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Abstract 

In this paper we develop a numerical approach to a fractional-order differential linear complementarity problem 

(LCP) arising in pricing European and American options under a geometric Lévy process. The (LCP) is first 

approximated by a penalized nonlinear fractional Black-Scholes (fBS) equation. To numerically solve this 

nonlinear (fBS), we use the horizontal method of lines to discretize the temporal variable and the spatial variable 

by means of Crank-Nicolson method and a cubic spline collocation method, respectively. This method exhibits a 

second order of convergence in space, in time and also has an acceptable speed in comparison with some 

existing methods. We will compare our results with some recently proposed approaches.  

Keywords: Geometric Lévy process, fractional Black-Scholes, Crank-Nicolson scheme, Spline collocation, 

Free Boundary Value Problem. 

 

Introduction  

  Over the last few years, the financial markets are regarded as complex and nonlinear dynamic systems. A 

series of studies have found that many financial market time series display scaling laws and long-range 

dependence which imply that there exists arbitrage in financial markets. 

  In classical finance theory, absence of arbitrage is one of the most unifying concepts. However, behavioral 

finance and econophysics as well as empirical studies sometime propose models for asset price that are not 

consistent with this basic assumption. A case is the (fBS) model, which displays the long-range dependence 

observed in empirical data [1, 2]. The (fBS) model is a generalization of the Black-Scholes model, which is 

based on replacing the standard Brownian motion by a fractional Brownian motion in the Black-Scholes model. 

Since fractional Brownian motion (fBm) is not a semi-martingale [3], it has been shown that the (fBS) model 

admits arbitrage in a complete and frictionless market [4, 5]. 

  As a generalization of the integer order differential equation, fractional differential equation is used to model 

important phenomena in various fields such as fluid flow, electromagnetic, acoustics, electrochemistry, 

cosmology, and material science. Recently, fractional partial differential equation was introduced more and more 

into financial theory. There are several alternative solution methods of the (fBS) problem. Wyss [6] gave the 

(fBS) equation with a time-fractional derivative to price European call option. Cartea and del-Castillo-Negrete [7] 

gave several fractional diffusion models of option prices in markets with jumps and priced barrier option using 

fractional partial differential equation. Jumarie [8-9] derived the time and space (fBS) equations and gave 

optimal fractional Merton’s portfolio. [10] obtain a European call option pricing formula with transaction costs 

for the (fBS) model. [11] obtain the explicit option pricing of a bi-fractional Black-Merton-Scholes model with 

the Hurst exponent H in [1/2,1]. [12] proposed and analyzed a power penalty method for the numerical solution 

of the (fBS) equation governing American option pricing. In this paper we develop a numerical method for 

pricing governing American options under (fBS) model by using the cubic spline collocation method and the 

generalized Newton method. First, (fBS) model can be formulated as parabolic partial differential 

complementarity (PDC) problem with the boundary and payoff conditions, the (PDC) problem is approximated 

by a sequence of nonlinear equation problems by using the penalty method given in [12]. Then we apply the 

spline collocation method to approximate the solution of a boundary value problem of second order. The discret 

problem is formulated as to find the cubic spline coefficients of a nonsmooth system ,=)( YY
 

where 

.: mm RR  In order to solve the nonsmooth equation we apply the generalized Newton method (see [13, 14, 

15], for instance). We prove that the cubic spline collocation method converges quadratically provided that a 

property coupling the penalty parameter  and the discretization parameter h is satisfied.                                   

   The paper is organized as follows. In Section 2, we describe briefly the problem for American options in a 
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(fBS) model. In Section 3, we present the penalty method to approximate the (fBS) problem by a sequence of 

second order boundary value problems. Then, we discuss time semi-discretization in Section 4. In Section 5, we 

will first construct a cubic spline to approximate the solution of the boundary problem and devote to the 

presentation of the generalized Newton method. We will then show the convergence of the cubic spline to the 

solution of the boundary problem and provide an error estimate. In order to validate the theoretical results 

presented in this paper, we present numerical tests on two known examples in Section 6. The obtained numerical 

results are compared to the ones given in [12]. Finally, a conclusion is given in Section 7.  

2. Geometric Lévy processes 

  It is proposed in [16] that the underlying stock price tS of an option follows the following geometric Lévy 

process: 

tt dLdtvrSd  )(=)(ln  

with the solution  

),))(exp((= 
T

t
utT dLtTvrSS  

WhereT is a future known date, r is the risk-free rate, v is convexity adjustment so that the expectation 

of TS becomes tT StTrSE ))(exp(][   and tdL is the increment of a lévy process under the equivalent 

martingale measure (EMM). Boyarchenko and levendorskii [17] proposed the use of a modified lévy-stable (LS) 

(lévy- -stable) process to model the dynamics of securities. This modification introduces a damping effect in 

the tails of the LS distribution, which is known as KoBoL process. Carr, Geman, Madan and Yor [18] proposed a 

process, known as the CGMY process, including both positive and negative jumps. In this paper, we are 

concerned with options based on finite moment log-stable (FMLS) processes proposed in [21].  

  A time-dependent random variable tX is a lévy process, if and only if it has independent and stationary 

increments with the following log-characteristic function in lévy-Khintchine representation  

,)())(1(
2

1
)(][ln

*

22

 
IR

xiXi
dxWxhiettmitteE t  

 

where ,1i IRm is the drift rate, 0 is the (constant) volatility, )(xh is a truncation function, 

W is the lévy measure satisfying 

 
IR

dxWx ,)(),1min( 2
 

and )( is the characteristic exponent of the lévy process which is a combination of a drift component, a 

Brownian motion component and a jump component. These three components are determined by the lévy 

-Khintchine triplet ).,,( Wm   In lévy’s process, ),()( xwdxW LS where )(xwLS is the lévy density given 

by 
















0,

0,
)(

1

1

xxDq

xxDq
xwLS





 

For a constant ],2,0( where ,0 ],1,1[, qp satisfying .1 qp The characteristic exponent of 

the LS process is  

,]))(1())(1[(
)2/cos(4

)( 



 



imisisLS   

Where  and  are respectively the stability index and scaling parameter, qps  is the skewness 

parameter satisfying ,11  s and m is a location parameter. When 1s (resp. )1s the random 

variable X is maximally skewed to the left (resp.right).When 2  and ,0s it becomes the Gaussian case. 

A particular characteristic of the FMLS process is that it only exhibits downwards jumps, while upwards 

movements have continuous paths. The characteristic exponent of the LS process with 1s , is 
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where )2/sec(5.0  v  is the convexity adjustment of the random walk. 

In [18], the authors derived a fractional Black-Scholes (fBS) equation for the European option valuation based 

on the FMLS process and a Fourier transform. Let ),( txV be the value of a European option whose underlying 

stock price satisfies (1) and ),(ˆ txV is the Fourier transform of ).,( txV  It has been shown in [18] that 

),(ˆ txV satisfies    

 
(1) 

 

Different choices of tdL  and the convexity adjustment v will result in different fPDEs from (1). The authors 

in [18] also derived the fPDEs under CGMY and KoBoL processes, which are both useful damped Lévy process. 

Because the expected value of the stock price diverges when the distribution of the random variable tX exhibits 

algebraic tails, the power-law truncation does not suitable for derivative pricing, whereas for FMLS it is not an 

issue. Therefore, we assume the risk-neutral asset price tS follows the FMLS process in this paper. 

It has been shown in [16] that under the transformation ,ln tSx  V the Fourier inverse transform of V̂   

in (1), satisfies the following fBS equation: 

  

 

 

(2) 

 

 

where ,0V ,1V and 
V are given functions satisfying the compatibility conditions )()( min0 xVTV  and 

).()( max1 xVTV   VDx x


min denotes the  th derivative of V with )2,0(  a constant, 0min x  

and 0max x  are two constants representing the lower and upper bounds for ,x  and  

),
2

sec(
2

1 
  ra     ).

2
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,][= min rVVDxbVa
t

V
V xx 




 

fbsL  

For brevity, we will only consider, in the rest of this paper, Vanilla put options, which has the payoff function 

)0,max(=)( xeKxV 
where K is the strike price of the option satisfying 

.0 minmax xx
eeK   

  Note that the original fBS equation derived in [18] is defined on the infinite domain ).,(   However, we 

truncate ),(   into a finite one in (2) for the purpose of computation. There are various representations of 

the fractional derivative )(min xWDx x


such as those of Riemann-Liouville (RL) and Grüwald-Letnikov (GL) 

[20]. One representation is 

,
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for minxx  and )2,0(  where (.)  denotes the Gamma function. Clearly, this representation is singular at 

minx unless ).('0)( minmin xWxW   It turns out that both of these conditions are satisfied (up to a 

truncation error) under a transformation when .0min x We will leave this discussion in the next section after 

we introduce the American option pricing model. 

  Unlike a European option whose value is determined by (2), the value of an American option is governed by a 


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linear complementarity problem involving the fBS operator fbsL and a constraint on the value of the option. 

Since the closed form of the solutions can rarely be found in practice, numerical approximations to this 

complementarity problem are usually sought, which in turn needs efficient and accurate numerical methods. 

3. Penalty problem 

  As mentioned before, it is known that the valueV of an American option satisfies the following linear 

complementarity problem [21, 22]: 










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
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for ),0[),( Ttx x  with the boundary and payoff conditions 

),(),(,0),(,),( min xVTxVtxVKtxV max
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Introducing a transformation ),,()1(),(
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ee
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xx

xx





  the option pricing problem can  

be formulated as the following parabolic partial differential complementarity problem ( [12]): 
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when .0min x  This is the Caputo’s representation of the -th fractional derivative of u for ).2,1(  

It is well known that problem (3) admits a unique solution  *2/

0 :)( uvHvu x  
 (see [12]). 

  Let be a real positive number. The penalty problem is given by the following boundary value problem (see 

[24, 25]): 
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where  
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 zz ,0max][   for any function ,z and 1 and 0k are parameters. 

 

Then problem (4) admits a unique solution )()( 2/

xHtu  
 for ),0[ Tt a.e. (see [12]).  

We have the interesting properties.  

 

Theorem (see [12]) Let u and u be the solutions to problem (3) and (4), respectively.  
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where k and are the parameters used in (4). 

 

4. Time discretization and description of the Crank-Nicolson scheme 

   Discretize the time variable by setting tmtm =  for ,0,1,...,= Mm  in which MTt /=  and then 

define 
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txuxu   .0,1,...,= Mm  

Now by applying the Crank-Nicolson scheme on (4), we arrive at the following equation 

 )()(
2

1
=)(

2

1
,

1

,1

1
1

m

m

m

m

mm
mm

utIutIuu
t

uu


 


 






L  

One way is to replace 
1m

u with 
m
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For .0,1,...,= Mm
 
The final price of the American option at time level m will be of the form:  
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Then, problem (7) is second order convergent .i.e.  
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the linear operator associated with the differential operator , L  

For any 0m , problem (7) has a unique solution and can be written on the following form: 
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In the sequel of this paper, we will focus on the solution of problem (9). 

 

5. Spatial discretization and cubic spline collocation method 

   Let . the Euclidean norm on 
1nR and

)(kS the
thk derivative of a function S . 

In this section we construct a cubic spline which approximates the solution u of problem (9), in the 

interval Rx . 

   Let }====<<<<===={= 321110123 maxnnnnnmin xxxxxxxxxxxx    be a 

subdivision of the interval .x Without loss of generality, we put ,= ihaxi  where ni 0  

and ./)(= hxxh minmax 
 

Denote by ),(=),( 2

34  xx PS  the space of piecewise polynomials of 

degree less than or equal to 3 over the subdivision  and of class
2C everywhere on x . 

Let ,iB 1,3,=  ni  , be the B-splines of degree 3  associated with .  These B-splines are positives and 

form a basis of the space .),(4 xS  

   Consider the local linear operator 3Q  which maps the function u  onto a cubic spline space 

),(4 xS  and which has an optimal approximation order. This operator is the discrete 
2C  cubic 

quasi-interpolant (see [15]) defined by  
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where the coefficients )(  uj  are determined by solving a linear system of equations given by the exactness 

of 3Q  on the space of cubic polynomial functions .)(3 xP  Precisely, these coefficients are defined as follows:  
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It is well known (see e.g. [16], chapter 5) that there exist constants ik , 0,1,2,3,=i  such that, for any 
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By using the boundary conditions of problem (9), we obtain  
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From equation: (10), we can easily see that the spline S  satisfies the following equation  

njhOuxJxLSxRSxPSQS jjjj 0,...,=  ),(),(=)()()( 3(0)(1)(2))3(    (11) 

The goal of this section is to compute a cubic spline collocation jj

n

j
BcpS ~=

~ 1

3=



, Hi 1,...,=  which 

satisfies the equation (9) at the points j , 20,...,= nj  with 00 = x , 2/)(= 1 jjj xx  , 

nj ,1,=  , 11 =  nn x  and nn x=2 . 

Then, it is easy to see that   .0=~=~
13  ncc Hence ,~=

~ 2

2=

jj

n

j

BcS 


  

and the coefficients ,~
jc  22,...,=  nj  

satisfy the following collocation conditions:  

1,1,...,=  ),,(=)(
~

)(
~

)(
~

)(
~ (0)(1)(2)(3)  njuJSLSRSPSQ jjjjj    (12) 

Taking  TnccC 22
~,...,~=

~
  and   ,)(),...,(= 22

T

n uuC     

and using equations (11) and (12), we get:  

   EFCLARAPAQA hhhh  =(0)(1)(2)(3)

  (13) 

and  

   ,=
~

~

(0)(1)(2)(3)

C
hhhh FCLARAPAQA   (14) 
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with 

 

 

 

It is well known that kk

k

h A
h

A
1

=)(
 for 3,0,1,2=k  where matrices ,0A ,1A 2A and 3A are independent 

of .h  

Then, relations (13) and (14) can be written in the following form  

   ,= 33

3 EhFhCWVUIQA    (15) 

   ,=
~

~
3

3 C
FhCWVUIQA   (16) 

with  

 ,)(= 2

1

3 PAQAhU 
 (17)  

 ,)(= 1

1

3

2 RAQAhV 
 (18) 

                                .)(= 0

1

3

3 LAQAhW 
 (19) 

 

The results of this work are basically based on the invertibility of the matrix 3A . Then, in order to prove 

that 3A is invertible we give the flowing lemma.  

Lemma 5.1 (de Boor [27]) Let 1 kS S  such that 0=S  on    11 ,,   qqpp xxxx  where qp < . If S  

 

 

0,1,2,3=   ,))((=

,)](),...,([=

,))
2

1
((

,)
2

(

,)(inf

,)
)2(2

(

,)(inf

,)
)2(2

(

,)])(
~

,(
1

),...,)(
~

,(
1

[=

,)])(,(
1

),...,)(,(
1

[=

1,1

)(

3

)(

1
33

1=1,...,

,

1=1,...,

,

1=1,...,,,

1=1,...,

,

1=1,...,,,

1=1,...,

,

1111~

1111

kBA
t

h
O

t

h
OE

BI
r

t
diagG

BI
a

diagR

btridiagB

BI
b

diagP

atridiagA

AI
b

diagQ

SJ
t

SJ
t

F

uJ
t

uJ
t

F

npjj

k

p

k

h

nT

nj

jj

nj

jj

njiji

nj

jj

njiji

nj

jj

T

nnC

T

nn












































 


















































R
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admits r  zeros in  qp xx ,  then  1 kqpr . 

Proposition 5.2 The matrix 3A is invertible.  

Proof: Let 
T

nddD ],,[= 11  be a vector of 
1nR such that .0=3DA If we put 

jj

n

j
BdxS 





2

2=
=)( , 

then we have 0=)(=)( bSaS  and 0=)(''' itS  for any .1,1,= ni  Since ),(4 ISS  

then .),(1

''' ISS   If we assume that 0''' S  in ],[ 0 nxx , then using the above lemma and the fact that 

'''S  has 1n  zeros in ,],[ 0 nxx we conclude that ,11  nn which is impossible. Therefore 0='''S  

for each .xx  This means that the function S is a piecewise linear polynomial 

in .x Since ,0=)(=)( maxmin xSxS then we obtain 0=)(xS for any .xx  Consequently 0=D  and the 

matrix 3A  is invertible.  ⁮ 

In order to determine the bounded of  ||
~

||  CC , we need the following Lemma.  

Lemma 3.1 If ,
2

<2 t
h


 then WVUI   is invertible, where .||)(||= 1

3 

QA   

Proof: From the relation (17), we have  





 ||||||)(|||||| 2

1

3 PAQAhU
 





 ||||||)(|||||| 1

1

3

2 RAQAhV  

For h  sufficiently small, we conclude  

 .
6

1
<|||| U  (19) 

                                   

.
6

1
<|||| V  (19) 

From the relation (18) and ,1|||| 0 A
 

we have  





 ||||||)(|||||| 0

1

3

3 GAQAhW
 

    

 ||||||)(|| 1

3

3 GQAh
 

                               t

h
h




 3
3

2

r
 

For h  sufficiently small, we conclude that .
6

1
<

2

r3 
h Then  

 .
6

1
<||||

3

t

h
W





 (20) 
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As .
2

1
<

3

t

h




 So, ,1<|||||||||||| |||| WVUWVU   and therefore WVUI   is 

invertible.   

Proposition 5 Assume that the penalty parameter and the discretization parameter h satisfy the following 

relation:  

                  1.||)()(||
2

1

3

13  

 QAWVUIh


                       (13) 

Then there exists a unique cubic spline which approximates the exact solution u of problem (9).  

Proof. From relation (12), we have 


 C
FQAWVUIhC ~

1

3

13 )()(=
~  . Let 

11:   nn RR  be a 

function defined by  

               

.)()(=)( ~
1

3

13

Y
FQAWVUIhY                     (14) 

To prove the existence of cubic spline collocation it suffices to prove that   admits a unique fixed point. 

Indeed, let 1Y and 2Y be two vectors of .1nR Then we have  



  ||||||)()(||||)()(||
21

1

3

13

21 YY FFQAWVUIhYY   

Using relation (8) and the fact that 1
2

2=




 j

n

j
B , we get  

         
,|||||)()(|

2
|))(,())(,(| 21

2121
 YYLtStSttStJtStJ iYiYiYiiYi 


    (15) 

Then we obtain  

.|||||||| 21
21

  YYLFF YY   

From relation (15), we conclude that  

,||||||)()(||
2

||)()(|| 21

1

3

13

21 

  YYQAWVUIhYY


  

Then we have  

,||||||)()(|| 2121  YYkYY   

With .||)()(||
2

1

3

13



 QAWVUIhk


 

Hence the function   admits a unique fixed point. ⁮     

In order to calculate the coefficients of the cubic spline collocation given by the nonsmooth system  

                             
),

~
(=

~
  CC                                (16) 

we propose the generalized Newton method defined by  

 

                
)),

~
(

~
()(

~
=

~ )()(1

1

)(1)( kk

kn

kk CCVICC   




                       (17) 
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where 1nI  is the unit matrix of order 1n  and kV  is the generalized Jacobian of the function 

)
~

(
~

  CC  , (see [28], for instance).  

Proposition 3.1 Assume that the penalty parameter and the discretization parameter h satisfy the following 

relation 

                    
1.||)()(||

2

1

3

13  

 QAWVUIh


                       (18) 

Then the cubic spline S
~

converges to the solution .u Moreover the error estimate is order )( 3hO   

Proof: We pose .||)()(|| 1

3

1



 QAWVUI  From the relation (10), we have 

.])[()()(=
~

~
1

3

13 EFFQAWVUIhCC
C

 




 

Since E is of order ,)/(1 tO   then there exists a constant 1K such that  

,/1 tKE 
  

Hence, we have 

                        
 1~

3 ||||||
~

|| KFFhCC
C




                        (19) 

On the other hand we have 

|,)(
~

))(|
2

|))(
~

,())(,(| iiiiii SutSJuJ 


  

 

                 
|,)(

~
)(|

2
|)())(|

2
iiii SStSut 





 

 
From relation (10), there exists a constant such that 

,||||
(3)3

23 
  uhKuQu

 

Using the fact that  

,
~~~ 2

2=3





   CCBCCSuQ j

n

j

 
Then, we obtain  

))(
~

,())(,(
1

1~ iiiC
SJuJ

t
FF   




 

     



( 3 )3

2
2

~

2



uhKCC

 
By using relation (18) and assumption (19) it is easy to see that 

,||||
2

2
1

~
1

(3)3

2
3

3













 


KuhK

h

h
CC 







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,||||
2

2 3

1

(3)3

2 hKuhK 







 




 

By using relation (19), assumption (18) and relation  

,
||||1-

1
||)(|| 1 cte

WVU
WVUI 










 
It is easy to see that 

,||||
2

~ 3

1

(3)3

2 hKuhKcteCC 







 






 
We have 

,
~~

33


  SuQuQuSu

 

Then from relations, we deduce that 


  Su
~

is )( 3hO . 

 

6. Numerical examples 

   In this section we verify experimentally theoretical results obtained in the previous section. If the exact 

solution is known, then at time Tt   the maximum error 
maxE  can be calculated as:  

.|),(),(|max= ,

][0,],,[

txutxSE NM

Tt
max

x
min

xx

max 


 

Otherwise it can be estimated by the following double mesh principle:  

,|),(),(|max= ,22,

][0,],,[
, txStxSE NMNM

Tt
max

x
min

xx

max

NM 


 

where ),(, txS NM
is the numerical solution on the 1M grids in space and 1N grids in time, and 

),(,22 txS NM
is the numerical solution on the 12 M grids in space and 12 N grids in time.     

   We present two examples to better illustrate the use of the Geometric Lévy process approach and the 

proposed pricing methodology in concrete situations. These examples are concerned with model American put 

option pricing problem  

6.1. Example 1 

Consider the following continuous LCP: 

 

 

                    

 

satisfying the boundary and payoff conditions 









],2,0[,0)0,(

,10,8),2(0,),0(

xxu

tttutu
 

 


































0),((.)(),(
),(

,),(

,20,10),(),(
),(

5,1

0

5,1

0

xttxuxftxuD
t

txu

xttxu

ttxftxuD
t

txu

x

x
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where .
)5.2(

)4(
=)( 5.13 xtxxf




   

The solution to the unconstrained problem is .3tx The damping parameter and the stopping criterion in the 

Newton’s method are chosen to be 0.02 and 0.0001 respectively. The space and time intervals [0, 2] and [0, 1] 

are divided uniformly into M ( Mt /2 ) and N ( Nh /1 ) subintervals respectively for positive 

integers M and .N  

   The comparison of the maximum error values between the method developed in this paper with the one 

developed in [12] will be taken at five different values of the number of space steps
lNM 252  with 

.5,4,3,2,1l  We conduct experiments on different values of ,N .M Table 1 show values of the maximum 

error (max_error) obtained in our numerical experiments and the one obtained in [12]. We see that the values of 

maximum error obtained by our method improve the ones in [12]. 

Table 1. Numerical results for different values of t and .h  
lMN 252   1l  2l  3l  4l  5l  

max_error in [12] 

Our max_error 

1101.0894   
3108.1316   

2102.5670   
3102.0441   

3105.9231   
4105.3318   

3101.3179   
4101.5708   

4102.6188 
5108.7373   

 

6.2. Example 2 

American put option with parameters: 

,100max S ,100min S  ,1T ,50K 100max S 05.0r .25.0  

To investigate the rates of convergence of the method in both  and ,k we choose a fixed uniform mesh for the 

solution domain )1,0())100ln(),1.0(ln(  in ),( tx  with 100N .104M We also choose 

.5.1 Again the exact solution to this problem is unknown and we thus use the numerical solution 

with
1010 and 1k as our ‘exact’ or reference solution denoted as problem (4) corresponding to the problem 

are solved on the aforementioned uniform mesh (i.e., 100N 104M ) for a sequence of values 

of  when k is fixed. Table 2 show values of the maximum error (max_error) obtained in our numerical 

experiments and the one obtained in [12]. We see that the values of maximum error obtained by our method 

improve the ones in [12] for the chosen values of and .k   

Table 2. Numerical results for different values of .  

kn 240  1n  2n  3n  4n  5n  6n  

k=1 

max_error in [12] 

Our max_error 

 
2108.44   
3101.61   

2104.31   
3101.14   

2102.18   
3108.19   

2101.09   
3105.88   

3105.49   
4104.24   

3102.75   
4103.08   

k=2 

max_error in [12] 

Our max_error 

 

2104.24   
3101.14   

2101.09   
4108.19   

3102.75   
4105.88   

4106.91   
5104.24   

4101.73   
5103.08   

5104.32   
6102.26   

k=3 

max_error in [12] 

Our max_error 

 
21089.7   
31081.0   

21009.1   
41088.5   

31038.1   
41024.4   

41073.1   
51008.3   

51017.2   
61026.2   

61070.2   
71068.1   

k=4 

max_error in [12] 

Our max_error 

 
11082.2   
21088.5   

21011.4   
31024.4   

31075.2   
41008.3   

41074.1   
51026.2   

51009.1   
61068.1   

71084.6   
81028.1   

k=5 

max_error in [12] 

Our max_error 

 

11073.5   
21056.2   

11053.2   
21085.5   

21011.2   
31009.7   

41095.6   
51012.8   

51018.2   
61043.1   

71086.6   
81029.5   

 

7. Conclusion 
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  In this paper we have presented the American options whose underlying stock prices follow a geometric Lévy 

process, this problem is approximated by a sequence of nonlinear equation problems by using the penalty 

method given in [24, 25], and its time discretization scheme. Then, we have developed and analyzed a cubic 

spline collocation method and the generalized Newton method for approximating solutions of the semi-discret 

problem. We have shown the convergence of the method provided that the penalty and discret parameters satisfy 

the relation (13). Moreover we have provided an error estimate of order )( 3hO with respect to the maximum 

norm .


 Numerical experiment was performed on one known model to validate the convergence and 

efficiency of the method. The computational results show that the proposed numerical method is an efficient 

alternative method to the one proposed in [12]. 
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