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Abstract

The present study is concerned with the estimation of shape parameter of Kumaraswamy Distribution using
various Bayesian approximation techniques like normal approximation, Lindley’s Approximation, Tierney and
Kadane (T-K) Approximation. Different informative and non-informative priors are used to obtain the Baye’s
estimate of parameter of Kumaraswamy Distributions under different approximation techniques. For comparing
the efficiency of the obtained results a simulation study is carried out using R-software.
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1. Introduction:

Kumaraswamy (1980) developed a general probability density function for double bounded random
processes, which is known as Kumaraswamy’s distribution. This distribution is applicable to many natural
phenomena whose outcomes have lower and upper bounds, such as the heights of individuals, scores obtained on
a test, atmospheric temperatures, hydrological data, etc. The probability distribution function and the cumulative
distribution function of Kumaraswamy distribution is given as

f(x:m:7)=ny X" A-x7)""  0<x<1; (1.1)
F(x)=1-(1-x")""

where 77,7 > Qare the shape parameters of the distribution. The pdf of kumaraswamy distribution can be

unimodal, increasing, decreasing or constant, depending on the values of the parameters. The Kumaraswamy
distribution is very similar to the Beta distribution, but has the important advantage of an invertible closed form
cumulative distribution function. Nadarajah (2008) has pointed out that Kumaraswamy’s distribution is a special
case of the three parameter beta distribution. Jones (2009) explored the genesis of the Kumraswamy distribution
and made some similarities and differences between the beta and Kumaraswamy distributions. It has many of the
same properties as the beta distribution but has some advantages in terms of tractability. Sundar and Subbiah
(1989), Fletcher and Ponnambalam (1996), Seifi et al. (2000), Ponnambalam et al. (2001) considered this
distribution for interests in hydrology and related areas.

Gholizadeh et al. (2011a, 2011b) studied classical and Bayesian estimators of the kumaraswamy
distribution using grouped and un-grouped data, also studied Bayesian and non-Bayesian estimators for the
shape parameter, reliability and failure rate functions of the Kumaraswamy distribution in the cases of
progressively type Il censored samples. Mostafa et al. (2014) produced a study in Estimation for parameters of
the Kumaraswamy distribution based on general progressive type Il censoring. These estimates are derived using
the maximum likelihood and Bayesian approaches. Mustafa et al. (2012a, 2012b) reviewed some results that
have been derived on record values for based on m records from Kumaraswamy’s distribution and derived
estimators for the two parameters using the maximum likelihood and Bayesian approaches and also studied
classical and Bayesian estimation of P(Y < X) for it.
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The kumaraswamy distribution has not been discussed in detail under the Bayesian approach. Our
present study aims to obtain the Bayesian estimators for the shape parameter of the kumaraswamy distribution
based on Bayesian approximation techniques. A simulation study has also been conducted along with concluding
remarks.

2. Normal Approximation:
If the posterior distribution P(7/| x) is unimodal and roughly symmetric, it is convenient to
approximate it by a normal distribution centered at the mode, yielding the approximation
A T (AL
P %)~ NG
2
_0%logP(r|y)

oy?

If the mode, 7 is in the interior parameter space, then I(}/) is positive; if 7 is a vector parameter, then I(;/)
is a matrix.

Some good sources on the topic is provided by Ahmad et.al (2007, 2011) discussed Bayesian analysis
of exponential distribution and gamma distribution using normal and Laplace approximations. Sultan et al.
(2015) obtained the Baye’s estimates under different informative and non-informative priors of shape parameter
of Topp-Leone Distribution using Bayesian approximation techniques

In our study the normal approximations of kumaraswamy distribution under different priors is be obtained

as under:
The likelihood function of (1.1) for a sample of size n is given as

where 1(7)= (2.1)

Y e
L(x|7)ec(y)'e i (22)

Under Jeffrey’s prior §()) oc 1/ ¥, the posterior distribution for 7 is as

n
P(y|x)ocy" e where T = —Z In(L—x7) (2.3)
i=1
Log posterior is In P(y | x) =Inconstant+ (n—-1)Iny — T
The first derivative is
OInP(y|x) n-1

oy /4

-T

. nh-1
from which the posterior mode is obtained as y = ——

The second derivative of the log-posterior density is given as

o’InP(y|x)  n-1

8y2 72
2 2 _
Therefore, negative of Hessian () = — o”In ngl ) _T =[] = n 21
oy n-1 T
Thus, the posterior distribution can be approximated as
n-1n-1

P(y|x)~N| —; 2.4
(7 [%) [ T T j (2.4)
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1
Under modified Jeffrey’s prior g (y) oc | the posterior distribution for y is as
VY
P(y|x)ocy" 27T 2.5)
Log posterior In P(y | X) =Inconstant+ (n—3/2)Iny —»T

The first derivative is
oInP(y[x) _n-3/2

oy /4

T

n-3/2

T
The second derivative of the log-posterior density is given as

from which the posterior mode is obtained as 7 =

o*InP(y|x)  n-3/2
oy* y?

_°InP(y|x) n-3/2  T?
8;/2 792 n-3/2

Therefore, negative of Hessian | (Ay) =

1) =”‘T—‘°;’2

Thus, the posterior distribution can be approximated as
n-3/2. n—3/2]

P(ﬁ|x)~N[ 312,03

(2.6)

Under gamma prior g(y) o % e™ : a,b>0;7 >0 where a, b are the known hyper parameters. The
posterior distribution for y is as

P(y|x) oc y"o e 7 ™) @.7)
Log posterior is In P(y | x) =Inconstant+ (n+a—-1)Iny —y(b+T)

The first derivative is
OInP(y|x) n+a-1

oy

—(b+T)

n+a-1

.. posteriormode 7 =
P YT b+T)

The second order derivative of the log posterior density is given as

’InP(y|x)  n+a-1

oy? y°
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0% InP(y[X) _ [T +b]°

Therefore negative of Hessian 1 (7) =
oy? n+a-1

w11 h+a-1
(7] i

Thus, the posterior distribution can be approximated as

n+a-1 n+a-1
P(7|X)~N£ ; J

; (2.8)
T+b [T +b]

_rr
Under the Inverse Levy prior §(y) o }/_1/2 e 2;r>0;y>0, whereris the known hyper parameter, thus
the posterior distribution for y is as

r
n-1/2,, 77 (T+3)

P(y|x) o<y e (2.9)

Log posterior is In P(y | X) = In constant + (n — %) Iny — 7(T + %)

The first derivative is
olnP(y[x) _n-1/2 —(T +£j
oy ¥ 2

n-1/2

.. posteriormode ﬁ:m
+

The second order derivative of the log posterior density is given as

o*InP(y|x)  n-1/2

oy? y°

_?InPIx) [T+r/2f
8y2 n-1/2

Therefore negative of Hessian 1 (7) =

n-1/2

)™ =m

Thus, the posterior distribution can be approximated as

P(LIX) ~ N n—1/2; n—1/22
T+r/2 [T +r/2]

3. Lindley’s Approximation:

(2.10)

Sometimes, the integrals appearing in Bayesian estimation can’t be reduced to closed form and it becomes
tedious to evaluate of the posterior expectation for obtaining the Baye’s estimators. Thus, we propose the use of
Lindley’s approximation method (1980) for obtaining Baye’s estimates. Lindley developed an asymptotic
approximation to the ratio
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J' h(y)et Vg,
| =2 (3.1)

J’ LU () dy

where ¥ = (71,...., ¥m ), L(¥) is the logarithmic of likelihood function, h () & U (y) are arbitrary functions
of ¥ &Q represents the space range of 7. Thus | = E{h ()| X} can be evaluated as

l=h(P)+= [hz(y)+2h MU' 4% += [Lg(y)h M](4%)? (3.2)

In particular, if h(y)=6;h'(y)=1;h"(y)=0
Thus E(7|%) =7+ (U (7))§* + @ L (f)j(&z)z @3)

where ¢% = (-L, (7)) 1 U(») =Ing(»)

Thus, for Kumaraswamy Distribution Lindley’s approximation for shape parameter ) under Jeffrey’s prior,
modified Jeffrey’s prior, gamma prior and inverse levy prior can be obtained as

.. N :
From (2.2) ¥ 3 where T = —Z In(L—x")

i=1

azln(;/|x)__1 -T2 (7) = °In(y|x) _2n_21°
87/2 7/2 8]/ }/3 n2

L, (7) =

Under Jeffrey’s prior () oc1/ 7, U(y)=—Iny;U'(y) =-T In

Ifh(y)=0;h"(y)=1;h"(»)=0

Thus Lindley’s approximation for y from (4.3) is obtained as

n n
E(7IX)=7=; (3.4)

1
Under the extension of Jeffrey’s prior g () oc
I}/?:
3 o —3T
U =Ing(y)=-5InyU'()=—"

Thus Lindley’s approximation for y from (4.3) is obtained as
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2n-1
E(y1x)= (3.5)
2T

Under gamma prior g(y) oc ;/afle*by ; a,b>0; 7 >0 where a, b are the known hyper parameters.

U()=Ing(y)=-by +(a-1 |n7:U'(77)=—b+(a—1)%

n+a bn
- (3.6)

Thus E X) =
(r1x) T T2

_rr
Under inverse levy prior g(y) oc 7_1/2 e 2;r>0; y >0, where r is the known hyper parameter

—Iny yr T r
(7)=Ing(y) 5 5 () T
2n+1 rn
Thus E(y|x) = - 37
us E( 1) == p— (3.7)

4. T-K Approximation:

Laplace’s method uses asymptotic arguments in the development of new simulation techniques. From (4.2)
it may be observed that Lindley’s approximation requires evaluation of third order partial derivatives of
likelihood function which may be cumbersome to compute when the parameter y is a vector valued parameter.

Tierney and Kadane (1986) gave Laplace method to evaluate E(h(4) | X)as
3" exp{-nh" (7"
E(h() [ =2 20T ()}
¢ exp{-nh(y)}
where—Nh(P)=INP(¥|X); —nh" ) =InPx|x)+Inh();
7 w1 42 wx o axy [FL
§7 =-f-nh () =-Lnh )

Thus, for Topp-Leone Distribution Laplace approximation for shape parameter » can be calculated as

(4.1)

Under uniform prior §(y) oc1/ y , the posterior distribution for ¥ is given in (2.3)

—nh()=(-DIny-Ty;-nh()=""1-T = ?:nT—l
y

TZ

n-1

Also —nh"(y)=-

Jn-1

T

Therefore ¢ = —[— nh" (79)]_1 = n_l__zl or ¢=

now —nh (3" )=-nh()+Inh()=(N)Iny —»'T
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«, %N = N
b ()= -T 25720
y T
T? Jn

Also —nh"" (}9*) = 3¢?* S
n T

Thus using (4.1) we have

(n)"?  ep{(m)in7" -7T} z( n J AR
(h-1"? ep{(n-HYInp-7T} (n-1) "

n-1 n n+l/2
=_(_} et (42)
T \n-1

E(A|X) =

A

¢ ep{-nh ()}
¢ ep{-nh(?)}’

n+1/2
E(2|X) = (E—J_rﬂ (n+H -1 ”T)(Z” V-2

Similarly E(y? | x) = here —nh™ (") =log(y?) —nh(y)

2
. n+0\""? (n+)(n-1) , |[(n+1)(n+1\""?
.. Variance =| —— —e || — || — e
(n—lj T? ( T J( n j

1
Under extension of Jeffrey’s prior g(y) oc [—} , the posterior distribution for 7 is given in (2.5)

\/7/73

2 1/2
Ao " (7) =—— S RUIL

now —nh (3" )=-nh()+Inh()=("-1/2)Iny" —»'T

() = n—1/2 T oo n-1/2
/4
- 2 w (n-1/2)"?
d—nh" (y )=- =>¢ =—_—F—
o )=y =Y T
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Thus E(7 | X) :(n ‘1/2j exp{(n-1/2)Iny -7 T} :(n —1/2)“2 Pk T
n-3/2 exp{(n-3/2)Iny —yT} n-3/2 pn-si2
_ |(n=3/2)° (n—llz}”“’zi )
n-1/2 \n-3/2 T '

n +1/2j“+“2 J+1/2)(n-3/2)° -2

Further E(y? | X) =
urther E(y“ | X) [n—3/2 12

2
n+1/2)”+1/2 Jn+112)(n-3/2)° { (n-3/2) (n—llzjmmi}

Variance:(
n-3/2 T2 n-1/2 (n-3/2 T

Under Gamma prior g () oc 72 ; a,b>0; y > 0; the posterior distribution for y isgivenin (2.7)

-'-—nh(7)=(n+a—l)ln7/—7/(T+b);_nh,(7)2n+a—1_(_|_+b)
:>A_n+a—1
= (T +Db)
= TR 5 (nra-y
oM = ety T e
now —nh*(>")=-nh()+Inh(z) =(+a)Iny" —(T +b)y"
s (n+a) .+ (n+a)
nh"(y )= - (T+b) -7 b
Lo (MDY  (n+a)t?
oMU T T e
Thus E(Mx):[ n+a j“z op{(n-+a)n7” 7" (T +b}
n+a-1) exp{(n+a-)Iny-y(T +b)}
(n+a_lj( n+a jn+a1/2 B
i ° (4.4)
T+b n+a-1
n+a+1/2
Further E(yz|x)=(”+a+1)(n+a—l)(n+a+1j J2
(b+T) n+a-1
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2
1/2 -1/2
. (n+a)?-1(n+a+1\""""" n+a-1) n+a "7
.. Variance = 5 e — e
(b+T) n+a-1 T+b n+a-1
yr

Under inverse levy prior g () oc }/_1/2 e 2 ;7 >0; 7 >0 the posterior distribution for 7 is given in (2.9)

.-,—nh(7/)=—(T+r/2);/+(n—1/2)ln;/;—nh'(y):w_(-r+r/2)
:yzw
(T+rl/2)
2 1/2
also—nh"(j?)z_m :&:M
(n-1/2) T+r/2)
now—nh (") =-nh(G)+Inh() =(+1/2)Iny" (T +r/2)y"
= () =D gy gr o (n+1/2)
¥ T+r/2)
2 1/2
atso —nh” (77 =D g (01/2) ©
(n+1/2) (T+r/2)
1/2 o x
Therefore E(y | X) :(n+1/2j exp{(n+1/2) [n a +7 (T+r/2}
n-1/2 ep{niny +7(T +r/2)}
n+1l n+1/2 e—l
= n+1/2)(n-1/2) ————— 45
(n—1/2] 212012 (49)
n+3/2P%(n-1/2 n+1/2
Also E(;/2|x):\/( + ) ( : )(n+3/2j o2
(T+r/2) n-1/2
. 6_2 3 n+3/2 n+1/2 n+1 2n+1
- Variance = —————| y/(n+3/2)"(n -1/2 - n+1/2)(n-1/2
(TH,Z){J( +312)%( )(n_mj (n_mj (M +1/2)(n-1/2)

Simulation study:

In our simulation study we have generated a sample of sizes n=25, 50, 100 to observe the effect of
small, medium, and large samples on the estimators. The results are replicated 5000 times and the average of the
results has been presented in the tables. To examine the performance of Bayesian estimates for shape parameter
of kumaraswamy distribution under different approximation techniques, estimates are presented along with
posterior standard deviation and MSE in case of Lindley’s approximation given in parenthesis in the below
tables.
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Tablel:

Posterior estimates and
approximation:

posterior standard deviation (in parenthesis) under normal

,.. | Modified Gamma prior Inverse levy prior
n Y Jeffrey’s Jeffrey’s
prior prior al=bl=1 | al=bl=2 | al=b1=3 r=1 r=2 r=3

05 0.47631 | 0.46639 0.4865 0.4963 0.5057 0.4767 0.4676 0.4589
) (0.09722) | (0.09620) | (0.09730) | (0.09733) | (0.09732) | (0.09632) | (0.09448) | (0.09271)

25 10 0.9480 0.9283 0.9501 0.9518 0.9535 0.9310 0.8969 0.8652
) (0.19352) | (0.19149) | (0.19001) | (0.18667) | (0.18351) | (0.18810) | (0.18121) | (0.17481)

15 1.3228 1.2952 1.3059 1.2907 1.27702 1.2798 1.2163 1.1587
' (0.27002) | (0.26719) | (0.26119) | (0.25314) | (0.24576) | (0.25856) | (0.24573) | (0.23410)

05 0.6085 0.6023 0.6133 0.6180 0.6226 0.6072 0.5998 0.5926
' (0.08693) | (0.08649) | (0.08674) | (0.08654) | (0.08634) | (0.08630) | (0.08526) | (0.08424)

50 10 1.1862 1.1741 1.1818 1.1776 1.1736 1.1700 1.1430 1.1272
' (0.16946) | (0.16859) | (0.16713) | (0.16490) | (0.16275) | (0.16629) | (0.16245) | (0.15879)

15 1.1762 1.1752 1.1718 1.1686 1.1670 1.1670 1.1489 1.1172
' (0.16946) | (0.16859) | (0.16713) | (0.16490) | (0.16275) | (0.16629) | (0.16245) | (0.15879)

05 0.5060 0.5035 0.5085 0.5110 0.5135 0.5060 0.5034 0.5009
' (0.05086) | (0.05073) | (0.05085) | (0.05085) | (0.05084) | (0.05073) | (0.05047) | (0.05022)

100 | 10 1.1802 1.1742 1.1780 1.1760 1.1739 1.1722 1.1585 1.1452
| (0.11861) | (0.11831) | (0.11780) | (0.11701) | (0.11624) | (0.11751) | (0.11614) | (0.11480)

15 1.2474 1.2411 1.2443 1.2413 1.2384 1.2381 1.2228 1.2080
) (0.12536) | (0.12505) | (0.12443) | (0.12351) | (0.12262) | (0.12412) | (0.12259) | (0.12110)

Table2: Posterior estimates and MSE under Lindley’s approximation:

,. | Modified Gamma prior Inverse levy prior
n 4 Jeffr.'ey s Jeffrey’s
prior prior al=bl=1 | al=bl=2 | al=b1=3 r=1 r=2 r=3

05 0.4961 0.4862 0.5061 0.5161 0.5261 0.5012 0.4962 0.4913
' (0.00987) | (0.00999) | (0.00983) | (0.01005) | (0.01053) | (0.00981) | (0.00986) | (0.00992)

25 10 0.9875 0.9678 0.9881 0.9885 0.9890 0.9878 0.9683 0.9488
' (0.03917) | (0.04005) | (0.03916) | (0.03915) | (0.03914) | (0.03916) | (0.03902) | (0.03864)

15 1.3779 1.3503 1.3571 1.3362 1.3154 1.3675 1.3295 1.2915
' (0.09080) | (0.09831) | (0.09631) | (0.10273) | (0.10997) | (0.09315) | (0.00874) | (0.00865)

05 0.6209 0.6147 0.6256 0.6304 0.6351 0.6233 0.6194 0.6156
' (0.02231) | (0.02085) | (0.02347) | (0.02470) | (0.02595) | (0.02290) | (0.02195) | (0.02106)

50 10 1.2104 1.1983 1.2053 1.2002 1.1951 1.2079 1.1932 1.1785
' (0.07356) | (0.06862) | (0.07144) | (0.06938) | (0.06736) | (0.07252) | (0.06662) | (0.06116)

15 1.8048 1.7868 1.7758 1.7467 1.7177 1.7903 1.7577 1.7252
' (0.15800) | (0.14735) | (0.14226) | (0.12596) | (0.11249) | (0.14137) | (0.12150) | (0.11181)

05 0.5111 0.5086 0.5136 0.5161 0.5186 0.5124 0.5111 0.5098
' (0.00272) | (0.00269) | (0.00278) | (0.00285) | (0.00294) | (0.00271) | (0.00272) | (0.00267)

100 10 1.1921 1.1961 1.1898 1.1875 1.1852 1.1909 1.1838 1.1767
' (0.05110) | (0.05093) | (0.05022) | (0.04935) | (0.04849) | (0.05064) | (0.18298) | (0.04542)

15 1.2600 1.2557 1.2567 1.2534 1.2501 1.2537 1.2504 1.2425
' (0.07340) | (0.07548) | (0.07549) | (0.07661) | (0.07825) | (0.07546) | (0.07481) | (0.07210)
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Table3: Posterior estimates and posterior standard deviation (in parenthesis) under T-K approximation:

,.. | Modified Gamma prior Inverse levy prior
n Y Jeffrey’s Jeffrey’s
prior prior al=bl=1 | al=bl=2 | al=b1=3 r=1 r=2 r=3
05 0.5773 0.5673 0.5865 0.5953 0.5147 0.5757 0.5646 0.5539
) (0.12722) | (0.10620) | (0.12730) | (0.12733) | (0.10732) | (0.09732) | (0.09548) | (0.09371)
25 10 1.2480 1.2283 1.2150 1.2151 1.2135 1.2131 1.2096 | 1.2052
) (0.21352) | (0.20149) | (0.21001) | (0.20667) | (0.20351) | (0.18910) | (0.18721) | (0.17591)
15 1.4238 1.4052 1.3159 1.3007 1.2870 1.2898 1.2463 1.1687
) (0.28012) | (0.25929) | (0.27219) | (0.26315) | (0.25578) | (0.25866) | (0.24683) | (0.23411)
05 0.6185 0.6123 0.6183 0.6189 0.6128 0.6091 0.5898 0.5828
' (0.08899) | (0.08655) | (0.08774) | (0.08755) | (0.08659) | (0.08650) | (0.08546) | (0.08439)
50 10 1.1962 1.1941 1.1848 1.1788 1.1766 1.1715 1.1580 1.1392
' (0.17946) | (0.17269) | (0.17715) | (0.17390) | (0.17275) | (0.16694) | (0.16279) | (0.15888)
15 1.1882 1.1841 1.1899 1.1795 1.1786 1.1720 1.1530 1.1274
' (0.17976) | (0.16369) | (0.16819) | (0.16780) | (0.16376) | (0.16739) | (0.16354) | (0.15888)
05 0.5960 0.5935 0.5885 0.5770 0.5735 0.5562 0.5634 0.5409
' (0.05188) | (0.05073) | (0.05170) | (0.05099) | (0.05085) | (0.05078) | (0.05057) | (0.05033)
100 | 10 1.1992 1.1942 1.1880 1.1860 1.1799 1.1742 1.1685 1.1552
' (0.11967) | (0.11735) | (0.11880) | (0.11805) | (0.11745) | (0.11789) | (0.11714) | (0.11580)
15 1.2574 1.2489 1.2458 1.2443 1.2375 1.2361 1.2218 1.2078
) (0.12636) | (0.12505) | (0.12548) | (0.12454) | (0.12582) | (0.12422) | (0.12269) | (0.12210)
Conclusion:

In this paper the focus was to study the importance of Bayesian approximation techniques. We

presented approximate to Bayesian integrals of Kumarswamy distribution depending upon numerical integration
and simulation study and showed how to study posterior distribution by means of simulation study. From the
findings of above tables it can be observed that the large sample distribution could be improved when prior is
taken into account. In all cases normal approximation, Lindley’s approximation, T-K approximation, Bayesian
estimates under informative priors are better than those under non-informative priors especially the Inverse levy
distribution proves to be efficient with minimum posterior standard deviation and mean square error in case of
Lindley’s approximation. In case of non-informative priors modified Jeffrey’s prior proves to be efficient. We
observe that under informative as well as non- informative priors, the normal approximation behaves well than
T-K approximation, although the posterior variances in case of T-K approximation are very close to that of
normal approximation. Further we conclude that the posterior standard deviation based on different priors tends
to decrease with the increase in sample size. It implies that the estimators obtained are consistent. It can also be
observed that the performance of Bayes estimates under informative priors (inverse levy) is better than non-
informative prior.
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