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1 INTRODUCTION 

 

Throughout this paper, ),( dX denotes a metric space. If x ∈ X and A is a self-map on X, we write Ax for the A-image 

of x, A(X) for the range of A and AS for the composition of self-maps A and S. Also +IR will denote the set of all non 

negative real numbers. A point p of the space X is a fixed point of a self-map A if and only if Ap = p. A self-map A on 

X with the choice ),(),( yxdaAyAxd ≤  for all Xyx ∈, is known as a contraction, provided 10 <≤ a . According to the 

celebrated Banach contraction principle (BCP), every contraction on a complete metric space has a unique fixed 

point. It is easy to see that a discontinuous self-map cannot be a contraction and hence contraction principle cannot 

ensure a fixed point for it even if X is complete. However, various generalizations of BCP have been established by 

weakening the contraction condition, relaxing the completeness of the underlying space and/or extending to two or 

more self-maps under additional assumptions. To mention a few are the works of Fisher ([2]-[3]), Fisher and Khan 

[4], Chang [5], Ciric [6], Das and Naik [7], Jungck [8], Pant [11] and Singh and Singh [18].  

 

Self-maps S and A on X are said to be weakly commuting [17] if ),( SAxASxd ),( AxSxda≤ for all Xyx ∈, . As a 

further generalization for commuting maps, Gerald Jungck [9] proposed the compatibility as in the following lines: 

Definition 1.1 Self-maps S and A on X are compatible if 

0),(lim =
∞→

nn
n

ASxSAxd                                    (1)           

whenever 
∞
= 1nnx ⊂ X such that  

n
n

Ax
∞→

lim = tSxn
n

=
∞→

lim  for some t ∈ X.                               (2) 

If there is no 
∞
=1nnx  in X with the choice (2), S and T are called vacuously compatible.  

Remark 1.1 Self-maps S and A on X are not (non-vacuously) compatible if there is a sequence 
∞
= 1nnx in  
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X with choice (2) but 0),(lim ≠
∞→ nn

n
ASxSAxd  or + ∞.  

Obviously every commuting pair of self-maps is a weakly commuting one, and a weakly commuting pair is 

necessarily compatible. But neither reverse implication is true [9]. 

 

The following notion is due to Aamri and Moutawakil [1]: 

 

Definition 1.2 Self-maps S and T satisfy the property E. A. if there is an Xx
nn ⊂∞
=1 with the choice (2).  

 

In this paper CX denotes the class of all non-compatible pairs of self-maps on X, while *
XC , the class of all pairs of 

self-maps on X which satisfy the property E. A. 

 

In view of Remark 1.1, non-compatibility implies the existence of the sequence 
∞
= 1nnx  with the choice (2).  

Hence the class *
XC  is potentially wider than CX. We also note that vacuously compatible self-maps do not satisfy 

the property E. A. 

 

We call a point Xx∈ , a coincidence point of self-maps S and A on X if Tx = Sx, while y ∈ X is a point of their 
coincidence w. r. t. x if Tx = Sx = y. Taking xxn =  for all n, from (1) and (2), it follows that STx = TSx 

whenever Xx∈ is such that Tx = Sx. Hence we have 

Definition 1.3 Self-maps which commute at their coincidence points are weakly compatible maps [10] which are 

also called coincidentally commuting or partially commuting [16].  

Being weakly compatible and possessing property E. A. are independent conditions of each other (Pathak   et al. 

[12]) 

 

In this paper ++ →φ IRIR5:  is an upper semi-continuous (written shortly as usc) non decreasing in each coordinate 

variable, and for 0>ξ  satisfy the conditions:  

(i) ξ≤ξξξφξξξφ )}2,0,,0,,(),0,2,0,,(max{   

(ii) ξ<αξξξφαξξξφ )},0,,0,,(),0,,0,,(max{  when 2<α  

(iii) ξ<ξαξαξαξξφ=γ ),,,,()( 321t  if 4321 =α+α+α . 

 

Remark 1.2 ),,,,( ξξξξξφ≤ξ  implies that 0=ξ . 

 

 

With this notion Renu Chug and Sanjay Kumar [14] proved the following result for two weakly compatible pairs of 

self-maps: 

Theorem 1.1 Let A, B, S and T be self-maps on X satisfying the inclusions 

)()( XTXA ⊂ ,                        (3-a) 

    )()( XSXB ⊂                        (3-b) 

and the inequality  

( )),(),,(),,(),,(),,(),( SxBydTyAxdTyBydSxAxdTySxdByAxd φ≤  for all ., Xyx ∈            (4) 

Suppose that: 

(a)  X is complete 
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(b)  The pairs ),( SA and ),( TB are weakly compatible. 

Then all the four maps A, B, S and T have a unique common fixed point. 

 

The authors of Theorem 1.1 asserted that there is a point Xu∈  such that Suz =  under the inclusion 

(3-b) (Line 4 from the bottom, page 244). We point out that their assertion is not true and that the inclusion (3-b) 

plays no role to obtain the point u. However it will be true if we assume that the map B (and hence S) is onto. 

In view of this suggestion we restate Theorem 1.1 as follows:  

Theorem 1.2 Let A, B, S and T be self-maps on X satisfying the inclusions (3-a), (3-b), the inequality (4), (a) and (b) 

of Theorem 1.1. If  

(c) either A or B is onto,  

then all the four maps A, B, S and T have a unique common fixed point. 

 

In this paper we obtain the conclusion of Theorem 1.1, by relaxing the completeness of the space X and using 

the property E. A. (see below). Our result will be a generalization of those some of the authors. 

 

2 MAIN RESULT 

First we prove  

Theorem 2.1 Let A, B, S and T be self-maps on X satisfying (3-a), (3-b), and the inequality (4).  

Suppose that  

(d)  either *
XCAS ∈),(  or *

XCTB ∈),( , 

(e)  one of )(),(),( XTXAXS  and )(XB  is a complete subspace of X. 

If the condition (b) of Theorem 1.2 holds good, then A, B, S and T will have a unique common fixed point. 

 

Proof. First suppose that *
XCAS ∈),( . Then there is a Xx

nn ⊂∞
= 1

such that n
n

Ax
∞→

lim  = n
n

Sx
∞→

lim  = p for  

some p ∈ X. By virtue of the inclusion (3-a), we can find another sequence ∞
= 1nny of points in X such that   

nn TyAx =  for all n so that 

  n
n

Ax
∞→

lim  = n
n

Sx
∞→

lim  = n
n

Ty
∞→

lim  = p.                             (5) 

 

Observe that n
n

Byq
∞→

= lim  also equals p. In fact, writing nxx = and nyy = in the inequality (4), we see that  

 )),(),,(),,(),,(),,((),( nnnnnnnnnnnn SxBydTyAxdTyBydSxAxdTySxdByAxd φ≤  

Applying the limit as ∞→n  in this, and using (5) and the usc of φ,  

  )),(),,(),,(),,(),,(()),(,0),,(,0,0(),( qpdqpdqpdqpdqpdpqdpqdqpd φ≤φ≤   

so that or 0),( =qpd or qp = , in view of Remark 1.2. Thus   

 n
n

Ax
∞→

lim  = n
n

Sx
∞→

lim  = n
n

By
∞→

lim  = n
n

Ty
∞→

lim  = p.                       (6) 

We first show that p is a common coincidence point for ),( AS  and ),( TB . That is  

 TpBpSpAp === .                                  

(7) 

 

Case (a): Suppose that )(XT  is complete.  

Then )(XTp∈  so that pTu = for some u ∈ X. But then from (4), we see that  
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)),(),,(),,(),,(),,((),( nnnnnn SxBudTuAxdTuBudSxAxdTuSxdBuAxd φ≤  

Applying the limit as ∞→n  in this, and using pTu = and upper semi-continuity of φ followed by its non 
decreasing nature in each coordinate variable, we get 

 )),(),,(),,(),,(),,(()),(,0),,(,0,0(),( pBudpBudpBudpBudpBudpBudpBudBupd φ≤φ≤  

or 0),( =Bupd pBu = . Thus u is a coincidence point, and hence p is a point of coincidence for B and T . That is  

 .pTuBu ==                      (8) 

Again from the inclusion (3-b), we see that SrBup ==  for some Xr∈ .  

Since φ is non decreasing, from (4) and (8) we get  

 ),(),( BuArdSrArd = )),(),,(),,(),,(),,(( SrBudTuArdTuBudSrArdTuSrdφ≤  

                         )0),,(,0),,(,0( pArdpArdφ= )),(),,(),,(),,(),,(( pArdpArdpArdpArdpArdφ≤  

so that pSrAr == , in view of Remark 1.2. That is p is a point of coincidence for A and S w. r. t. r. Thus   

  .pTuBuSrAr ====                               (9) 

Since (A, S) and (B, T) are weakly compatible pairs, (7) follows from (9). 

     

Case (b): Suppose that )(XA is complete.  

Then )()( XTXAp ⊂∈ , in view of (3-a) and hence (7) follows from Case (a).  

Case (c): Suppose that )(XS is complete.  

Then )(XSp∈  so that pSw = for some w ∈ X. But then from (4), we see that  

)),(),,(),,(),,(),,((),( SwBydTyAwdTyBydSwAwdTySwdByAwd nnnnnn φ≤  

Applying the limit as ∞→n , and using (6), pSw= and upper semi-continuity of φ, followed by its non decreasing 
nature in each coordinate variable, this gives 

 )0),,(,0),,(,0(),( pAwdpAwdpAwd φ≤ )),(),,(),,(),,(),,(( pAwdpAwdpAwdpAwdpAwdφ≤  

or 0),( =Awpd or pAw = . Thus w is a coincidence point and p is a point of coincidence for A and S  

w. r. t. w. That is  

  pSwAw == .                              (10) 

Again from the inclusion (3-a), we see that TqAwp ==  for some Xq∈ .  

Since φ is non decreasing, from (4) and (10) we get  

)),(),,(),,(),,(),,((),(),( SwBqdTqAwdTqBqdSwAwdTqSwdBqAwdBqpd φ≤=  

                   )),(,0),,(,0,0( pBqdpBqdφ= )),(),,(),,(),,(),,(( pBqdpBqdpBqdpBqdpBqdφ≤  

so that Bqp = in view of Remark 1.2. 

Thus  .pTqBqSwAw ====                          (11) 

Now (7) will follow from (b) and (11).  

Case (d): Suppose that )(XB is complete.  

Then )()( XSXBp ⊂∈ , in view of (3-b) and hence (7) follows from Case (c).  

 

To establish that p is a common fixed point for all the four maps, we again use (4) with rx = and py = so that 

 )),(),,(),,(),,(),,((),( SrBpdTpArdTpBpdSrArdTpSrdBpArd φ≤ . 

Again since φ is non decreasing, this together with (7) and (8) gives 

 )),(),,(,0,0),,((),( pBpdBppdBppdBppd φ≤ )),(),,(),,(),,(),,(( BppdBppdBppdBppdBppdφ≤  
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so that from Remark 1.2, it follows that pBp =  and hence p is a common fixed point for A, B, S and T, which in 

fact is a point of their common coincidence.   

Now suppose that *
XCTB ∈),( . Then exchanging the roles of ),( AS  and ),( TB ; of (3-a) and (3-b); and of 

)(XT and )(XS in the above proof, we can similarly obtain the conclusion. 

Uniqueness of the common fixed point follows easily from the choice of φ and (4).                       

 

Remark 2.1 If A is onto then XXA =)( . Therefore the completeness of X implies the completeness of )(XA . 

Similarly the completeness of X implies the completeness of )(XB  whenever B is onto.  

Remark 2.2 We can prove that if self-maps A, B, S and T on X satisfy the inclusions (3-a), (3-b) and the inequality 

(4), and X is complete, then both *
XCSA ∈),(  and *

XCTB ∈),( . 

In fact for any Xx ∈0 , the inclusions (3 a-b) generate a sequence of points
∞
=1nnx  in X with the choice  

1222 −− = nn TxAx , nn SxBx 212 =−  for all n ≥ 1.                         (12) 

From the proof of Theorem 1.2, it follows that 
∞
=12 nnAx  and 

∞
=12 nnAx  are Cauchy sequences. 

If X is complete, these will converge to some z ∈ X. That is 

 22lim −∞→ n
n

Ax  = 12lim −∞→ n
n

Tx  = 12lim −∞→ n
n

Bx  = n
n

Sx2lim
∞→

 = p.                          (13) 

With *
2 nn xx =  and *

12 nn yx =−  from (13), we see that   

*lim n
n

Ax
∞→

 = *lim n
n

Sx
∞→

 = p  and *lim n
n

By
∞→

 = *lim n
n

Ty
∞→

 = p, 

proving that the pairs ),( AS  and ),( TB satisfy the property E. A.  

Remark 2.3 In view of Remarks 2.1 and 2.2, we see that Theorem 1.2 follows as a particular case of our result 

(Theorem 2.1). 

 

It is possible to relax the condition (b), and drop the inclusions in Theorem 2.1 for three self-maps                     

A, B and T.  

In deed we prove the following  

Theorem 2.2 Let A, B and T be self-maps on X satisfying the inequality  

( )),(),,(),,(),,(),,(),( TxBydTyAxdTyBydTxAxdTyTxdByAxd φ≤  

     for all ., Xyx ∈                         (14) 

Suppose that )(XT  is complete subspace of X and  

(f) either of the pairs ),( TA and ),( TB is both (weakly compatible and belongs to the class *
XC ).  

Then A, B and T will have a unique common fixed point. 

 

Proof. Suppose that the pair *
XCTA ∈),( . Then there exists a sequence 

∞
=1nnx ⊂ X such that  

n
n

Ax
∞→

lim  = n
n

Tx
∞→

lim  = p for some p ∈ X.                                    (15) 

Let n
n

Bxq
∞→

= lim . Then q = p. In fact, writing nxyx ==  in the inequality (14),  

 )),(),,(),,(),,(),,((),( nnnnnnnnnnnn TxBxdTxAxdTxBxdTxAxdTxTxdBxAxd φ≤  

Applying the limit as ∞→n  in this and using (15) and upper semi-continuity of φ,  

 )),(),,(),,(),,(),,(()),(,0),,(,0,0(),( qpdqpdqpdqpdqpdpqdpqdqpd φ≤φ≤   

so that 0),( =qpd  or qp = , in view of Remark 1.2. Thus   

  n
n

Ax
∞→

lim  = n
n

Tx
∞→

lim  = n
n

Bx
∞→

lim  = p.                         (16) 
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Suppose that )(XT  is complete. Then )(XTp∈  so that pTu = for some u ∈ X. But then from (14),   

)),(),,(),,(),,(),,((),( nnnnnn TxBudTuAxdTuBudTxAxdTuTxdBuAxd φ≤ . 

Applying the limit as ∞→n in this, and using pTu = and upper semi-continuity of φ followed by its non decreasing 
nature in each coordinate variable, we get 

)),(),,(),,(),,(),,(()),(,0),,(,0,0(),( pBudpBudpBudpBudpBudpBudpBudBupd φ≤φ≤ or 0),( =Bupd   

or pBu = . Thus u is a coincidence point of B and T. That is pTuBu == .        

Since φ is non decreasing, from (14), we get  

 ),( BuAud )),(),,(),,(),,(),,(( TuBudTuAudTuBudSuAudTuTudφ≤    

               )0),,(),0),,(,0( pAudpAudφ= )),(),,(),,(),,(),,(( pAudpAudpAudpAudpAudφ≤  

so that TuAu = in view of Remark 1.2. 

 

Thus  pTuBuAu === .                                               (17) 

Since (A, T) is weakly compatible pair, from (17) we get that TpAp = .    

Again since φ is non decreasing, from (14) and using TpAp = , we get  

 ),( BpApd )),(),,(),,(),,(),,(( TpBpdTpApdTpBpdTpApdTpTpdφ≤  

               )),(,0),,(,0,0( BpApdBpApdφ= )),(),,(),,(),,(),,(( BpApdBpApdBpApdBpApdBpApdφ≤  

so that BpAp =  in view of Remark 1.2. 

Thus TpBpAp == .                               (18) 

 

Finally p will be a common fixed point for the three maps. For, writing ux =  and py =  in (14) and then using 

(17) and (18) we get 

)),(),,(),,(),,(),,((),(),( TuBpdTpAudTpBpdTpAudTpTudBpAudTppd φ≤=                      

    )),(),,(,0),,(),,(( pTpdTppdTppdTppdφ= )),(),,(),,(),,(),,(( TppdpTpdTppdTppdTppdφ≤  

Again since φ is non decreasing, this with Remark 1.2, implies that pBp =  and hence p is a common fixed point 

for A, B, and T. 

Similarly if ),( TA  is a weakly compatible pair satisfying the property E.A., it follows that A, B, and T have a 

common fixed point. Uniqueness of the common fixed point follows easily from the choice of φ and (14).   

                       

 

 

Taking A = B in Theorem 2.2 we have  

Corollary 2.1 Let A and T be self-maps on X satisfying the inequality  

( )),(),,(),,(),,(),,(),( TxAydAyAxdTyAydTxAxdTyTxdAyAxd φ≤  for all ., Xyx ∈             (19) 

If )(XT  is complete subspace of X, ),( TA  is weakly compatible and *
XCTA ∈),( , then A and T will have a unique 

common fixed point. 

 

Given Xx ∈0  and self-maps A and T on X, if there exist points ...,,, 321 xxx in X with nn TxAx =−1  for 1≥n , the 

sequence
∞
=1nnAx  defines a ),( TA -orbit or simply an orbit at .0x  The space X  is ),( TA -orbitally complete [13] 

at Xx ∈0  if every Cauchy sequence in some orbit at 0x converges in X .  

Note that every complete metric space is orbitally complete at each of its points. However there are incomplete 

metric spaces which are orbitally complete at some point of it [13]. 
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We give the following generalization of Corollary 2.1, the proof of which can be obtained on similar lines of that of 

Theorem 2.2.  

 

Theorem 2.3 Let A and T be self-maps on X satisfying the inequality (14) and *
XCTA ∈),( . Suppose that any one of 

the following conditions holds good: 

(g) the subspace )(XA  is orbitally complete at Xx ∈0  

(h) )(XT  is orbitally complete at Xx ∈0 . 

Then there is a coincidence point z for A and T. Further if A and T are weakly compatible, then the point of 

coincidence of A and T w. r. t. z will be a unique common fixed point for them. 

 

In the remainder of the paper ++ →ψ IRIR:  represents a contractive modulus, due to Solomon Leader [19] with the 

choice tt <ψ )(  for t > 0. 

 

 

Corollary 2.2 (Theorem 2, [13]) Let A and T be self-maps on X satisfying the inclusion 

 )()( XTXA ⊂                          (20) 

and the inequality  

( ))],(),([),(),,(),,(max),(
2
1 TxAydTyAxdTyAydTxAxdTyTxdAyAxd +ψ≤  for all Xyx ∈, ,    (21) 

where ψ is non decreasing and upper semi continuous contractive modulus. 

Suppose that one of the conditions (g), (h) and (i) holds good, where 

(i) the space X is orbitally complete at some Xx ∈0 and T is onto 

Then there is a coincidence point z for A and T. Further if A and T are weakly compatible, then the point of 

coincidence of A and T w. r. t. z will be a unique common fixed point for them. 

 

Proof. We note that the condition (i) implies (g). We set  

{ }( )][,,,max),,,,( 542
1

32154321 ξ+ξξξξψ=ξξξξξφ  for all 5...,,2,1, =ξ ii . 

Then (14) reduces to (21). 

  

Let Xx ∈0  be arbitrary. By virtue of the inclusion (20), we can construct an ),( TA - orbit 0x  with choice  

nn TxAx =−1  for 1≥n . Then the sequence 
∞
=1nnAx  is a Cauchy sequence in this orbit at X.  

 

In view of Remark 2.2, A and T satisfy the property E. A. Hence the conclusion follows from Theorem 2.3. 

 

Now write B = A in Theorem 2.1, we get 

Theorem 2.4 Let A, S and T be self-maps on X satisfying the inclusion  

)]()([)( XTXSXA I⊂                         (22) 

and the inequality  

( )),(),,(),,(),,(),,(),( SxAydTyAxdTyAydSxAxdTySxdAyAxd φ≤  for all ., Xyx ∈         (23) 

Suppose that  
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(j) either of the pairs ),( SA and ),( TA satisfies the property E. A. 

(k) one of )(),( XBXA  and )(XT  is a compete subspace of X. 

If ),( SA and ),( TA are weakly compatible, then A, B, S and T will have a unique common fixed point. 

 

Since every compatible pair is weakly compatible, we have the following sufficiency part of Main theorem of [15]. 

 

Corollary 2.3 Let A, S and T be self-maps on X satisfying (20) and the inequality  

     { })],(),([),,(),,(),,(max),(
2
1 SxAydTyAxdTyAydSxAxdTySxdAyAxd +≤  

                  { }( ))],(),([),,(),,(),,(max
2
1 SxAydTyAxdTyAydSxAxdTySxd +ω−  for all ,, Xyx ∈   (24) 

where ++ →ω IRIR:  is continuous and tt <ω< )(0  for 0>t . Suppose that X is complete, A is continuous and 

),( SA  and ),( TA  are compatible. Then A, S and T will have a unique common fixed point. 

Note that (23) reduces to (24) with  















 ξ+ξξξξω−







 ξ+ξξξξ=ξξξξξφ ][

2

1
,,,max][

2

1
,,,max),,,,( 543215432154321 for all 5...,,2,1, =ξ ii .  

 

Given Xx ∈0 , due to the inclusion (22), we can construct the sequence 
∞
=1nnAx   with choice  

,1222 −− = nn TxAx  nn TxAx 212 =−  for 1≥n ,  

which is a Cauchy sequence in the complete space X and hence converges in it.  

In view of Remark 2.2, A and T satisfy the property E. A.  
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