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Abstract

Estimation of finite population total using internal calibration and model assistance on semiparametric
models based on kernel methods have been considered by several authors. In this paper, we have extended
this to consider model calibration based on penalized splines in two stage sampling where the auxiliary
information is available both at the element level and at the cluster level. We have shown that the proposed
estimators are robust in the face of misspecified models, are asymptotic design unbiased, have reduced
model bias, are consistent and asymptotic normal. We have shown that estimators based on penalized
splines perform better than corresponding kernel based estimators and model calibrated estimators perform
better than internally calibrated estimators do. .

Keywords: model assistance, model calibration, semiparametric model, penalized splines

1. Introduction

Use of nonparametric and semiparametric modeling techniques for the missing values has gained popularity due
to the failings of parametric modeling when a model is misspecified. Given a sample § of 7 triple of
observations (Z,, x,,y,),i = 1,2,..., n from a population U of size N, of interest is to find an estimator for
E(y,) = g(x,,Z,)of a missing population value. The auxiliary information consists of a single univariate
nonparametric term X and a parametric vector Z composed of an arbitrary number of linear terms. Once the
missing values are imputed, an estimate of the population total of the dependent variable y can be obtained.
Breidt et al (2007) [4] considered a super population regression model, & given by

Eg(y[)zg(xAi’Zi):/’l(xi)_i_Ziﬂ (D
and used a sample estimate of the form &, = fi(x,)+Z,f with fi(x,) obtained by local polynomial
nonparametric method. Accordingly, they obtained the following estimator for population total

A yi_éi
Viw =2, 80+ 2 T+ 2)
U K i

They found that the estimator shares some desirable properties with the fully parametric regression estimators. It
is location and scale invariant, and it _is internally calibrated for both the parametric and the nonparametric
components, in the sense that Xrgg = ZU X, and ngg = ZU Z. . The estimator

. . . . _ 1
was shown to be design consistent with the rate~/n , in the sense that Vyeg = ZU »:+0, (ﬁ)

In this paper, we extend the work of Breidt et al (2007) [4] to include model calibration in two stage sampling
with auxiliary information available at both element and cluster levels.

2. Two Level Model Calibration in Two Stage Survey Sampling

Consider a population U partitioned into M clusters each of size Nl so that the population of clusters is

C=1,...,i,...,M . Forall clusters 7 €s , an auxiliary vector X, and a categorical vector z, are available.
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For simplicity, we let X, be a scalar. At stage one, a probability sample s of clusters is drawn from C according
to a fixed design p,(.), where p,(s) is the probability of drawing the sample s from C. let m be the size of s.
The cluster inclusion probabilities 77, = p(i € 5) and ;= p(i, j€s) are assumed to be strictly positive
and p, refers to first stage design. From every sampled cluster i € s , a probability sample s, of elements is
drawn according to a fixed size design p,(.) with inclusion probabilities 7,, = p(k €s,/i€s) and
7y, =plk,les/ies) . We let n, be the size of s, and assume invariance and independence of the
second stage design. Let ¢, = g(x,,Z,)+¢&;, i=12,...,M where g(x,,Z,)is a smooth function of x and

Z be the fitted model mean for the ith cluster total. Let 7 = [ h ,1 ~ be the m vector of fl obtained in the

sample of clusters.

Now, consider the case where there is also auxiliary information is known at element level such that for each
element in the ith cluster, a nonparametric variable X, and a categorical vector Z, are available. Suppose
not all elements in a given cluster are available and have to be imputed, we derive a model calibrated estimator
of cluster total making use of auxiliary information available at the element level and using penalized splines.
Let X represents the matrix with rows

XL {1 Xigosees Xt (X —h )L, o0y (30 —kx)i} 3)

for ieC, »and let Y denote the column vector of response values y, for k € C; sothat p = [y ,k] kes, be
the vector of h% ; obtained in the sample of cluster .

Let A, = diag{0,...,0,a}, with q+1 zeros on the diagonal followed by k penalty constants & . We adapt the
deﬁnmon of the matrix of inverse inclusion rob bilities by Breidt et al (2005) [1] to the matrix of within cluster
inclusion probabilities as W,; = dlagkes T, /l Let X, be the sub matrix of X consisting of those
rows for which k € S,

Let ¢, denote the superpopulaton of cluster elements model. We define the semiparametric population
estimator for E. (1 as

$ (zi) = 2 () + Z, B @)

and design weighted penalized spline smoother vector be

Ssy = (XT oW o X+ A,) X (W )
The sample smoother matrix is given by the following.
S [Sﬂk,k €s, ] (6)
Accordingly, we have the following estimators resultmg from the solutlon of the equations (4), (5), and (6).
ﬁ—(ZTS Z.+A4 ) VAR %)
= i) = S, (5~ 2" ) ®)

Where ﬁik and x,, are defined for everyk S Ci. We propose a semiparametric model assisted model calibrated
estimator of cluster total to be
=2 Wil ©)

kes;

With w,_obtained by minimizing the chi square distance measure
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(Wik —dy )2
o =S V%) 10
’ /; Gyl (o

Subject to the constraints Z w, =N, and Z Wy glk Z g, = N, which we adopt from constraints

i
kes; kes; keC;

introduced by Wu and Sitter (2001) [8]. Here, d,, :ﬂflk/i and ¢, are known positive constants
uncorrelated with the dl.k . See Deville and Sarndal, (1992) [5].

We introduce the langrage procedure in the minimization of equation (10) obtain the equation below.

=y M), j; =220 Wi =2 &) = 2wy =N, (an

kes; q,k ik kes; keC; kes;

where A is the langrage’s multiplier and Vis the penalty constant. Differentiating [ with respect to Wy
equating the derivative zero and solving we get

Wy = (A +v)qud, +dy (12)
Solving for A andV, and substituting in t: we have that

Z d,q; hY ik
I ~ kes; p "
ti :zdikyik +(M_Zdlk) Zd _ﬁmc zgl/{ zdkglk mc (13)
kes; kes; ikqik keC; kes;
kes;
Z 44948 Z AV
z g.d | g, - kes, P ke,
Qi | Eik ik
kes; Z dik qi Z d ik
where ﬁ _ kes; kes;
me R 2
Z Ay 948
Z Gudy | & — e
kes; Z dik qik
kes;
Z Ay Gy Vi
The term (M — Z d,) L B, ¢ has been shown from empirical analysis to be negligible
kes, Z dy 4y
kes;

and has no effect on asymptotic properties hence we rewrite the estimator as

Z yzk Zglk Z S A (14)

kes; ﬂ-k/, keC; kes; “* /i

Now, having estimated the cluster totals, we then derive an estimator of the population total using the estimated
cluster totals and the auxiliary information available at cluster level. Define the spline model matrix X _ to
contain bases that are functions of t and define the sub matrix W, = diag jev( ) Let

&, denote the super population of clusters model. Define the semiparametric population estimator for E 5 (fl)
as
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8,28 (x.2)= 0 () +Zp (13)
and design weighted penalized spline smoother vector be
Ssi Z(XTCSVVSX cs +Aa)XcSWs (16)
while the sample smoother matrix is given by
S, =[S,.ies] (17)
Again, we have the following estimators resulting from the solution of the equations (15), (16) and (17).
~ -1 n
p=(2"8,2,+4,) Z'S i, (18)
A A ~ T 5
= (%) =St = Z° ) (19)

With ,[‘i and X, defined for everyi € U. We propose a semparametric model assisted model calibrated
estimator of population total as

Poma = D Wi, (20)

ies

with W, obtained by minimizing the chi square distance measure

(Wi_di)2
O, :Zq—d

ies iYi

@1

Subject to the constraints Z w,=N andz wg, = Z g, . Again,d, = ﬂ_li and g, are known

kes ies ieU

positive constants uncorrelated with d ;-We introduce the langrage procedure in the minimization of equation (21)

to obtain the following estimator of population total

dqi,
j>sm2 :zdl‘fi +(M_Zdi) %Tq_ﬂm +{Zgi_zdigi}ﬂm (22)
ies ies i1 ieU ies

ies

Zdiqléi Zdi%t:‘
d 5 — ics 2‘ _ des
éql | & Zdiql- l zdi%

Where ,Bm = = iis
Z d.q.8
Z q; di g i =

ies - zdz qi

ies

Z dqy, .
The term (M — Z d)q P, ¢ is again negligible so we rewrite as

ies Z diqi -

ies
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Doz = Zi+{2 g —Zi} B, (23)

i
ies i ieU ies 72-1‘
A corresponding internally calibrated estimator will therefore be
. £ N
Pz =241 28 -2 4
ies ﬂ.,' ieU ies ﬂ.,'

We now derive the variance of the population estimator (23). If the sample comprises the whole population of
clusters, then Doms = Z !;_which is the Horvtz -Thompson (HT) design based estimator and as shown

by Breidt et al (2005) [2]; 7

Varp(‘)}st) = V](Ell[j}st])—i_E] (Vll[ﬁng]) (25)
R
DN IR e 26)
ieC jeC 7[1- 7Z'j ieC 7Z'l.

Now, the variance component at the element level within a cluster is

V.=V,()= Z Z(”U/' - ﬂk/iﬂ,/l.) Vie = 8uPne Y = 8P due to the presence of the model
k1 i an

Ni . I M w 5
component {z - z d, g, } B, .When ), has the model component{z s, _Z d;é}/ﬂ >

k=1 kes,

its design variance becomes

t_A 3 tj_gjﬁm V‘»
Z Z (7[,/ —7[,7[/) : f’ﬂm - + Z (27)

ieC jeC iec T

J i

3. Asymptotic Properties
We now establish the asymptotic properties for )A/sz
3.1 Assumptions

1. We assume that there is a sequence of finite populations indexed by p each of size N » but which we
compress and write IV .

2. Asp—>owo,N,n,M,m,N,,n, — . Also, the number of knots k —> 00 while bandwidth2 — 0.

3. Foreach p,thex,, i=1,2,....,M are independent and identically distributed

F(x) = I g(t)dt where g(.)is a density with compact support [a ,b ]Jand g(x)>0 for
all xela_,b ]. The Z hasbounded support.
4. For each p, the X, are considered fixed with respect to the model & while the errors &, are
independent and have mean zero, variance var(x;,Z,) and compact support, uniformly for each p .
5. For each p, the X, are considered fixed with respect to the model &, while the errors &, are
independent and have mean zero, variance  var(x, ,Z, ) and compact support, uniformly for each p .
6. The sampling design is regular so that the inclusion probabilities are independent of response
measurements and satisfies the following conditions ;

Dmax, " = 0(1),and max T~ oq
ies M ( ) kes; Niﬂ'k/l- ( )

i
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N’ PR
by L Zgl—o (Mm ), andy, Bi 3" g =0 (N,n, ?)

ies 7T, kes, Wisi k=l

First condition says that no basic design weight is disproportionally large while the second condition is

equivalent to assuming that Horvitz Thompson estimators for Z f‘: g, and Z:ﬁl g

asymptotically normally distributed.
7. Let g, be the population fit and ? , = Zml p {Z L8~ Z T } where
sm 1 i= i= m

2 Z/l,,,q,(g, —2)i—T) 17 M
= —v 5 an = ) .
ﬂm Zi:l Ziqi(g,'*g) g i=1 gl

Under a regular sampling design (assumption 6), Avar(y,, ,)= var(f/qmz) . The variance of the

asymptotic distribution of )A/sz can therefore be consistently estimated mild assumptions.

3.2 Asymptotic Design Unbiasedness

Let E be design expectation and E : model based expectation. We need to show that E ( Vo)=Y, . We
note that ¢ is a Horvitz Thompson design estimator which is unbiased fot ¢, . Now,

) L g;
E, (Ju)=E, 12+ 7%- {Z -2 } (28)

ies ieU ies j

-5, (3 dy g 3B, @

ieU i ieU ieU i

E i1 E g1 .
= 2#4_{2 Ep] gi _Zﬁ}Emﬂmz (30)

ieU ﬂ-l' ieU ieU 77'-,'

ieU 1 ieU ieU

— {Zt— {z zg, }Eplﬂmz} (D)

Since Epl([i)=7ri and with respect to design expectation, gi is treated as a constant. Thus, we
haveZt[ =Y,.

ieU
3.3 Model Bias Reduction
ﬂAm is an estimate of the change in ¥, when g, is increased by a unit. If Z —f is below average,

we should expect the population total Y, to be below average by an amount {Z - gl - Zla %} Bm

due to regression of £, on g See Cochran (1997) [4]. Again, the estimate g need not be free from bias.
If g —t = D, so that the estimate is perfect except for a constant bias D, then with B, =1 the regression

estimate becomes
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Z—+Z Zg =g+ Zt’ Zg 32)

ies ,' ieU i€es ,‘ ieU ies ,‘ ies ,‘

=Population total estimates + adjustment for bias.
This regressmn estimate is consistent in the sense that when the sample comprises the whole population, then
= z 2 and the regression estimate reduces to Z . See Firth and Bennett (2006) [6]. Again,
estaEFshlng aCLT for Y ana » Which is a generalized difference estlmator is essentially the same as establishing a
CLT for Horvitz-Thompson estimator.

3.4 Design Consistency

Using chebycheve’s inequality and a sequence of the estimates yw2 but which we compress to -)’}me ,
We have that pr{| ., =Y, [> ¢]< E, \y\mz Ye

But since )A/mz is unbiased for Y, then the mean squared error is consistently estimated by var( )A/mz) ,

var{($ o)

so that pr[| .)’;Yst - Y; |> 8] < &2

W{ymz}
é

and lim _ pr{| E, Vo~ Y [>e]l<lim, . We see that,

Var{j}me} — Eplzitl AlﬂmZ J g]ﬂmz ij _ﬂ-iﬂ-j 1

lim 0 2 —+
e 75 7 r, &
(33)
LN v v | 1
lim E Ty, — 0, 7T, )~ b
P> plg — ;( kl/i kli’1/i ) ﬂ'k/l- 72'1/1- Szﬂ'i
M M
: i~ gﬂ 2 4 g; m2 7y — Iin
= hmp—>°0 Eplzz - 2 +
i=1 i=1 J 72'1']' &
(34)
M MU II.
lim _E IZZ(ﬂ'kN.—ﬂ'k/.ﬂ',/.)—yk IR
0 i i i 2
rrEs i Ty €78
since E, (7,)=mx,E, (m7x,)=nnx, ,E, (r)=n and E, ([1)=7,<7m7,
Therefore, lim, pr[| E,¥,,~Y[>¢]>0 Thatis, y ,—>7Y
3.5 Asymptotic Normality
Theorem 1: Let )_A;qm , beas defined in assumption 7. Then,
G, 1) =1(3, %)
M sm2 M sm2”
M SNO,1 impli ————>N(0,1
w2, ) ( > ) as O —> o0 implies that var 2 (M5 ) ( )
where
U ea(img (12 p (7 -,
-1_ A li i m2 J JI m2 y LJ
Var(M y st) = 2 Z Z
M3 Jj=1 7 T, TT
J ij (35)

Proof: We need to show that (P ,—Y;) converges to (f;sm ,—Y,) in distribution. This would imply that
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j}xmz inherits limiting distributional properties of JL;W , - This, coupled by assumption 7 would proof the above.
Now, :

ol M oA M gl M,
(yst Y)= le 7 & iﬂmZ_Zzl 7 ; Zi:lti

wd (5= e Y g f - 3 cleany
. - LN ~ I
ysmz—?mfZ(g,ﬂmz—g,ﬂmz)(l——'j (36)

i=1 7z

1

Taking limits of the expectation, we have

A M I
lim E, {32 =50} = im E, 1> (85,,~ .3 mz)(l—;’]ht} (37)

P> -1 ;

It can be seen that the design expectation of p_ ,— lesm , approaches zero since design expectation of I ism,.
This is convergence in mean which implies convergence in probability and convergence in distribution.

4. Empirical Analysis

We simulated a population of independent and identically distributed variable x using uniform (0.1) and a
categorical matrix Z . For each generated X, and vector Z, and for each mean function, N, =100 element
values were generated as follows.

g(x,Z;)

yikff

where y, is the kth element in the ith cluster and g(x,,Z,) , which we simply write g, is the mean
function for the cluster total #,. This generating function is an adaptation to semiparametric modeling of the
generating function by Montanari and Ranalli (2006) [7].

&, 11idN(0,0.1) (38)

We considered the following mean functions for auxiliary information at cluster level.

1. linear Zp'+2+5x
quadratic ZB'+(2+5x)
bump ZB'+(2+5x)+exp(=200(2 + 5x)%)
exponential Z '+ exp(—8x)
cycle 1 Zp'+sine(27x)

6. cycle 2 Zp'+sine(8xx)
For simplicity, within each cluster, the auxiliary information X, at element level was generated using the linear
and quadratic mean functions and working backward to obtain the following respective formulas.

ylk — 2’ — Zikﬂ '

Xy = f (39)

Dok wN

and

_ _2+\/yik _szﬂ'
X, = s (40)

where Z,, is the matrix(Z,,,Z,,,Z,;),Z,, isa matrix of s, Z_, is a matrix of 2s, 3s and 4s, while Z, isa
matrix of 5s,6s, and 7s. [ is the matrix (1,2,3).
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For each pair (xl. , Zl.) and mean function, R=100 replicate samples of clusters were generated. At stage one, a
sample of clusters was generated by simple random sampling with sample size m=50. At stage two, within each
of the selected clusters, sub samples of size 77, = 50 were generated by simple random sampling. Where we
used penalized splines in fitting a missing cluster element, we also used penalized splines in fitting missing
cluster totals, and similarly for local polynomial and Nadaraya Watson kernel methods. Using the estimated
cluster totals, estimates of the population total were generated. =~ We compared the performance of several
estimators;

1. Horvitz Thompson estimator, )A/hzz

2. The model calibrated model assisted semiparametric estimator ', ,,(31) that we have proposed, for
which we considered three cases based on the nonparametric method used to obtain the mean estimate.
These are; . 0,7, nip2> and Vommey for penalized splines, local polynomial and Nadaraya
Watson kernel smoothing respectively.

3. Internally calibrated model assisted semlparametrlc estimator ) reg ,,(32) for which we consider the
three cases; p2> Ve glp2 and  y, .oz TOT penalized spllnes local polynomial and Nadaraya
Watson kernel smoothing respectively.

The performance of any estimator say ycbt m Y p, ys‘mva’ yvmlpZ ’ yvman ’ yregva ’ yreglpZ ’ yregrmZ
was evaluated using its relative bias R, and relative efficiency R, defined by

R Z,I.:] (yest _Yt)

== (41)
B R*Y
where R is the replicate number of samples and
MSE
RE — (-/)\)EXZ) (42)
MSE(y,,)

where y., was calculated from the R" simulated sample.

The f/m estimator was used as the baseline comparison. Large values of relative efficiencies,(Rg > 1) represent
higher efficiency for §;,, over y., . We also carried out a Sensitivity Analysis by looking at the effects that ignoring
a variable in the categorical matrix would have on the estimators. We dropped values available at cluster level.
Same effects would be expected if an auxiliary variable at element level is dropped since the processes of
estimation at both stages are similar. We report on the observations for the case where the auxiliary information at
element level was generated from the linear function. Similar observations were made when the auxiliary
information at the element level was obtained from the quadratic function. Clearly, the results would similarly not
be different if any of the six generating functions is considered.

4.1 Bias
Table 1. Absolute Biases

5/smsp2 9smlp2 5’5mnw2 5’ht2 9regsp2 9reglp2 9regnw2
Linear 0.015 0.015 0.025 0.017 0.028 0.048 0.328
Quadratic 0.041 0.039 0.041 0.039 0.516 1.645 2.906
Bump 0.031 0.036 0.040 0.036 0.048 0.247 0.339
Exponential 0.013 0.016 0.021 0.023 0.014 0.030 0.125
Cycle 1 0.012 0.015 0.023 0.019 0.018 0.034 0.086
Cycle 2 0.012 0.010 0.015 0.022 0.017 0.013 0.028

From table (1), we observe that the biases are very small again pointing to unbiasedness for all the estimators.
Comparing each model calibrated estimator with its corresponding internally calibrated estimator, that is, ¥ smsp>
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With $repsp2, Fsmip2 With Fregip2 aNd Fsmnwz With Jregnw2, We see that model calibration results in reduced bias than
internal calibration.

4.2 Relative Mean Squared Error

Table 2. Relative Mean Squared Errors

Ysmsp2 Ysmip2 Ysmnw2 Y2 Yregsp2 Jregip2 Vregnw2
Linear 1.497 1.242 2.175 1 4.229 8.573 9.004
Quadratic 2.027 2.431 2.730 1 3.933 7.003 10.706
Bump 2.168 2.320 2.743 1 3.454 6.659 8.332
Exponential 2.213 2.630 2.691 1 2.890 5.657 8.553
Cycle 1 2.059 2.641 2.841 1 3.731 6.945 11.077
Cycle 2 2.131 2.172 2.879 1 4.259 7.456 11.321

From table (2), the model calibrated estimators Jsnep2, Jsmip2 a0d Jsmnw2 perform consistently better than the
internally calibrated estimators §regsp2, Jregip2 and Jregnwo2. The penalized spline based model calibrated estimator
Ysmsp2 performs better than the kernel based model calibrated estimators Jomp> and Jomnw2.

4.3 Bias on Sensitivity Analysis

Table 3. Bias on Removing Z;

Ysmsp2 Ysmip2 Ysmnw2 Y2 Jregsp2 Jregip2 Vregnw2
Linear 0.024 0.040 0.040 0.024 0.029 0.302 0.173
Quadratic 0.063 0.092 0.066 0.063 0.067 1.250 0.274
Bump 0.026 0.054 0.041 0.035 0.040 0.431 0.161
Exponential 0.252 0.252 0.253 0.246 0.261 0.710 0.302
Cycle 1 0.024 0.024 0.029 0.022 0.026 0.242 0.063
Cycle 2 0.021 0.022 0.031 0.022 0.028 0.155 0.152

Looking at table (3), we observe that the biases still remain very small even after the variable Z; is dropped
meaning the estimators still perform well.

4.4 Relative Mean Squared Error on Sensitivity

Table 4. Relative Mean Squared Error on Removing Z;

Ysmsp2 Ysmip2 Ysmnw2 Phe2 Pregsp2 Pregip2 Fregnw2
Linear 1.952 2214 2.897 1 5.112 15.348 19.783
Quadratic 2.017 4911 5.525 1 5.892 14.006 16.786
Bump 2.022 2.889 3.312 1 4.021 14.134 18.532
Exponential 2.112 2.634 2.992 1 4.289 13.129 19.245
Cycle 1 1.992 2.745 3.429 1 3.987 15.164 18.923
Cycle 2 2.194 3.004 4.101 1 4.934 17.356 19.912
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Comparing results of table (2) and table (4), we observe that there is no much change in the efficiency of the model
calibrated estimators when Z; is dropped. This illustrates the robustness of the model calibrated estimators. For the
internally calibrated estimators, there is a noticeable loss of efficiency when Z; is dropped.

5. Conclusion

It has been observed that the model calibrated estimators perform better than their corresponding internally
calibrated estimators. When penalized splines are used to fit the missing values, the estimators performs well than
when local polynomial or Nadaraya Watson smoothing are used. The biases are quite small for all the estimators.
It is clear that even the internally calibrated estimators are still reliable.

When some of the categorical variables are not considered in estimation, the model calibrated estimators are found
to be more robust than the internally calibrated estimators. In a real world problem where we may not have, or may
not be sure that we have all the relevant auxiliary information about a variable, model calibrated estimators would
therefore be the estimators of choice.

It is observed that even though using penalized splines results in a more efficient model calibrated or internally
calibrated estimator than when kernel based methods are used, an internally calibrated estimator that uses
penalized splines is less efficient than a model calibrated estimator that uses kernel based method to fit missing
values. Thus, to model calibrate or not is more significant question than the choice of the nonparametric method to
use to fit the missing values.

We have shown that in cases where some elements within clusters are unreachable but auxiliary information is
available at element level, we can take advantage of this auxiliary information to obtain cluster totals, which are
then used in the estimation of population total. We note if there is a possibility that some clusters may be
unreachable, it means there is also the possibility that some cluster elements may be unreachable.
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