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Abstract 

Supersaturated designs are fractional factorial designs that have too few runs to allow the estimation of the main 

effects of all the factors in the experiment. There has been a great deal of interest in the development of these 

designs for factor screening in recent years. A review of supersaturated design is presented, including criteria for 

design selection, with reference to the popular E(s
2
) criterion and classical methods for constructing 

supersaturated designs. Classical methods have been suggested for the analysis of data from supersaturated 

designs and these are critically reviewed and illustrated.  
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1.0 Introduction 

 

All factor screening designs are intended for situations in which there are too many factors to study in detail. If 

the number of factors is very large and/or each experimental run is very expensive, then it may be impractical to 

use even the Resolution III two-level designs, which allow all main effects to be estimated. In such cases, it 

might be useful to run experiments with fewer runs than there are factors to try to identify a small number of 

factors that appear to have dominant effects.  

A supersaturated design is a design for which there are fewer runs than effects to be estimated in a proposed 

model. Usually the term “supersaturated” is used more specifically for a design for which there are insufficient 

degrees of freedom for estimating the main effects only, that is, for designs with n runs where estimating the 

main effects would require more than n −1 degrees of freedom. 

The use of screening designs of the restricted type are investigated. In the early literature on the subject, and 

often today, the term was used still more specifically for a design with n runs in which there are more than n −1 

two-level factors. The discussion here concentrates on these two-level designs and their use in factor screening. 

For recent work on factors with more than two levels, see Lu et al. (2003).  

 

Supersaturated designs have their roots in random balance experimentation, which was briefly popular in 

industry in the 1950s,until the discussion of the papers by Satterthwaite (1959) and Budne (1959). In these 

experiments, the combinations of the factor levels are chosen at random, subject to having equal numbers of runs 

at each level of each factor, and they can include more factors than there are runs. Box (1959) suggested that the 

latter idea was worth pursuing in the context of designed experiments. However, the idea of random balance 

itself was totally refuted as a useful way of running experiments and has rarely been seen since. Booth and Cox 

(1962) presented the first supersaturated designs, but no more work on the subject was published for more than 

30 years. The papers by Lin (1993) and Wu (1993) sparked a renewed interest in the subject. Since then there 

has been a large and increasing number of papers published in the statistical literature, mostly on methods of 

constructing supersaturated designs. It is less clear how much they are being used in practice. There appear to be 

no published case studies featuring the use of supersaturated designs, although the most likely area for their 

application is in early discovery experiments which are unlikely to be sent for publication. In my own view, 

industrial statisticians are reluctant to recommend supersaturated designs because there are no successful case 

studies in the literature, but the difficulties in interpreting the data might also be a deterrent. This paper reviews 

the recent work on supersaturated designs in factor screening, concentrating on methods of obtaining designs and 

analytical methods that are most likely use in practice.  

 

2.0 E(s
2
)-Optimal Designs 

 

We assume that each factor has two levels, coded +1 and −1, often written as "+" and " - ". As in almost all of 

the literature, we assume that each factor is observed at each level an equal number of times, although Allen and 

Bernshteyn (2003) recently relaxed this assumption. 

 

2.1 Criteria of Optimality 

 

Consider the “main effects only” model, 
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where Y is a response variable, β0,β1,...,βf are unknown parameters, x1,...,xf are the coded levels of the f factors, 

  is an error term with E(  ) = 0 and V( ) = 
2 , and error terms are independent. The model in matrix 

notation is 

 

)2.(......................................................................  XY  

 

 

 

  TABLE   1. Designs for 14 factors in 8 runs. 

Factors 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

+ + + + + + + + + + + + + + 

- - + + - - + + - - + + - - 

- + - - + - + + - + - - + - 

+ - - - - + + + + - - - - + 

- + - + - + - - + - + - + - 

+ - - + + - - - - + + - - + 

+ + + - - - - - - - - + + + 

- - + - + + - - + + - + - - 

 

In a supersaturated design, even for this main effects only model, the matrix X'X is non singular, where ' denotes 

transpose, and so no unique least squares estimates of the parameters β can be obtained. Consider, for example, 

the small supersaturated design shown in Table 1. This has 
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The diagonal elements of this matrix are fixed by the number of runs. Best of all is when the off-diagonal 

elements are all zero, in which case all main effects are estimated independently. It is, of course, impossible to 

get an X'X matrix for 14 factors in 8 runs with rank greater than 8. However, these considerations suggest that a 

good design will be one that makes the off-diagonal elements as small as possible (in absolute value). Letting the 

(i, j)
th

 element of X'X be sij, Booth and Cox (1962) suggested two criteria based on the sizes of the sij. The first  

criterion they used was to choose a design with minimum ,max ijji S  and among all such designs to choose 

one with the fewest sij that achieves this maximum. 

 

The second suggestion of Booth and Cox was to choose a design that minimizes 
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This has become the most commonly used criterion in the literature on supersaturated designs. Sometimes these 

two criteria are combined, for example, by choosing a supersaturated design that minimizes E(s
2
) subject to 

some upper bound on .max ijji S
 Cheng and Tang (2001) gave upper bounds on the number of factors that 

could be included in a supersaturated design subject to ,max cS ijji  where c is a constant.  

Booth and Cox (1962) gave two other interpretations of E(s
2
). They showed that if there are only p important 

factors and their main effects are so large that they can be easily identified, then the average variance of their 

estimated main effects is approximately 
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Thus, an E(s
2
)-optimal design also minimizes this quantity. As p becomes larger, this approximation becomes 

poorer and the assumption that the large effects can be identified becomes less plausible, so it is most relevant 

for p = 2 and perhaps p = 3. Wu (1993) showed that E(s
2
)-optimal designs also maximize the average D-

efficiency over all models with just two main effects.  

The second interpretation of E(s
2
) arises from considering the estimation of the main effect of a single factor Xj, 

for example if only one factor appears to have a very large effect. The simple linear regression estimate of β j 

from the model  
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and is based on the assumption that all other factors will have zero effects. If, in fact, all other factors have 

effects of magnitude 2δ, with their directions being chosen at random, then the true variance of the single 

estimated main effect is not σ
2
/n, but 
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Cheng et al. (2002) showed that supersaturated designs with a property called “minimum G2-aberration” are 

E(s
2
)-optimal and suggested that G2-aberration might be a useful criterion for supersaturated designs. Liu and 

Hickernall (2002) showed that E(s
2
) is similar, but not identical, to a form of discrepancy, that is, a measure of 

how far the points of the design are from being uniformly distributed in the factor space. They also showed that, 

under certain conditions, the most uniform designs are E(s
2
)-optimal. It is unknown how the concept of 

discrepancy is related to the statistical properties of the designs. A different criterion was used by Allen and 

Bernshteyn (2003) to construct supersaturated designs. A prior probabilities of factors being active (having non 

negligible effects) and inactive (having negligible effects) and then searched for designs that maximize the 

probability of correctly selecting the active factors. In all of the examples they studied, they found that designs 

which optimize this criterion are also E(s
2
)-optimal, but that the converse is not true. This suggests that they 

could restrict their search for designs to the class of E(s
2
)-optimal designs. Other criteria have been suggested, 

but rarely used, for constructing supersaturated designs, although they are sometimes used for comparing 

different E(s
2
)- optimal designs. One of these is to minimize the average D- or A- efficiency over all submodels 

with p factors, 2 ≤ p < f (Wu, 1993; Liu and Dean, 2004). Deng et al. (1996) suggested using the multiple 

regression of a column in the design on p −1 other columns. The regression sum of squares then gives a measure 

of the nonorthogonality of this column to the others. The average of this regression sum of squares over all sets 

of columns can be used as a criterion for comparing designs, although the computation of this criterion is a major 

task in itself. Deng et al. (1999) defined the resolution-rank of a supersaturated design as the maximum p such 

that any p columns of the design are linearly independent. They suggested maximizing the resolution-rank, 

although again the computation of this criterion is prohibitive for large f. Holcomb and Carlyle (2002) suggested 
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using the ratio of the largest eigenvalue of X'X and the smallest nonzero eigenvalue and stated that this was 

related to A-efficiency. None of these criteria have been studied further. 

 

In order to know whether a given design is optimal, it is helpful to have lower bounds on E(s
2
). Increasingly 

tight, or more widely applicable, bounds have been given by Nguyen (1996), Tang and Wu (1997), Liu and 

Zhang (2000a,b), Butler et al. (2001), and Bulutoglu and Cheng (2004). The bounds of Bulutoglu and Cheng 

cover all cases with n even and with each factor having two levels with n/2 runs at each level, that is, all of the 

cases we are considering here. These results allow us to identify many E(s
2
)-optimal supersaturated designs. 

 

3.0 Data Analysis 

 

Standard methods for analyzing data from fractional factorial designs cannot be used with data from 

supersaturated designs, because the least squares estimates are not unique and, given any reasonable 

assumptions, there is no way to estimate all the main effects simultaneously. Several methods of analysis have 

been suggested in the literature and are discussed in the context of data from half of an experiment reported by 

Williams (1968) and analyzed by several authors.  

Twenty-three factors were varied in 28 runs and one continuous response was observed. The half-fraction 

analyzed by Lin (1993) is shown in Table 2, which incorporates the corrections noted by Box and Draper (1987) 

and Abraham et al. (1999). Most methods of analysis assume that the objective is to identify a few active factors, 

those with non-negligible main effects, to separate them from the inactive factors, those with negligible main 

effects. 

 

Table   2:  Design and data for half-replicate of Williams' experiment 

                        

                        

                                                          Factors Respons

e 

1 2 3 4 5 6 7 8 9 1

0 

1

1 

1

2 

1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

2

0 

2

1 

2

2 

23 Y 

+ + + - - - + + + + + - + - - + - - + - - - + 133 

+ - - - - - + + + - - - + + + - + - - + + - - 62 

+ + - + + - - - - + - + + + + + - - - - + + - 45 

+ + - + - + - - - + + - + - + - + + + - - - - 52 

- - + + + + - + + - - - + - + + - - + - + + + 56 

- - + + + + + - + + + - - + + + + + + + + - - 47 

- - - - + - - + - + - + + + - + + + + + - - + 88 

- + + - - + - + - + - - - - - - - + - + + + - 193 

- - - - - + + - - - + + - - + + + - - - - + + 32 

+ + + + - + + + - - - + - + + + - + - + - - + 53 

- + - + + - - + + - + - - + - - + + - - - + + 276 

+ - - - + + + - + + + + + - - - - + - + + + + 145 

+ + + + + - + - + - - + - - - - + - + + - + - 130 

- - + - - - - - - - + + - + - - - - + - + - - 127 

 

 

3.1 Least Squares Estimation Methods 

 

Most often data analysis techniques are borrowed from regression analysis. Satterthwaite (1959)  suggested a 

graphical method that is essentially equivalent to producing the least squares estimates from each simple linear 

regression. For example, in the data in Table 2, the effect of factor 1 is estimated by fitting Yi = β0 +β1x1i +ei and 

so on, giving the results in Table 3. Chen and Lin (1998) showed that, if there is a single active factor with true 

magnitude greater than σ and if all other factors have exactly zero effect, then this procedure gives a high 

probability of the active factor having the largest estimated main effect. Lin (1995) suggested plotting these 

simple linear regression estimates on normal probability paper, although the lack of orthogonality makes the 

interpretation of such a plot difficult. Kelly and Voelkel (2000) showed that the probabilities of type-II errors 

resulting from this method are very high and recommended instead that all sub-sets selection be used, which 

involves fitting all estimable sub models of the main effects model. Holcomb et al. (2003) studied the method of 

using the simple linear regression estimates in more detail. They described it as a contrast-based method 

obtained by using X'Y from the full model, but these are the simple linear regression estimates multiplied by n. 
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They tried several procedures for separating the active from the inactive factors based on these estimates. In a 

large simulation study they found that resampling methods to control the type-II error rate worked best and better 

than stepwise selection. However, they also concluded that none of the methods worked very well. Lin (1993) 

suggested using stepwise variable selection and Wu (1993) suggested forward selection or all (estimable) subsets 

selection. Lin (1993) gave an illustrative analysis by stepwise selection of the data in Table 2. He found that this 

identified  factors 15,12,19,4,and10 as the active factors, when their main effects are entered into the model in 

this order. Wang (1995) analyzed the other half of the Williams experiment and identified only one of the five 

factors that Lin had identified as being non negligible, namely, factor 4. Abraham et al. (1999) studied forward 

selection and all subsets selection in detail. They showed, by simulating data from several different experiments, 

that the factors identified as active could change completely if a different fraction was used and that neither of 

these methods could reliably find three factors which have large effects. However, they concluded that all 

subsets selection is better than forward selection. Kelly and Voelkel (2000) showed more generally that the 

probabilities of type-II errors from stepwise regression are high. The first paper to concentrate on the analysis of 

data from supersaturated designs was by Westfall et al. (1998).  

They suggested using forward selection with adjusted p-values to control the type-I error rate. They showed how 

to obtain good approximations to the true p-values using resampling methods, but concluded that control of type-

I and type-II errors in supersaturated designs is fundamentally a difficult problem. Applying their adjusted p-

values to the data in Table 2, they found that only the effect of factor 15 is significantly different from zero. 

 

 

 

Table 3. Estimates of main effects obtained from the data of Table 3 using linear regressions 

Factors 1 2 3 4 5 6 7 8 9 10 11 12 

Effect -14.2 23.2 2.8 -8.6 9.6 -20.2 -16.8 20.2 18.5 -2.4 13.2 -14.2 

 

Factor 

 

13 

 

14 

 

15 

 

16 

 

17 

 

18 

 

19 

 

20 

 

21 

 

22 

 

23 

 

Effect -19.8 -3.1 -53.2 -37.9 -4.6 19.2 -12.4 -0.2 -6.4 22.5 9.1  

 

 

3.2 Biased Estimation Methods 

 

The methods described above all use ordinary least squares to fit several different sub models of the main effects 

model. Biased estimation methods attempt to fit the full main effects model by using modifications of the least 

squares method. Lin (1995) suggested using ridge regression, that is, replacing X'X with X'X +λI for some λ and 

then inverting this matrix instead of X'X in the least squares equations. However, he reported that ridge 

regression seems to perform poorly when the number of factors, f, is considerably greater than the number of 

runs, n. 

Li and Lin (2002) used a form of penalized least squares with the smoothly clipped absolute deviation penalty 

proposed by Fan and Li (2001). This method estimates the parameters, β, by minimizing not the usual residual 

sum of squares, but 
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where the penalty, φ(βj), shrinks small estimated effects towards zero. It is defined by its first derivative, 
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and φ(0) = 0, where I(·) is an indicator function and λ is a tuning constant chosen from the data by cross-

validation. Li and Lin also showed that a good approximation to this method is given by iterated ridge 

regression. They showed that this method greatly outperformed stepwise variable selection in terms of finding 

the true model from simulated data. In the data set considered here, it identified 15, 12, 19, and 4 as the active 

factors.  
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Comparing the results from different methods of analyzing the data in Table 2, it can be seen that they generally 

agree on the ordering of effects, namely, 15, 12, 19, 4, and 10, but that they lead to different decisions about 

which factors should be declared active and which should not. 

 

3.3 Recommendations and Future Research 

 

Several methods for analyzing data from supersaturated designs have been proposed, but none of them seem 

very convincing. Designs are usually built to optimize the E(s
2
) criterion, but this appears to be unrelated to the 

way in which the data are analyzed. The potential user of supersaturated designs needs to know the answers to 

three questions. 

 

1. Should supersaturated designs ever be used? If so, in what circumstances? If not, what should be used instead?  

 

2. How should data from supersaturated designs be analyzed and interpreted?  

3. How should supersaturated designs be constructed? 
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