form an important part of the land ecosystem, providing 

food and cover for animals and birds which are an important indicator of biodiversity health (Parsons, Benjamin, 

Clarke, Ginsburg, Mayes, Milne, and Wilkinson, 2009).  

Population dynamics involve the study of population numerical change in time. The objectives are to identify the 

causes of numerical change in population and to explain how this cause act and interact to produce the observed 

pattern (Akinwande, Nasir and Abdulrahma, 2012). Over the years population models were concentrated mainly 

on the use of differential equations, even though, most populations such as weeds and phylogenetically more 

evolved organisms live in seasonal environments and because of this, have annual rhythms of reproduction and 

death. Continuous-time equations are not well suited to these kinds of processes. Discrete-time models are better 

suited for organism with annual or seasonal reproductive patterns (Allen, Allen, and Ponweeram, 1996; David, 

1997; Alsharawi and Rhouma 2010; Sacker, 2010). Furthermore, many researchers  have paid attention in recent 

times to discrete- time population models, since the discrete time models governed by discrete systems are more 

appropriate than the continuous ones when the populations have non over lapping generations (Wu and Zhang, 

2014). 

It is well-established that population models can be derived from two different sources, data and biological 

process. The first relies completely upon data to look at the dynamics of the population. (Burgess, 2011). The 

second is a model defined by biological processes, which do not include any data, but instead attempt to 

understand the dynamics of populations purely from what is expected to occur.  

In this study biological process was employed to formulate discrete-time models for the dynamics of 

homogeneous weed population density  
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2.0 Material and Methods 

2.1 Formulation of the Model Equations  

The following assumptions are considered in the formulation of the model equations; 

1. There are enough basic growth resources; e.g. nutrients, light, and water, that promote continuous 

growth of at least two plant species. 

2. Within the populations of weed there are intra-specific competitions. 

3. All parameters involved with the model formulation are non-negatives.  

The figure below depicts the life cycle of weed 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Schematic diagram for Population Cycle of Annual Weeds 

Applying the assumptions, definition of variables and parameters as depicted in Figure 2.1 above, the difference 

equations which describe the dynamics of proliferation of single weed species is derived below. 

The dormant seeds (
t

y ) in the year t consist of seeds from previous years (t - 1) that have survived the dry 

season and remained dormant (
1t

y ), as well as new (fresh) seeds that have not germinated but viable 

(surviving) (
1t

x ). Thus 
t

y  satisfies the equation 
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Maximum weed seed pool (St) in year t is  
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season, germinate and become established. This is describe by 
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This is because the germination and establishment of new and residual seeds are two independent events. 

The new seeds 
t

x  produced in year t are a function of established matured weeds in the year t that is  
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Equation (2.4) is adaptation of Beaverton-Holts type function, because we assumed a density – dependent growth. 

The function ),()(
t

N
m

pfxf  is expected to satisfy the following assumptions: 

(i) f  is a non-decreasing, bounded and continuous function on [0,) 

(ii)  0)( xf   for  

(iii)  then   and . 

This function satisfies conditions (i), (ii) and (iii) 

These assumptions are established thus; we let tNx  in equation (2.4), so, 
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m , since all the parameters are non-negative. Therefore, (2.4) 

satisfies conditions (i), (ii) and (iii). 

So, putting equations (2.1) and (2.4) into (2.3) gives 
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Therefore, adopting equation (2.3) in (2.5) gives 
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In a more compact form (2.6) becomes 

N
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And subsequently written as 
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(2.8) is a non-linear difference equation for the homogeneous population density of established mature weeds in 

the time-step or year )1( t
.
  

Where 

  mPePgP
d
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taN1


represents the density-dependent net recruitment rate from generation to generation. While the term  

t

t

aN

N
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
, a saturation function gives the population growth of the weed as a function of mature weed density. As 

the density increases the residual seeds in the top soil are denied access to enough growth resources (e.g light, 

nutrient, water and micro site space area), thereby reduces the chances of seed germination and establishment. At 

low density, more seeds would have access to the growth resources and the proliferation of weeds follows. 

Therefore, Equation (2.8) gives a discrete-time model for homogenous population of single weed proliferation 

without control. 

3.0 Stability Analysis of the Model Equation 

3.1 Steady-State Solutions  

Usually the first step to take in order to study the dynamics of any system (model) is to find the steady- state 

solutions of the system which are also the critical points (Cushing and Yicang, 1994; Bozkurt and Peker, 2014). A 

point is assumed to be a solution of the steady-state of the model equations only if all of its components are 

non-negative for biological and ecological significance.  To solve for the steady state of (2.8),  

Let tt NN 1 , implies that 01   tt NNN       

So,  NNN tt 1           (3.1) 

There are two nonnegative solutions of the steady-states for the model equation (2.8). So applying (3.1), the 

steady-state of (3.8) satisfies the equation  
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From equation (3.2) we have 
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One of the steady state solutions is 0N . The non-zero steady-state occurs when NNF )( , which is also 

equivalent to 
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So, the second steady-state (3.6) exists and positive provided 1  , since  1 . Hence, the two 
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The zero state E1 is comparable to a situation of weed density extinct (or dies out) during dry season or clearing 

of arable field in preparation for crop planting. While the non-zero state E2 is liken to the existence of weeds or 

infestation of weed in arable field. 

3.2 Local Stability of the Steady-States  

To test for the local stability we adopted the well known stability theorem for discrete-time one-dimensional 

population models as stated in (Paul, 2007) 

Theorem 1  If )(xf (a model function) is differentiable then, a population model is locally asymptotically 

stable if 1)(  xf   and if the model is locally stable then  1)(  xf   . Here x  is the unique 

equilibrium point of function )(1 tt xfx  . 
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We simplified to obtained 
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Stability of  

Evaluating equation (3.9) at N  = 0 gives  
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Otherwise, it is not stable. Thus, if the model is stable, the density of the mature weed tends to zero and the weed 

population dies out or eradicated. Clearly 1  , so 01 E  is unstable. This implies that the density of the 
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Proposition 3.1 

If   1 , then the non-zero steady-state E2 is locally stable, otherwise it is not stable. 

Proof 

Suppose E1(0) is stable. It implies that 1 .  

For E2 to be stable, using Theorem 1, equation (3.17) must hold. That is 
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This completes the proof. Hence, the nonzero steady-state E2 is locally stable. While E1(0) is unstable. Thus the 

density of mature weeds  approaches or converges (settles down) to a positive constant value given by 
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3.3 Global Stability of the Steady-State 

It is important to know whether or not a model is globally stable. Models having this property are predictable, 

while those that do not can exhibit unexpected behaviour (Heinschel, 1994). One of the tools used to prove global 

stability in difference equations is the Schwarzian derivative, which was first introduced into the study of 

one-dimensional dynamical system by David Singer (Heinschel, 1994, Eduarodo, 2007). The Schwarzian 

derivative is given as 
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Calculation of the Schwarzian for Model Equation (2.8) 

At the steady-state (2.8) becomes 
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this gives 
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This show that, 0),( NfS  everywhere. Hence, non-zero steady-state (E2) is not globally stable. Knowing 

whether or not the model is globally stable gives additional understanding of the behaviour of a model. Hence, 

the weed population may exhibit unexpected behaviours (that is the population may not be predictable). 

 

4.0 Graphical Profile of the formulated Model equation  

The model equation (2.8) is used to simulate the population density dynamics of single weed using the  

parameter values 4.1 , , 05.0a  8.0  from one time step (generation) to the next.  Shown in  

figures (4.1) and (4.2)   
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Figure 4.1  Dynamics of Population density of annual weed from t  to  ( t + 1). 

It represents the population density dynamics of weeds from one generation  
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(time step) to another, if there was no control and all necessary growth resources are available.   
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Figure 4.2  Effect of seed dormancy rate on the density of from t  to  ( t + 1). 

The figure 4.2 depicts the effect of changing the dormancy rate (  ) of seed bank seeds of weed on its population 

density in the next time step. The lower the dormancy rate the faster the weed density approaches its maximum 

population which the available space could accommodate. 

 

   

 

 

Figure 4.3 shows that Schwarzian is positive everywhere since its graph has no evident stumpy region. So, we 

conclude that the weed proliferation may exhibits an unpredictable behaviour. 

 

5.0 Conclusion and Further study 

The steady-state solutions of the proposed model equation were obtained and analysed for local and global 

stabilities. The analysis shows that our model is locally asymptotically stable but globally unstable. This result is 

contrary to the interesting property of the most standard biological one-dimensional discrete models, which 

display global stability if they are locally stable.  Although, our model equation falls within the category of 

population models that exhibit local stability but not globally stable. Therefore, the model may exhibit 

unexpected behaviours and the population density of the weed may not be predictable. Further study of the 

behaviour of this model for global stability is under consideration.  
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Figure 4.3  Schwarzian of model (2.8) with no control  
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