BEAL'S CONJECTURE

ALEXANDER .O. WELLS
* E-mail of the corresponding author: alexanderowells@yahoo.com

Abstract

This paper provides algebraic mathematical proof to 6 unsolved problems in mathematics (number theory) and 3 others. 1) The Beal's conjecture (invalid forever) 2) The Wells summation theorem 3) The Fermats last theorem (376yrs- invalid forever) 4) Unification engine of all Power summations 5) The Goldbach conjecture (271yrs-valid forever) 6) The proof of solitary -10-(valid forever) 7) NP VS P-problem, $[$ ANS $=\mathrm{NP} \neq \mathrm{P}=[$ NP- UNTIL- P$]=[$ NP-R-EI-T-P $]$ 8) The Riemann Hypothesis (invalid forever) 9) Power summation pyramid-Carnox pyramid

Keywords: conjecture, vector analysis, three dimension, two dimension, increment, complex, law of algebra, prime factor, domain, algorithm, input, integer, real number line, dual set, magnitude, resultant, compute, binary, hack, twelve, shrink, standard, probability, linear equation, intersect, finite, 2% logarithmic, surds, narrow range, 98%, one dimensional space, compare, determine, flow, generalization, infinity, independent, error, constant (k), dependent, graph, discretely, unaffected, HSIV, 4-input synchronous tetra- set, S4ISC, frequency, per binary input (BPI), aeroplane, run way, air friction, air resistance, take off angle, plane crash, geometry, optimum, slope, partially collapsed, totally collapsed, supremacy, incoherence, airflight study, name, equation index or factor, honour, constant factor, economics, start discontinuity, man, robot, creation, simultaneously, cage theory, like energies, function solute, trivial, non-trivial, unplug

1. Introduction

Ever since man was born on the planet earth for millions of ages did man ever could believe the power of algebra. a question is algebraic-readable. Earth dwellers devised mysterious and unreadable means to solve readable problems in order to claim effort. Having a problem that cannot be solved in a readable form for ages doesn't cause shame on any one. The problem should be left alone. It only means when the right person with the full intellectual capacity is born to the world he would solve it. But devising crooked and mysterious means for people to accept as solutions to these problems is a very grievous offence. That a car cannot fly today does not deny its existence. it does not deny the existence of a portable flyable car engine. one of these mysterious techniques -they use, they call it real analysis.

I call it senseless and meaningless analysis and such a field must be scrapped in order for true intelligence to be revealed and embraced. what is the problem that is beyond the power of algebra in number theory. if numbers on the real number line are seeable and perceivable. so why should proofs to provable set problems be mysterious to read. Andrew wiles did not get the proof of the Fermat's last theorem. Well, may be he tried for having some effort, since I cannot read and understand abstract algebra-not even a page. An algebraic question needs an algebraic step by step solution which must be readable in the algebraic language by any body who understands the law of algebra irrespective of the minor age of this person and his academic attainment. In summary, the beal's conjecture, the Fermat last theorem (376 yrs), the Wells summation theorem, the Goldbach conjecture (271yrs), the proof of solitary -10 , NP vs P problem, Riemann Hypothesis and 3 others are all proven algebraically in this paper . so any one can read it and understand it, whether a scientist or non scientist whether young or old. whether in primary school, high school or university.

2. STATEMENT OF PROBLEMS

BEAL'S CONJECTURE:

If $A^{X}+B^{Y}=C^{Z}$, where A, B, C, x, y and z are positive integers and x, y and z are all greater than 2 , then A, B and C must have a common prime factor.
[By way of example, $3^{3}+6^{3}=3^{5}$, but the numbers that are the bases have a common factor of 3 , so the equation does not disprove the theorem; it is not a counterexample]

WELLS SUMMATION THEOREM: prove that given $: a^{x}+b^{y}=c^{z}$, if $a^{x}=1, c^{z}=1$, then $b^{y} \neq 1$

FERMAT LAST THEOREM:

The general equation : $A^{N}+B^{N}=C^{N}$ has no solution in positive integer for A, B, C and $n>2$ till infinity .

GOLDBACH CONJECTURE

Goldbach's original conjecture - ("ternary" Goldbach conjecture), written in a June 7, 1742 letter to Euler, states "at least it seems that every number that is greater than 2 is the sum of three primes" (Goldbach 1742; Dickson 2005, p. 421). Note that here

Goldbach considered the number 1 to be a prime, a convention that is no longer followed.
STRONG-EULER: Goldbach conjecture asserts that all positive even integers ≥ 4 can be expressed as the sum of two primes. Two primes (P, Q) such that $(P+Q=2 N)$ for N, a positive integer are sometimes called a Goldbach partition (Oliveira e Silva).

SOLITARY NUMBERS-10

Numbers that do not have any friend are called solitary numbers. a prove of the general existence of solitary numbers and why 10 is a solitary number is needed?

NP VERSUS P PROBLEM

The \mathbf{P} versus NP problem is a major unsolved problem in computer science. Informally, it asks whether every problem whose solution can be quickly verified by a computer can also be quickly solved by a computer. It was introduced in 1971 by Stephen Cook in his seminal paper "The complexity of theorem proving procedures". The general class of questions for which some algorithm can provide an answer in polynomial time is called "class \mathbf{P} " or just " $\underline{\mathbf{P}}$ ". For some questions, there is no known way to find an answer quickly, but if one is provided with information showing what the answer is, it may be possible to verify the answer quickly. The class of questions for which an answer can be verified in polynomial time is called $\mathbf{N P}$.

RIEMANN HYPOTHESIS

The Riemann zeta function $\zeta(s)$ is a function whose argument s may be any complex number other than 1 , and whose values are also complex. It has zeros at the negative even integers; that is, $\zeta(s)=0$ when s is one of $-2,-4,-6, \ldots$ These are called its trivial zeros. However, the negative even integers are not the only values for which the zeta function is zero. The other ones are called non-trivial zeros. The Riemann hypothesis is concerned with the locations of these non-trivial zeros, and states that:
"The real part of every non-trivial zero of the Riemann zeta function is $1 / 2$ ". Thus the non-trivial zeros should lie on the critical line consisting of the complex numbers $1 / 2+i t$, where t is a real number and i is the imaginary unit.

3. Main body

VECTOR ANALYSIS

$$
a^{x}+b^{y}=c^{z} \ldots \ldots \ldots \ldots \ldots()
$$

instruction 1: level the question. Level the question means level the left and right side of equation (1) or find a way of eradicating the powers on the left and right side to form a linear equation without any power if possible. instruction 2: Apply vector analysis.

In three dimensions a vector has three components. \qquad
so $\mathrm{a}=a_{i}+a_{j}+a_{k}, b=b_{i}+b_{j}+b_{k} c=c_{i}+c_{j}+c_{k}$
In two dimensions a vector has two components \qquad
so $\mathrm{a}=a_{i}+a_{j}, b=b_{i}+b_{j}, c=c_{i}+c j$
recall (1).
$a^{x}+b^{y}=c^{z}$ \qquad
substitute (5) in (1).
. (7)
$\left(a_{i}+a j\right)^{x}+\left(b_{i}+b_{j}\right)^{y}=\left(c_{i}+c j\right)^{z}$ \qquad
since x, y and z are all numbers on the real number line. not necessarily taken as integers as a means of control. however all greater than 2 . define $\mathrm{g}, \mathrm{h}, \mathrm{p}$ to be three numbers on the real number line. they are not necessaril y integers and they can be any of a fraction, decimal, surd, etc.
they can also be positive or negative numbers. finally, they are not
necessarily equal in value. .(8a)
define the below.
let $x=2+g \ldots \ldots \ldots \ldots \ldots .$.)
let $y=2+h$. b)

NEXT PAGE

let $\mathrm{z}=2+\mathrm{p}$
$\mathrm{g}=$ the increment in x above the binary
$h=$ the increment in y above the binary.
$\mathrm{p}=$ the increment in z above the binary.
so the following conditons on $\mathrm{g}, \mathrm{h} \mathrm{p}$ are below.
$\mathrm{g}=\mathrm{h}=\mathrm{p}$
$\mathrm{g}=\mathrm{h}>\mathrm{p} \ldots \ldots \ldots . .$. (14)
$\mathrm{g}=\mathrm{h}<\mathrm{p}$
$\mathrm{g}>\mathrm{h}=\mathrm{p}$
$\mathrm{g}<\mathrm{h}=\mathrm{p}$
$\mathrm{g}=p>h$.
$g=p<h$.
$\mathrm{g}<\mathrm{h}<\mathrm{p}$.
$\mathrm{g}<\mathrm{h}>\mathrm{p}$.
$\mathrm{g}>\mathrm{h}>\mathrm{p}$.
$\mathrm{g}>\mathrm{h}<\mathrm{p}$.
$\mathrm{g}, \mathrm{p}, \mathrm{h}$ can also be complex.
so we can have $g(1+i)$ or $h(1+i)$ or $p(1+i)$ (e.t.c). \qquad
let $\mathrm{x}=2+\mathrm{g}$.
let $y=2+h$.
let $\mathrm{z}=2+\mathrm{p} \ldots \ldots \ldots \ldots \ldots . .(28)$
recall (8).
(2)
$\left(a_{i}+a_{j}\right)^{\mathbf{x}}+\left(b_{i}+b_{j}\right)^{\mathrm{y}}=\left(c_{i}+c j\right)^{\mathrm{Z}}$
substitute (26), (27), (28) in (8). .30)
$\left(a_{i}+a_{j}\right)^{2+g}+\left(b_{i}+b_{j}\right)^{2+\mathrm{h}}=\left(c_{i}+c j\right)^{2+\mathrm{p}}$
using the law of algebra below.
$(\mathrm{s}+\mathrm{v})^{2+\mathrm{m}}=(\mathrm{s}+\mathrm{v})^{2} .(\mathrm{s}+\mathrm{v})^{\mathrm{m}}$
(31) becomes the next equation below
$\left(a_{i}+a_{j}\right)^{2} .\left(a_{i}+a_{j}\right)^{\mathrm{g}}+\left(b_{i}+b_{j}\right)^{2} .\left(b_{i}+b_{j}\right)^{\mathrm{h}}=\left(c_{i}+c_{j}\right)^{2} .\left(c_{i}+c_{j}\right)^{\mathrm{p}}$.
let $\left(a_{i}+a_{j}\right)=d$
so $\left(a_{i}+a_{j}\right)^{2}=d^{2}$
let $\left(b_{i}+b_{j}\right)=\mathrm{f}$.
so $\left(b_{i}+b_{j}\right)^{2}=f^{2}$
let $\left(c_{i}+c j\right)=\mathrm{k}$.
so $\left(c_{i}+c j\right)^{2}=k^{2}$.
recall (35)
$\left(a_{i}+a_{j}\right)^{2} .\left(a_{i}+a_{j}\right)^{g}+\left(b_{i}+b_{j}\right)^{2}\left(b_{i}+b_{j}\right)^{h}=\left(c_{i}+c j\right)^{2}\left(c_{i}+c j\right)^{p}$
substitute (37), (39), (41) in (35).
$d^{2}\left(a_{i}+a_{j}\right)^{g}+f^{2}\left(b_{i}+b_{j}\right)^{h}=k^{2}\left(c_{i}+c_{j}\right) p$
divide both sides of (44) by theright side $\left(k^{2}\left(c_{i}+c j\right){ }^{p}\right)$
$\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}+f^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}\left(c_{i}+c_{j}\right)}$ p$=\frac{k^{2}\left(c_{i}+c_{j}\right) p}{k^{2}\left(c_{i}+c_{j}\right) p}$
$\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(c_{i}+c_{j}\right)}{ }^{p}+\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}\left(c_{i}+c_{j}\right)} p=1$.
let $\mathrm{A}=\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(c_{i}+c_{j}\right)^{p}}$
let $\mathrm{B}=\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}\left(c_{i}+c_{j}\right)}$ p
substitute (48) and (49) in (47).
$A+B=1$ (51)
(51) means - you are solving a problem in which two numbers
add up to1.
\$2)
if $\mathrm{A}=0$ and $\mathrm{B}=1$
so non of the unknowns $-\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ in (1) is a factor or a prime factor of the other in this $(0,1)$ domain \qquad
so (54) is contrary or disproves A. beal' s conjecture
first idea of having prime factors condition in this theoretically
known domain. ...(55)
recall (51).
$\mathrm{A}+\mathrm{B}=1$
(51) is a computer algorithm which takes an input A which is any number on the real number line whether a positive or negative integer, decimal,
(0.0000001), fraction, surd etc as step 1 .
The algorithm then solves the below equation as step $2 \ldots \ldots \ldots$....(58)
$\mathrm{B}=1$ - A .
.(59)
so the algorithm computes the number B in step 2
so A and B form a dual set (α, β).
Dual set means needs two inputs to process (51)

Case study to unravel the beal' s conjecture
recall (51).
$\mathrm{A}+\mathrm{B}=1$
so we take a simplesolution to the problem
let $\mathrm{A}=0$ then $\mathrm{B}=1-\mathrm{A}=1-0=1$.
let $\mathrm{A}=1$ then $\mathrm{B}=1-\mathrm{A}=1-1=0$.
so dual sets $(\alpha, \beta)=(0,1),(1,0)$.
so $\alpha=0, \beta=1, \alpha=1, \beta=0$.
$\mathrm{A}=\alpha, B=\beta$
from the two dual sets in (66); 0 and 1 satisfies both A and B
using the $(0,1)$ dual set for A \qquad
recall (48). (7)
$\mathrm{A}=\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(c_{i}+c_{j}\right)} p$
substitute the 0 of (70) in 48 .
$\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(c_{i}+c j\right)}=0$.
$d^{2}\left(a_{i}+a_{j}\right) \quad g=0 \times k^{2}\left(c_{i}+c_{j}\right) p$
$d^{2}\left(a_{i}+a_{j}\right){ }^{g}=0$. \qquad
divide the left and right side of (75) by d^{2} \qquad
$\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{d^{2}}=\frac{0}{d^{2}}$.
$\frac{1 .\left(a_{i}+a_{j}\right)^{g}}{1}=\frac{0}{d^{2}}$.
$\left(a_{i}+a_{j}\right)^{g}=0$.
Find the g root of both side of (79).
$\left(a_{i}+a_{j}\right)^{\frac{g}{g}}={ }_{0}^{\frac{1}{g}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots, \$ 1$
$\left(a_{i}+a_{j}\right)^{\frac{1}{1}}=0$.
$\left(a_{i}+a_{j}\right)^{1}=0$
$\left(a_{i}+a_{j}\right)=0$.
$a_{i}=-a j$.
(85) means the x component of the number "a" in (1) is equal in magnitude to the y component of the number " a " and both have an opposite direction. their resultant is zero. .(86)
recall (48). (87)
$A=\frac{d^{2}\left(a_{i}+a_{j}\right)}{}{ }_{k^{2}\left(c_{i}+c_{j}\right)} p$.
substitute 1 of (70) in (48).
$\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(c_{i}+c_{j}\right)}{ }^{p}=1$ \qquad
cross multiplyin (90). \qquad
$d^{2}\left(a_{i}+a_{j}\right)^{g}=1 \times k^{2}\left(c_{i}+c j\right) p$
$d^{2}\left(a_{i}+a_{j}\right) \quad g=k^{2}\left(c_{i}+c_{j}\right) \quad p$.
For the left side to be equal to the right side in (93) then the
first equation that must hold in simplicityis below.
$d^{2}=k^{2} \ldots \ldots \ldots$ (95)
$d=k$.
recall (36) and (40). . 7)
$d=a_{i}+a_{j}$
$k=c_{i}+c j$
compute (96).
$a_{i}+a j=c_{i}+c j$
from (99)
$a_{i}=c_{i}$.
$a j=c j$.(02)
(101) means $a=c$.(103)
(103) provides additional proof to the above fact that non of the unknowns $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ is a factor of another, neither is it a prime factor of another but that $\mathrm{a}=\mathrm{c}$ means they are exactly equal in the known theoretical domain. (1は)
(102) means the second components are also equal or identical. so in

3-D, the third components are also equal as below \qquad ..(105)
$a_{k}=c_{k}$.(106)
the second relation that must hold in (93) is below. \qquad (107)
$\left(a_{i}+a_{j}\right)^{g}=\left(c_{i}+c_{j}\right)^{p} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$. $\left.107 a\right)$
$a_{i}+a j=c_{i}+c j$
$a_{i}=c_{i} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$................)
$a j=c j \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.................
(109), (110) provides additional proof to (101), (102)
$g=p$. .(11)
(111) means - the number 111 is the most important in 3 digit binary computation.
How is it most important? - it can used to hack a computer system that uses binary computation. .(112)
(111) also means that for any increase above the (binary) - power - 2 on either a or c . thisincrease must be thesame on both a and c . so for A .beal's conjecture to hold in (1). the power of " a " must always be equal to the power of " c " for any value of either powers of "a" or "c". \qquad ..(112a)
This power value can be any number on the real number line. so it can be an integer, decimal (0.00001), fraction, surd etc. This proves fermat last theorem as validin the dual set $(0,1)$ in the known theoretical domain. since the powers of " a " and " c " are always thesame and " $\mathrm{a}=\mathrm{c}$ " so $\mathrm{b}=0$, and 0 is not a positive integer so theoretical common sense will say once the dual set changes to desire then fermats last theorem will be invalid (100% - probable). but thisis not true unless proven mathematically tobe true. beals conjecture is invalid in this domain, since $b=0$, this means : b does not exist. finally, there is no number called integer in the $[0,1]$ domain. since $g=p$; any number - integer, non integer. $[0,1]$ is ca lled the domain of certainty - final conclusion. From its maximum probability -1 . so whatever it says will be the found true in theend.
Why A.beals and Fermat?-ANS : they have close relations.
Beal discusses thebase numbers existence and Fermat discusses
the existence of the powers in one typeof equation.
recall (49). \qquad
$\mathrm{B}=\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}\left(c_{i}+c_{j}\right)}$.
using the dual set $(0,1)$ for B . \qquad
similarly as above \qquad (116)
$\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}\left(c_{i}+c_{j}\right)^{p}}=0$.
$\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}\left(c_{i}+c_{j}\right)}$ p $=1$.
from (117).
then $b_{i}=-b j$
from (118). .(121)
$f^{2}\left(b_{i}+b_{j}\right)^{h}=1 \times k^{2}\left(c_{i}+c_{j}\right) p$
$f^{2}\left(b_{i}+b_{j}\right)^{h}=k^{2}\left(c_{i}+c j\right){ }^{p}$.
the left side equal to the right side in simplicityin (123) then.
$f^{2}=k^{2}$.(125)
$f=k$.
substitute (38) and (40) in (126).
$b_{i}+b j=c i+c j$
from (128).
$b_{i}=c_{i}$.(30)
$b j=c j$..(31)
similar as above.
from (123) again .(133)
$\left(b_{i}+b_{j}\right)^{h}=\left(c_{i}+c_{j}\right)^{p}$
$b_{i}+b_{j}=c_{i}+c_{j}$
$b_{i}=c_{i}$
..(36)
$b_{j}=c j$
$h=p$.(138)
from (138) theincrement in the power of " b " above the binary is thesame as the increase in the power of " c " above the binary in the $(0,1)$ dual set for B . so here $\mathrm{a}=0$. since 0 is not a positive integer then fermat last theorem is validin thisdual set......(139).
similar as explained above \qquad ..(140)

SUSPENDTHE BEAL'S CONJECTURE

WELLSSUMMATIONTHEOREM

$a^{x}+b^{y}=c^{z}$. \qquad
prove :if $a^{x}=c^{z}$ then $a^{x} \neq b^{y}$
if $b^{y}=c^{z}$ then $b^{y} \neq a^{x}$
The Wellssummation theorem is introduced to give readable algebraic prove to the equivalent unreadable proofs in abstract algebra.
Examples
prove 1: $a^{x}=1, c^{z}=1$, then $b^{y} \neq 1$
prove $2: b^{y}=1, c^{z}=1$, then $a^{x} \neq 1$
recall (96).
$d=k$
recall (126)
$f=k$.
from (96) and (126).....................(43)
$d=f$
recall (36) and (38).

$$
\begin{equation*}
d=a_{i}+a j \tag{145}
\end{equation*}
$$

$f=b_{i}+b j$.
substitute (36) and (38) in (144).
$a_{i}+a_{j}=b_{i}+b_{j}$
from (145).

$$
\begin{equation*}
a_{i}=b_{i} \tag{48}
\end{equation*}
$$

(49) .(49)
$a_{j}=b_{j}$.(50)
that (149) and (150) exists is not true. thisis because
the twodual sets cannot function at the same time. the system
takes binary (2) input and does not take a 4 -input. so the mathematical
proof on this page is fantasy. it exists impossibly. ..(151)

take note

it takes the input $d=k$. \qquad .(152)
and returns the input $2 d^{2}=k^{2}$. .(53)
so the two inputs are not thesame. thisis the proof.
.(54)
recall (47)
$\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(c_{i}+c_{j}\right)} p+\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}\left(c_{i}+c_{j}\right)} p=1$.
recall (144).
$d=f$.
substitute (144) in (47).
$\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(c_{i}+c_{j}\right)}{ }^{p}+\frac{d^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}\left(c_{i}+c_{j}\right)} p=1$.
factorize d^{2} in (158) (59)
$d^{2}\left(\frac{\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(c_{i}+c_{j}\right)^{p}}+\frac{\left(b_{i}+b_{j}\right)^{h}}{k^{2}\left(c_{i}+c_{j}\right)}\right)=1$.
divide both sides of (160) by d^{2}. \qquad .(161)
$\left(\frac{\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(c_{i}+c_{j}\right)^{p}}+\frac{\left(b_{i}+b_{j}\right)^{h}}{k^{2}\left(c_{i}+c_{j}\right)^{p}}\right)=\frac{1}{d^{2}}$.
find the LCM of the left side of (162).

$$
\begin{equation*}
\frac{\left(a_{i}+a_{j}\right)^{g}+\left(b_{i}+b_{j}\right)^{h}}{k^{2}\left(c_{i}+c_{j}\right)^{p}}=\frac{1}{d^{2}} . \tag{163}
\end{equation*}
$$

since $\mathrm{g}=\mathrm{p}$.
and $h=p$.
so $g=h$.
substitute (165), (109), (110) in (164) and if (149) and
(150) is true then 164 becomes. (166)
$\frac{\left(a_{i}+a_{j}\right)^{g}+\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(a_{i}+a_{j}\right)^{g}}=\frac{1}{d^{2}}$
$\frac{2\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(a_{i}+a_{j}\right)^{g}}=\frac{1}{d^{2}}$.
$\frac{2}{k^{2}}=\frac{1}{d^{2}}$.
$2 d^{2}=k^{2}$
so $a_{i} \neq b_{i}$
$a_{j} \neq b_{j} \ldots \ldots(172)$
if : $a_{i}=c_{i}$

$$
\begin{equation*}
a_{j}=c j . \tag{173}
\end{equation*}
$$

RESUME: A.BEAL'S CONJECTURE

consideration : multiplyeach dual set component by 10 , then STUDY. the other possible dual sets in the $[0,1]$ domain are below. \qquad
2) $A=0.1, B=0.9$; ($0.1,0.9$). ..(176)
0.1 and 0.9 - no common prime factor here (multiple of 9) \qquad
3) $A=0.2, B=0.8 ;(0.2,0.8)$. \qquad
0.2 and 0.8 - has a common prime factor of 2 . .(179)
4) $A=0.3, B=0.7 ;(0.3,0.7)$. \qquad .(18)
0.3 and $0.7-$ no common prime factor here .181)
5) $A=0.4, B=0.6 ;(0.4,0.6)$. \qquad (182)
0.4 and 0.6 - has a common prime factor of 2 .
6) $A=0.5, B=0.5 ;(0.5,0.5)$.
0.5 and 0.5 has common prime factor of 5 , also an equal probability dual set \qquad .(185)
the above dual set components can be reversed to obtain a total of 12 dual sets ..(186)
if (184) is taken as an equal probability dual set. so only 2 common prime factor dual sets exist in the [0,1] domain out of 6 . then the percentage of common prime factor in the [0,1] domain is
$\frac{2}{6} \times 100 \%=33.33 \%$. \qquad .(186a)
however this 33.33% willshrink theoretically in all domains to 2% due to reasons explained below. $(0.2,0.8)$ and $(0.4,0.6)$ can be called the standard common prime factor dual set of the $[0,1]$ domain which predicts the myriad existence of other common prime factor dual sets. $(0.2,0.8)$ means you are solving a problem of numbers which has common prime factor of 2 as solution which exists in a state of 2% probability.so the $(0.2,0.8)$ dual set proves A. beal's conjecture point of having common prime factor is valid only if this 2% exists. so if having a common prime factor of 2 in 2% state, then theoretical common sense says the myriads have common prime factor - $(3,5,7,11)$ existence which lie outside the 2% domain. thisalso must be proven to be accepted as true. so the remaining 98% probability means you are solving a problem of numbers which have other relationships eg common prime factors, no common prime factors.
if no common prime factor - then A.beals conjecture is invalid.
Also, the number variables $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ are not close to each otheron the real number line.
\qquad(1ぬb)
$0.8-0.2=0.6$ (wide not 0 or 0.1). (187)
if (184) is taken as a common prime factor dual set. so only 3 commonprime factor dual sets exist in the $[0,1]$ domain out of 6 . then thepercentage of common prime factor in the $[0,1]$ domain is
$\frac{3}{6} \times 100 \%=\frac{1}{2} \times 100 \%=50 \%$. (187a).
this means A.beal's conjecture will be found to be valid only in the
$(0.5,0.5)$ dual set. why? Half existence is thesame as existence.
50% is half of 100%. existence of a thing need not be 1 . but needs be0.5 only - this is the necessary and sufficient condition for existence ega long train was divided into 2 equal parts for two persons. one took thepartof the train with the engine. the other took the other part without an engine.
Q1?, who took the train?.ANS : the first. it need not be a full length till
it is a train. what is important about a train is it, having an ENGINE.
Q? : is the other half a train? ANS : YES, if the track is circular and the
first half with engine moves.it willreturn and meet the dead train and
move it. so anybody in the second part will move to their destination.
so, what is important about a train is it being a CARRIAGE.
Q1 and Q2 are indispensable. they share equal existence. - 50%..(188)
Explanation of the probability ($2 \%, 98 \%$).
recall (51) and (1). (189)
$\mathrm{A}+\mathrm{B}=1$..(lineequation) (51)
$a^{x}+b^{y}=c^{z}$ (1)
$0.2+0.8=1$ (190)
multiplyboth sides of (190) by 10(191)
$2+8=10$(192)
$2(1+4)=10$ (193)
(193) means you are solving a problem of numbers (a, b, c, x, y, z)
having common prime factors amoung themselves -2 .
2 represents a or $\mathrm{x}, 8$ represents b or $\mathrm{y}, 10$ represents c or z . thisis
responsible for the 2%. since (51) is a linear equation
(192) means $\mathrm{A}=2$ and B is 8 .
\qquad
(193) proves that A and B can have common prime factors
\qquad(194a)
recall (51) (195)
$\mathrm{A}+\mathrm{B}=1$ (51)
recall (1)
$a^{x}+b^{y}=c^{z}$ \qquad
(1) says $\mathrm{A}=a^{x}, B=b^{y}, 1=c^{z}$
so (1) is saying (51) is not and not a linear equation but a curve. so a normal line willonly intersect a curve at finite points (not many -2)
so thisis the reason the above has 2%. \qquad .(198)
substitute (194) in (197). (99)
$a^{x}=2, b^{y}=8,10=c^{z}$ \qquad .(200)
from (200). .(201)
$x=\log _{a} 2, y=\log _{b} 8 ; \quad z=\log _{c} 10$. \qquad
(202) proves that the powers $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are logarithmic functions
which are not in most cases integers and this powers (x, y, z)
in most cases are different from another. since two different logarithm
function will not give thesame result.
from (200). \qquad (204)
$a=2 \frac{1}{x}, b=8^{\frac{1}{y}}, c=10 \frac{1}{z}$
(205) proves that a and b are surds and not integers.so they can only have common prime factors in a very narrow range or only have surdic common factors or prime factors which lies in a 98% domain considering the curve nature. \qquad (2あ)
using the dual set $(0.2,0.8)$
recall (51) and (47)
$A+B=1$ \qquad
recall 47 \qquad (208)
$\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(c_{i}+c_{j}\right)} p+\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}\left(c_{i}+c_{j}\right)} p=1$.
substitute the dual set in (47)
$A=\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(c_{i}+c_{j}\right)^{p}}=0.2$.
$B=\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}{ }_{\left(c_{i}+c_{j}\right)} p}=0.8$.
solve (210).
$\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(c_{i}+c_{j}\right)}{ }^{p}=\frac{2}{10}$.
cross multiplyin 213 .
$10 d^{2}\left(a_{i}+a_{j}\right)^{g}=2 k^{2}\left(c_{i}+c_{j}\right) \quad p$.
make 10 the subject of the formula in (215).
$10=\frac{2 k^{2}\left(c_{i}+c_{j}\right)^{p}}{d^{2}\left(a_{i}+a_{j}\right)^{g}}$.
recall (211)
$\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}{ }_{\left(c_{i}+c_{j}\right)} p}=0.8$.
$\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}\left(c_{i}+c j\right)^{p}}=\frac{8}{10}$.
cross multiplyin 219 . \qquad
$10 f^{2}\left(b_{i}+b j\right)^{h}=8 k^{2}\left(c_{i}+c j\right){ }^{p}$
substitute (217) in (221).
\qquad
$\frac{2 k^{2}\left(c_{i}+c_{j}\right)}{d^{2}\left(a_{i}+a_{j}\right)^{g}} f^{2}\left(b_{i}+b_{j}\right)^{h}=8 k^{2}\left(c_{i}+c_{j}\right) p$
divide both sides of (223) by $2 k^{2}\left(c_{i}+c_{j}\right) p$.

$\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{d^{2}\left(a_{i}+a_{j}\right)^{g}}=4$.
$f^{2}\left(b_{i}+b_{j}\right)^{h}=4 d^{2}\left(a_{i}+a_{j}\right)^{g}$
in one dimensional space (226) becomes
$f^{2} b_{i}{ }^{h}=4 d^{2} a_{i} g$ \qquad
make f the subject of the formula in (228).
$f^{2}=\frac{4 d^{2}{ }_{a_{i}} g}{b_{i}{ }^{h}}$.

$f=\sqrt{\frac{4 d^{2} a_{i} g}{b_{i}{ }^{h}}} \ldots \ldots .23$

$f=2 d \sqrt{\frac{a_{i}{ }^{g}}{b_{i}{ }^{h}}}$.
recall (36) and (38)
$d=a_{i}+a j$
$f=b_{i}+b j$
in one dimension (36) and (38) becomes.
$\left.d=a_{i} \ldots \ldots \ldots \ldots235\right)$
$f=b_{i}$. e36)
substitute (235) and (236) in (232).
$b_{i}=2 a_{i} \sqrt{\frac{a_{i}{ }^{g}}{b_{i} h}}$
\qquad (23)
$b=2 a \sqrt{\frac{a_{i}{ }^{g}}{b_{i}^{h}}}$.
$b=2 a \sqrt{\frac{a^{g}}{b}}$.
(240) is similar to(193).
recall (193).
\qquad
$10=2(1+4)$.
compare (240) with (193). \qquad (243)
$\mathrm{b}=10, \ldots \ldots(244) ; a \sqrt{\frac{a^{g}}{b^{h}}}=5$.
(240) - is a flow equation. it can be used to determine the flow between the numbers ($\mathrm{a}, \mathrm{b}, \mathrm{g}, \mathrm{h}$). ..(246)
the $(0.4,0.6)$ dual set is not treated but theoretically, it should give thesame result as the $(0.2,0.8)$ dual set. it shows collapse of the even domain. this proof is elementary, see below. . (247)
recall (51).
$A+B=1$
$0.4+0.6=1$.(249)
multiply both sides of (249) by 10 . ..(250)
$4+6=10$.(251)
$2(2+3)=10$ (252)
$\mathrm{b}=10, \ldots \ldots \ldots \ldots(253) ; \quad a \sqrt{\frac{a^{g}}{b^{h}}}=5$
beal's request for " b " and "a" common prime factor relationship.......255)
the generalization is derived from (239)(256)
recall (239)..................(257)
$\mathrm{b}=2 \mathrm{a} \sqrt{\frac{a_{i} g}{b_{i} h}} \ldots \ldots$.(ommon prime factor -2$)$
$b=v a \sqrt{\frac{a_{i}{ }^{g}}{b_{i}^{h}}}$
$b=v a \sqrt{\frac{a^{g}}{b}} \ldots \ldots \ldots \ldots \ldots \ldots . .(259)$
where v is the common prime factor number or any real number
(259) is an accurate flow equation. it can be used to solve the

Navier stokes problem in mathematics.it is also the equation of general relationship between ($\mathrm{a}, \mathrm{b}, \mathrm{g}, \mathrm{h}$). it shows and confirms the above statement that a and b have surdic relationship (98%) and that the numbers can have 2% common prime factor relationship.
It was obtained from the computing dual set($0.2,0.8$). it also exists in all dual set. however ($\mathrm{a}, \mathrm{g} \mathrm{b}, \mathrm{h}$) can be an integer or a
non integer - decimal, surd, fraction, logarithm function, positive or negative number...(261)
most importantly $\frac{a^{g}}{b^{h}} \neq$-number.
A. beal's conjecture is only correct if $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ are all integers or say ($\mathrm{a}, \mathrm{g}, \mathrm{b}, \mathrm{h}$) are all integers. Also A.beal's conjecture may fail by saying that his conjecture only holds when there is a common prime factor relationship between the number variables a, b, c.
This may not be the only condition. it could be one of the conditions of existence of (1). however, all said is subject to verificat ion......263)
recall (240)..............(264)
$b=2 a \sqrt{\frac{a^{g}}{b}} \ldots \ldots \ldots \ldots \ldots$
so common prime factor relationship exists between b and a when.
$\sqrt{\frac{a^{g}}{b^{h}}}=1$.
so the below follows. (267)

Example 1. ...(268)
$b=2 a \sqrt{\frac{a g}{b^{h}}}$.
$\mathrm{b}=10, \ldots \ldots(253) ; \quad a \sqrt{\frac{a g}{b^{h}}}=5$.
so $\mathrm{b}=2 \mathrm{a} . \ldots \ldots(269)$ when $: \sqrt{\frac{a^{g}}{b^{h}}}=1 \ldots \ldots . .$. 266),
$a \sqrt{\frac{a^{g}}{b h}}=5$.
substitute (266) in (254)
a. $1=5$
$\mathrm{a}=5$.
so $\mathrm{b}=10, \mathrm{a}=5$, so " b " factors "a" by a common prime
factor of 5 . (273)
so what occurs in $\sqrt{\frac{a^{g}}{b}}=1 \ldots$. (266).
recall (266). .775)
$\sqrt{\frac{a^{g}}{b}}=1$.
$b=10, \mathrm{a}=5$ \qquad
substitute (276) in (266). .777)
$\sqrt{\frac{5^{g}}{10^{h}}}=1$.
square both sides of (278) \qquad
$\left(\sqrt{\frac{5^{g}}{10^{h}}}\right)^{2}=1^{2}$. .880)

$$
\begin{align*}
& \left.\frac{5^{g}}{10^{h}}=1 \ldots \ldots \ldots \ldots \ldots . .281\right) \\
& 5^{g}=10^{h} \ldots \ldots \ldots \ldots \ldots .(282) \\
& 10^{h}=5^{g} \ldots \ldots \ldots \ldots \ldots . .(283) \\
& h=\log 10^{g} \ldots \ldots \ldots \ldots \ldots(284) \\
& h=g \log 10^{5} \ldots \ldots \ldots \ldots .(285)
\end{align*}
$$

$g \log 105$ will not return an integer most time.so h is most timenot aninteger. so use the computer to find the number
type(integer, non integer etc) relationship between h and g to
determine the number type of x and y
\qquad(86)
the only equation t he computer needs to solve is $\sqrt{\frac{5^{g}}{10^{h}}}=1$(278)
$(\mathrm{g}, \mathrm{h})=(-,-)$. (287)
(278) is the equation that shows the relationship between h and g for
(266) tobe equal to 1
\qquad(288)
Also as previously discussed, (285) proves that the
powers of the number variables ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) are logarithm
functions(289)
Example 2 (290)
(common prime factor 3)
recall (51)(291)
$A+B=1$ 51)
recall (193) (292)
$2(1+4)=10$. (193)
divide both sides of (193) by 2 (293)
$(1+4)=5$. (294)
multiplyboth sides of (294) by 3 (295)
$3(1+4)=3 \times 5=15$ (296)
$3(1+4)=15$ 297)
$b=15 \ldots \ldots$. 298), $v=3 \ldots \ldots \ldots$.299), $a \sqrt{\frac{a^{g}}{b}}=5 \ldots$. (254), $a=5$
" b " stillsfactors "a" by a common prime factor of 3 (301)

Example (3).

(common prime factor - 5)
$b=5 a \sqrt{\frac{a^{g}}{b^{h}}} \ldots \ldots \ldots \ldots \ldots$.03)
recall (51).
$A+B=1 \ldots \ldots \ldots \ldots$. 1)
recall (193)..............305)
$2(1+4)=10$. .(306)
divide both sides of (306) by $2 \ldots \ldots \ldots . . .$. (307)
$(1+4)=5$. (308)
multiply both sides of (308) by 5 .
$5(1+4)=5 \times 5=25 \ldots \ldots \ldots \ldots .$. . 10)
$5(1+4)=25$.111)
$b=25, \ldots \ldots$.(312) $v=5 \ldots . .313) ; a \sqrt{\frac{a^{g}}{b}}=5 \ldots \ldots$. (254), $\mathrm{a}=5 \ldots \ldots$. . (314)
" b " stillsfactors "a" by a common prime factor of $5 \ldots \ldots$.(315)
Example (4). .(316)
(common prime factor 7)
$b=7 a \sqrt{\frac{a g}{b^{h}}}$.
recall (51).
$A+B=1 \ldots \ldots \ldots \ldots .$. . 1)
recall (193).............. 19)
$2(1+4)=10$..(193)
divide both sides of (193) by 2 .
$(1+4)=5$. (321)
multiplyboth sides of (321) by 7 . (322)
$7(1+4)=5 \times 7=35 \ldots \ldots \ldots \ldots \ldots$. 23)
$7(1+4)=35 \ldots \ldots \ldots \ldots \ldots$. 24$)$
$b=35, \ldots .325) ; v=7 \ldots .(326) ; a \sqrt{\frac{a}{b} h}=5 \ldots$. (254), $\mathrm{a}=5 \ldots \ldots$. . 27)
" b " stillsfactors "a" by a common prime factor of 7 . the four examples are computed without care or need for the dual sets they originate from. the above also shows that "a" is always 5 for any common prime factor relationship between b and a in (1). "a" does not change for any
common prime factor relationship. (38)
the above again shows that $a \sqrt{\frac{a}{b} h}$ is always 5.in all thepossibledual sets whether common prime factor or no prime factor. it is a constant - does not change. \qquad
so one write the below equation. \qquad (330)
$\mathrm{b}=v \mathrm{k}$ (air friction equation - flight). \qquad
this equation supports the existence of a linear solution.
where k is a constant..........333)
$\mathrm{k}=a \sqrt{\frac{a^{g}}{b}}=5$. \qquad
others examples are : \qquad
$b=11 a \sqrt{\frac{a^{g}}{b^{h}}} \ldots \ldots \ldots \ldots \ldots($ (ommon prime factor -11$)$.
$b=13 a \sqrt{\frac{a^{g}}{b^{h}}} \ldots \ldots \ldots \ldots \ldots .($ ommon prime factor -13$)$ \qquad
$b=19 a \sqrt{\frac{a^{g}}{b^{h}}} \ldots \ldots \ldots \ldots \ldots($ (ommon prime factor -19$)$. \qquad
note all the common prime factor equation examples are naturally
independen t. trying to solve them together will give two different inputs
which are meant to be thesame. \qquad (339)
the computer gives an error as explained above. since, independent
they all give independent graphs. so graphical plot can not be used to find any of the number variables ($\mathrm{a}, \mathrm{b}, \mathrm{g}, \mathrm{h}$). this proves a fact that dual sets in a binary computer are not connected. Each dual set acts
discretely and unaffected by another dual set.
so if two dual sets are connected. then 3-4-input error operation
will occur . the only thing that can be done is to solve each equation
independently. \qquad (340)
for example
$b=25, \ldots \ldots \ldots \ldots . \beta 12) ; \quad a \sqrt{\frac{a^{g}}{b}}=5$
substitute $=25$ in (254). \qquad
$a \sqrt{\frac{a^{g}}{25^{h}}}=5$. .(254)
so find ($\mathrm{a}, \mathrm{g}, \mathrm{h}$) - angels house. thismeans three more independen t equations are needed to find ($\mathrm{a}, \mathrm{g}, \mathrm{h}$).
CASE1: independent graphs ..B43)
$\mathrm{b}=\mathrm{k} \mathrm{k}$ (331)
data graph : $\mathrm{b}=2 \mathrm{k}, \mathrm{b}=3 \mathrm{k}, \mathrm{b}=5 \mathrm{k}, \mathrm{b}=9 \mathrm{k}, \mathrm{b}=11 \mathrm{k}$ \qquad
b changes, so it is plotted on the y -axis, k changes in theory, so it
is plotted on the x -axis. in theory means not known yet as
a constant. graph $X 1-$ see end pages
CASE 2 : studying the above equations again. through the constant k, it is possible to have a dependent graph - one graph. since b changes and v changes. so we obtain just one graph which can be studied for ($\mathrm{a}, \mathrm{b}, \mathrm{g}, \mathrm{h}$). this proves the existence of computers which can take more than two (binary) input at a time. That is exactly four input at a timeor more than 4. .(345)
dependent graph (346)
b changes, so it is plotted on the y-axis. v changes, so it plotted on the
x - axis using $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.
$X 2$ - see end pages
Find c. .(349)
recall (213).
$\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{k^{2}{ }_{\left(c_{i}+c_{j}\right)} p}=\frac{2}{10}$.
cross multiplyin (213) \qquad
$10 d^{2}\left(a_{i}+a_{j}\right)^{g}=2 k^{2}\left(c_{i}+c_{j}\right){ }^{p}$
$2 k^{2}\left(c_{i}+c j\right){ }^{p}=10 d^{2}\left(a_{i}+a_{j}\right){ }^{g}$
divide both sides of (353) by 2 .
$\frac{2 k^{2}\left(c_{i}+c_{j}\right)}{2}=\frac{10 d^{2}\left(a_{i}+a_{j}\right)^{g}}{2}$
$k^{2}\left(c_{i}+c_{j}\right){ }^{p}=5 d^{2}\left(a_{i}+a_{j}\right)^{g}$ \qquad
divide both sides of (356) by $\left(c_{i}+c j\right)^{p}$. .(357)

$$
\begin{equation*}
\frac{k^{2}\left(c_{i}+c_{j}\right)^{p}}{\left(c_{i}+c_{j}\right)^{p}}=\frac{5 d^{2}\left(a_{i}+a_{j}\right)^{g}}{\left(c_{i}+c_{j}\right)^{p}} \tag{358}
\end{equation*}
$$

$$
\begin{equation*}
k^{2}=\frac{5 d^{2}\left(a_{i}+a_{j}\right)^{g}}{\left(c_{i}+c_{j}\right)} p \tag{359}
\end{equation*}
$$

find the square root of both side of (359). (360)
$\left.k=\sqrt{\frac{5 d^{2}\left(a_{i}+a_{j}\right)^{g}}{\left(c_{i}+c_{j}\right)^{p}}} \ldots \ldots \ldots \ldots \ldots . .661\right)$
recall (40).
$k=c_{i}+c j$
substitute (40) in (361).
$c_{i}+c j=\sqrt{\frac{5 d^{2}\left(a_{i}+a_{j}\right)^{g}}{\left(c_{i}+c j\right)^{p}}} \ldots \ldots \ldots \ldots \ldots$ (
In one dimension (364) becomes.
$c_{i}=\sqrt{\frac{5 d^{2}\left(a_{i}\right)^{g}}{{ }_{\left(c_{i}\right)^{2}}}} \ldots \ldots \ldots \ldots \ldots$. 3
$c_{i}=d \sqrt{\frac{5\left(a_{i}\right)^{g}}{\left(c_{i}\right)^{g}}}$.
recall (36).
$d=a_{i}+a_{j}$
in one dimension (36) becomes.
$d=a_{i}$ \qquad (370)
substitute (370) in (367). (371)
$c_{i}=a_{i} \sqrt{\frac{5\left(a_{i}\right)^{g}}{{\left(c_{i}\right)}^{g}}}$.
$c=a \sqrt{\frac{5(a)^{g}}{(c)}}$.
(373) shows that " c " does not form common prime factor with
"a" easily - REAL surdic. it also shows that $\mathrm{c}=\mathrm{a}$. .(374)
when $\sqrt{\frac{5(a)^{g}}{{ }_{(c)} p}}=1$
recall (373). \qquad
$c=a \sqrt{\frac{5(a)^{g}}{{ }_{(c)} p}}$.
square both sides of (373) ...(377)
$c^{2}=\left(a \sqrt{\frac{5(a)^{g}}{(c)^{p}}}\right)^{2}$.
$c^{2}=a^{2} \cdot \frac{5(a)^{g}}{{ }_{(c)} p}$.
cross multiplyin (379) \qquad
$c^{2} \times(c) p=a^{2} .5(a) g$
apply law of algebra. \qquad
$c^{2+p}=5 a^{2+g}$ \qquad .883)
note any value cannot just be substituted for p or g. p and g are simultaneous values.it shows binary computation. A computer program is needed to solve for p and g in (383) to verify the validity of fermats last theorem and all that beal's proposed in his conjecture
however, one can write the condition for $\mathrm{c}=3 \mathrm{a}, 5 \mathrm{a}$ etc.
Example-c = 3a.
(38)
$a \sqrt{\frac{5(a)^{g}}{{ }_{(c)} p}}=3 a$.
\qquad
divide both sides of (387) by a

$$
\sqrt{\frac{5(a)^{g}}{(c)^{p}}}=3 .
$$

square both sides of (389).
$\left(\sqrt{\frac{5(a)^{g}}{(c)} p}\right)^{2}=3^{2}$.
$\frac{5(a)^{g}}{(c)}=9$.
(c) p

5(a) ${ }^{g}=9(c){ }^{p}$
Find a.................. ${ }^{\text {3 }}$ 94)
recall (213).
$\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(c_{i}+c_{j}\right)}{ }^{p}=\frac{2}{10}$.
cross multiplyin (213) \qquad (396)
$10 d^{2}\left(a_{i}+a_{j}\right)^{g}=2 . k^{2}\left(c_{i}+c_{j}\right) p$
divide both sides of (397) by $\left(10\left(a_{i}+a_{j}\right)^{g}\right)$.
$\frac{10 d^{2}\left(a_{i}+a_{j}\right)^{g}}{10\left(a_{i}+a_{j}\right)^{g}}=\frac{2 \cdot k^{2}\left(c_{i}+c_{j}\right)^{p}}{10\left(a_{i}+a_{j}\right)^{g}}$.
$d^{2}=\frac{k^{2}\left(c_{i}+c_{j}\right)^{p}}{5\left(a_{i}+a_{j}\right)^{g}}$
find the square root of both sides of (400) \qquad
$d=\sqrt{\frac{k^{2}\left(c_{i}+c_{j}\right)^{p}}{5\left(a_{i}+a_{j}\right)^{g}}}$
$d=k \sqrt{\frac{\left(c_{i}+c_{j}\right)^{p}}{5\left(a_{i}+a_{j}\right)^{g}}}$.
recall (36) and (40) \qquad

$$
d=a_{i}+a_{j}
$$

$k=c_{i}+c j$
substitute (36) and (40) in (403)
$a_{i}+a_{j}=c_{i}+c_{j} \sqrt{\frac{\left(c_{i}+c_{j}\right)^{p}}{5\left(a_{i}+a_{j}\right)^{g}}}$
in one dimension (406) becomes.
$a_{i}=c_{i} \sqrt{\frac{\left(c_{i}\right)^{p}}{5\left(a_{i}\right)^{g}}}$
$a=c \sqrt{\frac{(c)}{5(a)} g}$.
(409) shows that "a" does not form common prime factor with "c" easily

REAL surdic. it also shows that $\mathrm{a}=\mathrm{c}$ when the below holds.
$\sqrt{\frac{(c)}{}{ }^{p(a)^{g}}}=1$
however one can write the condition for $\mathrm{a}=3 \mathrm{c}, 5 \mathrm{c}, 7 \mathrm{c}$ etc.
$\mathrm{a}=\mathrm{c}$ in two conditions
recall (411) and (375).
$\sqrt{\frac{5(a)^{g}}{(c)^{p}}}=1=\sqrt{\frac{(c)^{p}}{5(a)^{g}}}=1$.
$\sqrt{\frac{5(a)^{g}}{{ }_{(c)} p}}=\sqrt{\frac{(c)^{p}}{5(a)^{g}}} \ldots \ldots \ldots \ldots \ldots(16)$
square both sides of (416).
$\frac{5(a) g}{{ }_{(c)} p}=\frac{(c) p}{5(a)^{g}}$.
cross multiplyin (418).
$\operatorname{25(a)}^{g}{ }_{(a)} g={ }_{(c)} p_{(c)} p$
$25 a^{2 g}=c^{2 p}$
find the square root of both sides of (421).
$\sqrt{25 a^{2 g}}=\sqrt{c^{2 p}}$
5. $a^{g}={ }_{c} p$
similar number variable relationship can be derived for the other variable eg b and a - following the same step. so any pair of distinct base number variable should have two relationships for their equality. \qquad (425)

Condition for the Failure of fermat last theorem.

having said above that changing the dual set can lead to the failure of fermats last theorem. however, this cannot be proven now but a simple way to show this without need for any dual set of failure is below. \qquad .(427)
general condition for the failure of fermat last theorem .(428)
$a=c \sqrt{\frac{(c)}{5(a)^{g}}}$ is a positive integer.
$b=v a \sqrt{\frac{a^{g}}{b} h}$ is a positive integer.
$c=a \sqrt{\frac{5(a)^{g}}{{ }_{(c)} p}}$ is a positive integer.
$\mathrm{g}>0$
$h>0$
$\mathrm{p}>0$.
$\mathrm{g}=\mathrm{h}=\mathrm{p} ;(\mathrm{g}, \mathrm{h}, \mathrm{p}:$ all positive integer $)$.

VALIDITY PROVE OF THE BEAL'S CONJECTURE(1)
(436)

Instruction - discard all your supercomputers by throwing it in the dumpsite.(437).
recall (266) \qquad ..$(0.2,0.8)$ dual set \qquad (438)
$\sqrt{\frac{a^{g}}{b^{h}}}=1$ \qquad
square both sides of (266). \qquad (439)
$\left[\sqrt{\frac{a g}{b h}}\right]^{2}=1^{2} \ldots$
$\frac{a^{g}}{b^{h}}=1$.
$a^{g}=b^{h}$.
recall (383). (443)
$\mathrm{c}^{2+\mathrm{p}}=5 a^{2+g}$.
recall (31).
$\left(a_{i}+a_{j}\right)^{2+g}+\left(b_{i}+b_{j}\right)^{2+h}=\left(c_{i}+c j\right)^{2+p}$.
In one - dimension (31) becomes \qquad
$a_{i}^{2+g}+b_{i}^{2+h}=c_{i}^{2+p}$
$a^{2+g}+b^{2+h}=c^{2+p}$.
substitute (383) in (447)..
$a^{2+g}+b^{2+h}=5 a^{2+g}$.(449)
take a^{2+g} to the right side of (449). .450)
$b^{2+h}=5 a^{2+g}-a^{2+g}$
$b^{2+h}=5 a^{2+g}-a^{2+g}$
$b^{2+h}=4 a^{2+g}$. .453)
recall (269)
$\mathrm{b}=2 \mathrm{a}$.
$\mathrm{b}=2 \mathrm{a}$ is the common prime factor relationship that exists between
b and a . \qquad (455)
recall (453).
$b^{2+h}=4 a^{2+g}$
substitute (269) in (453).
$(2 a)^{2+h}=4 a^{2+g}$
apply thelaw of algebra below to (458). .459)
$a^{2+g}=a^{2} \times a^{g}$ \qquad .460)
$(2 a)^{2+h}=4 a^{2} \times a^{g}$
recall (442)
${ }_{a} g=b^{h}$.
subtitute (442) in (461) .463)
$(2 a)^{2+h}=4 a^{2} \times b^{h}$ \qquad
subtitute (269) in (464)
$(2 a)^{2+h}=4 a^{2} \times(2 a)^{h}$.
$(2 a)^{2+h}=2^{2} a^{2} \times(2 a)^{h}$
apply the law of algebra to (467)
$(2 a)^{2+h}=(2 a)^{2} \times(2 a)^{h}$.
apply the law of algebra to (469) (.470)
$(2 a)^{2+h}=(2 a)^{2+h}$
$(2 a)^{2+h}-(2 a)^{2+h}=0$
(472) means $\mathrm{b}=2 \mathrm{a}$ is a solution to the A . beal's conjecture. since the the left side of (34) is equal to the right side. this means
the below exists. \qquad (473)
$\mathrm{a}^{\mathrm{X}}+(2 a)^{y}=c^{z}$ \qquad .(474)
this proves that A.beal's conjecture is 50% valid.....(475)
Q : are $\mathrm{x}, \mathrm{y}, \mathrm{z}$ integers. even if A.beal's conjecture is 50% valid. thisis a very important question(46)
recall (442).
${ }_{\mathrm{a}} \mathrm{g}_{=} b^{h}$.442)
substitute (269) in (442). .478)
${ }_{\mathrm{a}} \mathrm{g}^{\mathrm{g}}=(2 a)^{h}$.
$g=\log _{a}(2 a)^{h}$
$g=\log _{a} 2^{h} h$
using the law of logarithm below on (481).
$\log _{\mathrm{V}} \mathrm{ab}=\log _{\mathrm{V}} \mathrm{a}+\log _{\mathrm{V}} \mathrm{b}$.
$g=\log _{a} 2^{h}+\log _{a} a^{h}$.
using the law of logarithm below on (484).
$\log _{\mathrm{V}} \mathrm{a}=b \log _{\mathrm{V}} \mathrm{a}$.
$g=h \log _{a} 2+h \log _{a} a$.
using the law of logarithm below on (487).
$\log _{\mathrm{V}} \mathrm{v}=1$.
$g=h \log _{a} 2+h \times 1$
$g=h \log _{a} 2+h$.
factorize h in (490).
$g=h\left(\log _{a} 2+1\right)$. (492)

As said above for any common prime factor reationship between b and a . the value of " a " is always 5 .it does not change.
it is constant 5 \qquad .(493)
substitute $\mathrm{a}=5 \mathrm{in}$ (492)..
$g=h(\log 52+1)$.
the only problem here with A.beals is the $\log 52 . \log 52$ is not an integer $i t$ has a value of 0.4307 . so if h takes integer value, g cannot be an integer for any integer h because of $\log 52$. so $\log 52$ is the last burden that broke the legs of the camel. it is not an integer. so A.beal's fails here by 50%.
so $b=2 a$ but x is not an integer so we don't need to check for p
which determines the integer value of z.
In order to justify A.beals we need to probe the other common prime factor relationship - a and b, c and a, a and c ,
c and b, b and c . \qquad (497).

Prove that : $\mathrm{a}=2 \mathrm{~b}$ is a solution to (1).
recall (240). .(499)
$b=2 a \sqrt{\frac{a g}{b^{h}}}$.
make "a" the subject of the formula in (240). .(500)
square both sides of (240). .(501)

$$
\begin{align*}
& b^{2}=\left(2 a \sqrt{\frac{a g}{b} h}\right)^{2} \ldots \ldots . \tag{502}\\
& b^{2}=(2 a)^{2}\left(\sqrt{\frac{a g}{b^{h}}}\right)^{2} . \\
& b^{2}=4 a^{2} \frac{a^{g}}{b^{h}} \ldots \ldots \ldots .
\end{align*}
$$

cross multiplyin (504)
$b^{2} \times b^{h}=4 a^{2} \times a g$
divide both sides of (506) by $4 a^{g}$ \qquad . 507)
$b^{2} \frac{b^{h}}{4 a^{g}}=a^{2}$.
rewrite (508) \qquad (509)
$a^{2}=b^{2} \frac{b^{h}}{4_{a}^{g}}$.
find the square root of both sides of (510).
$\left(a^{2}\right)^{\frac{1}{2}}=\left(b^{2} \frac{b^{h}}{4 a g}\right)^{\frac{1}{2}}$
\qquad
$a=\frac{b}{2}\left(\frac{b^{h}}{a g}\right)^{\frac{1}{2}}$.
$a=\frac{b}{2} \sqrt{\left(\frac{b^{h}}{a} g\right.}$.
for $\mathrm{a}=2 \mathrm{~b}$ then the below holds in simplicity.
$\sqrt{\left(\frac{b^{h}}{a^{g}}\right)}=4$.
square both sides of (516)
$\left(\sqrt{\left(\frac{b^{h}}{a g}\right)}\right)^{2}=4^{2}$.

$$
\begin{equation*}
\left(\frac{b^{h}}{a^{g}}\right)=16 . \tag{519}
\end{equation*}
$$$b^{h}=16 a^{g}$(520)

recall (453) \$21)
$b^{2+h}=4 a^{2+g}$ 453)
substitute $\mathrm{a}=2 \mathrm{~b}$ in (453). (522)$b^{2+h}=4(2 b)^{2+g}$(523)
apply thelaw of algebra in (523). (524)
$b^{2} \times b^{h}=4(2 b)^{2}(2 b) g$ (525)
substitute(520) in (525) (526)
$b^{2} \times 16 a g=4(2 b)^{2}(2 b) g$ (527)
substitute $(\mathrm{a}=2 \mathrm{~b})$ in (527). (528)
$\left.b^{2} \times 16(2 b)\right)^{g}=4(2 b)^{2}(2 b)^{g}$ (529)
divide both sides of (84) by $(2 b)^{g}$ (530)
$\frac{b^{2} \times 16(2 b)^{g}}{{ }_{(2 b)^{g}}^{g}}=\frac{4(2 b)^{2}(2 b)^{g}}{{ }_{(2 b)^{g}}^{g}}$ (531)$b^{2} \times 16=4(2 b)^{2}$.532)
apply the law of algebra in (532) (533)
$b^{2} \times 16=4 \times 2^{2} \times b^{2}$ 634)
$b^{2} \times 16=4 \times 4 \times b^{2}$ 635)
$b^{2} \times 16=16 \times b^{2}$. (536)$b^{2} \times 16=b^{2} \times 16$.537)
(96) proves that $\mathrm{a}=2 \mathrm{~b}$ is a common prime factor solution to (1)Q : are x, y and z integers.(538)
recall (520). (539)
$b^{h}=16 a^{g}$(520)substitute $(a=2 b)$ in (520)..
\qquad
$b^{h}=16(2 b) g$ 541)
$h=\log b 16(2 b){ }^{g}$ (542)
apply thelaw of logarithm in (542). \qquad
$h=\log b 16+\log _{b}(2 b)^{g}$
$h=\log b 16+g \log b(2 b)$
$h=\log _{b} 16+g\left(\log _{b} 2+\log _{b} b\right)$.
$h=\log _{b} 16+g\left(\log _{b} 2+1\right)$.
b has no constant value from the theory. so from (547)
since we need an integer answer, then we say let $b=2$.
substituteb $=2$ in (548) .(\$19)
$h=\log 216+g(\log 22+1)$.
$h=\log 22^{4}+g(\log 22+1)$.
apply thelaw of logarithm in (551). (552)
$h=4 \log _{2} 2+g(1+1)$.
$h=(4 \times 1)+g(1+1)$ (554)
$h=4+2 g$. \qquad (555)
this approach was used to show how the logarithm vanished.
the simpler approach is below. (56)
$b^{h}=16 a g$.
substitute $(a=2 b)$ and $(b=2)$ in (520).
$2^{h}=16(2 \times 2)^{g}$
$2^{h}=2^{4}\left(2^{2}\right) g$
$2^{h}=2^{4} \times 2^{2 g}$
apply thelaw of algebra in (560). .861)
$2^{h}=2^{4+2 g}$
$h=4+2 g$.
so if g is an integer then h will be an integer. so both x and y are integers. so we need to check if z and c willalso be an integer. (564)
recall (383). \qquad (565)
$\mathrm{c}^{2+\mathrm{p}}=5 a^{2+g}$ \qquad
applying the law of logarithm in (383)............ 866)
$2+\mathrm{p}=\log _{\mathrm{c}} 5 a^{2+g}$ \qquad
applying the law of logarithm to(567). .(568)
$2+\mathrm{p}=\log _{\mathrm{c}} 5+\log _{\mathrm{c}} a^{2+g}$
$2+\mathrm{p}=\log _{\mathrm{c}} 5+(2+g) \log _{\mathrm{c}} a$ (570)
since $\mathrm{b}=2$, then $\mathrm{a}=4$ since $\mathrm{a}=2 \mathrm{~b} \ldots \ldots \ldots \ldots$. (571)

Substitute $(\mathrm{a}=4)$ in (570)
$2+\mathrm{p}=\log _{\mathrm{C}} 5+(2+g) \log _{\mathrm{c}} 4$.
(573) shows that if c takes a certain integer value. p will not be an integer.this willin turn make z a non-integer. p is not an integer because of the two different $\log _{\text {functions. }}-\log _{c} 5, \log _{c} 4$ If $c=5,: \log 55=1=$ integer, but $\log 54=0.8614=$ non - integer. so A.beal's conjecure is valid here ($98 \%-\mathrm{a}=2 \mathrm{~b}, \mathrm{x}$ and y are integers) but invalid ($2 \%-\mathrm{z}$ is not an integer). so A.beal's conjecture is totally invalid here (100%. - since z is not an integer).
A. beal's however still has 95% Human Sympathy Integer Validity (HSIV) for his conjecture. since he is the first to propose the closest solution to a most difficult problem in number theory. fermat discussesd the powers and beal's discussed the base numbers. so, who is more important. well, whether beal's or fermat. a fact remains,: t it is impossible to prove the fermat last theorem without solving the beal's conjecture. fermat is like the house. beal's is the foundation. a house will not stand without a foundation. so if anybody proved the fermat last theorem without discussing the validity of the beal's conjecture such a writing is invalid.
(573) is also another important equation in thestudy of either fermats
last theorem or the beal's conjecture. it is called the validity of the
fermats last theorem in the $(0.2,0.8)$ dual set. \qquad (57)

It proves that fermat last Theorem remains valid in thisdual set as earlier explained. in addition, (573) is explaining the invalidity of the goldbach conjecture written below. An even domain must not coexist with an odd domain in a real life view of number theory. the odd is the 5 and the even is the 4 in the logarithm function. Either can exist independently but both must not exist at the same time. if 5 and 4 coexist then it means the numbers used for that particular computation are not from. the real number line. so since not from the real number line then computation with these numbers give Imaginative models, not real life models and imaginative models are not useful. Furthermore - 5 shows the most important property of the real number line (distinction - no number is repeated on the real number line) while $4=(2+2)$ nullifies this property of - distinction. so disagreement and confusion starts. so (573) is called confusion equation of the
(0.2,0.8)dual set. .(575)

In volume of a crude reserve estimation. a geophysicist submitted the below numbers as volume values for three oil wells.

54,40506
45,00002
45,7864748 \qquad
4 and 5 must not exist together. so the three values above are not correct. the above numbers are called fantasy numbers generated from
fantasy we ll models - computer program model.
correct values of oil well volumes are below
51,735931
73,519737
71,379533
note $2,46,8$ are not included. what this means in baby knowlegde
is that no part of the earth is even or uniform down to the subsurface.
also it is impossiblefor the most technologically advanced machine
Either in thought or reality to carve out a small uniform rock sample
from an existing rock. it definitely willstill have some rough - odd sides
(uneven sides) \qquad .(578)
added note : Prove if $\mathrm{b}=3 \mathrm{a}$ is a solution to (1). .879)
recall (240). .(580)
$b=2 a \sqrt{\frac{a^{g}}{b}}$.
if $b=3 \mathrm{a}$, then \qquad
$\sqrt{\frac{a g}{b} h}=\frac{3}{2}$. .(82)
square both sides of (582).
$\left(\sqrt{\frac{a^{g}}{b h}}\right)^{2}=\left(\frac{3}{2}\right)^{2}$.
$\frac{a^{g}}{b^{h}}=\frac{9}{4}$.
cross multiplyin (585). (586)
$4 a^{g}=9 b^{h} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.............
recall (453)
$b^{2+h}=4 a^{2+g}$
substitute $(\mathrm{b}=3 \mathrm{a})$ in (453).................(589)
$(3 a)^{2+h}=4 a^{2+g}$
apply thelaw of algebra in (590)
$(3 a)^{2+h}=4 a^{2} \times a^{g}$
rewrite (592)
$(3 a)^{2+h}=a^{2} \times 4 a^{g}$
substitute (587) in (594).
$(3 a)^{2+h}=a^{2} \times 9 b^{h}$.
subtitute $(b=3 a)$ in (596)
$(3 a)^{2+h}=a^{2} \times 9(3 a)^{h}$
$(3 a)^{2+h}=a^{2} \times 3^{2} \times(3 a)^{h}$
$(3 a)^{2+h}=a^{2} \times 3^{2} \times(3 a)^{h}$
apply thelaw of algebra in (600) (601)
$(3 a)^{2+h}=a^{2} \times 3^{2} \times 3^{h} \times a^{h}$.
apply thelaw of algebra in (602) ..(603)
$(3 a)^{2+h}=a^{2+h} \times 3^{2+h}$
$(3 a)^{2+h}=(3 a)^{2+h}$ \qquad
$\mathrm{b}=3 \mathrm{a}$ is also a solution but one needs to verify if $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are integers.
solving this proof apart from the first example seems using one equation
to get itself again. ANS : No. (449) and (453) are thesame. .(606)

JOY TO A.BEALS. (607)

VALIDITY PROVE OF THE A.BEALSCONJECTURE(2)
there are infinetly many possible dual sets. only one of these can validate or invalidate A. beals conjecture. how will this set be found? the writer is not a computer scientist?
however, from high intelligence of the writer. this set is not a dual set but a tetraset called the 4 -input synchronous tetra set.
($0.5,0.5,0.5,0.5$) as previously discussed. it is called timeprogramming not binary - dual set. A time program faults, operates, processes more than one million times e.t.c faster tha n a binary computer - program.
so since timeis related to only one quantity in physics
called frequency(f) as stated below
$f=\frac{1}{t(s)}$
this means A.beals was not using a binary computer. he used a synchronous 4 -input "super computer"(S4ISC)-
in the terms of the writer. thissupercomputer used by A.beals has a timeor processor speed rated in hertz or something - seconds.
this leads us to say a binary program is not rated in seconds but in per - binary -input (PBI). a binary computer cannnot detect
the A.beals common prime factor solution.
the 4 -input synschronous system takes equal and identical inputs
that do not show timedifference of process between the
right hand side and the left hand side of (1)
$0.5-0.5=0$
if : $0.1+0.9=$ RHS $=0.3+0.7=0.2+0.8(a+b:$ RHS not defined $)$ - dissolution of time on the right - Timedilation.Timedilation as a phenomenon exists in physics in the theory of special relativity (Einstein).this is the application in maths.
time dilation must be corrected.
$0.9-0.1=0.8,0.7-0.3=0.4$, one side of the equation is faster
than the other, so this gives
non integer answers. $-0.8-0.4=0.4$.
recall (51) and (1) ..(611)
$\mathrm{A}+\mathrm{B}=1$..(lineequation).
$a^{x}+b^{y}=c^{z}$. \qquad
$0.5+0.5=1 \ldots \ldots \ldots(612)$
$0.5+0.5=0.5+0.5$.
multiply both sides of (613) by 10 .
$5+5=10 \ldots \ldots \ldots \ldots \ldots \ldots615)$
from (612) (616)
$\mathrm{A}=\frac{5}{10}$ and $\mathrm{B}=\frac{5}{10}$. .(617)
using the tetraset $(0.5,0.5,0.5,0.5)$.
recall (51) and (47)
$A+B=1$.
recall 47...........................(620)
$\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(c_{i}+c j\right)^{p}}+\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}\left(c_{i}+c_{j}\right)} p=1$.
substitute the tetraset in (47).
$A=\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(c_{i}+c_{j}\right)} p=0.5$.
$B=\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}{ }_{\left(c_{i}+c_{j}\right)}{ }^{p}}=0.5$..
solve (622).
$\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{k^{2}{ }_{\left(c_{i}+c_{j}\right)} p}=\frac{5}{10}$.
cross multiplyin (625)
$10 d^{2}\left(a_{i}+a_{j}\right)^{g}=5 k^{2}\left(c_{i}+c_{j}\right)$.
make 10 the subject of the formula in (627)
$10=\frac{5 k^{2}\left(c_{i}+c_{j}\right)^{p}}{d^{2}\left(a_{i}+a_{j}\right)^{g}}$.
recall (623). .(630)
$\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}{ }_{\left(c_{i}+c_{j}\right)} p}=0.5$.
$\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}{ }_{\left(c_{i}+c_{j}\right)} p}=\frac{5}{10}$.
cross multiplyin (632).
$10 f^{2}\left(b_{i}+b_{j}\right)^{h}=5 k^{2}\left(c_{i}+c j\right)^{p}$
substitute (629) in (634).

divide both sides of (636) by $5 k^{2}\left(c_{i}+c j\right)$. \qquad .637)
$\frac{5 k^{2}\left(c_{i}+c_{j}\right)}{{ }_{5 k^{2}\left(c_{i}+c_{j}\right)} p_{d}^{2}{ }_{\left(a_{i}+a_{j}\right)^{g}}^{g}} f^{2}\left(b_{i}+b_{j}\right) h=\frac{5 k^{2}\left(c_{i}+c_{j}\right)^{p}}{5 k^{2}\left(c_{i}+c_{j}\right)} p \ldots \ldots$.
$\frac{1}{1 \times d^{2}\left(a_{i}+a_{j}\right)^{g}} f^{2}\left(b_{i}+b_{j}\right)^{h}=1$.
$\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{d^{2}\left(a_{i}+a_{j}\right)^{g}}=1$.
$f^{2}\left(b_{i}+b_{j}\right)^{h}=d^{2}\left(a_{i}+a_{j}\right)^{g}$

In one dimensional space (641) becomes
$f^{2} b_{i}^{h}=d^{2} a_{i} g$.
make f the subject of the formula in (643)
$f^{2}=\frac{d^{2}{ }_{a} g}{b_{i}{ }^{h}}$.
find the square root of both sides of (645). \qquad

$f=d \sqrt{\frac{a_{i}{ }^{g}}{b_{i} h}}$
recall (36) and (38)
$d=a_{i}+a_{j}$
$f=b_{i}+b_{j}$
in one dimension (36) and (38) becomes.
$d=a_{i}$.
$f=b_{i}$. .652)
substitute (651) and (652) in (648)
$b_{i}=a_{i} \sqrt{\frac{a_{i} g}{b_{i}^{h}}}$.
$b=a \sqrt{\frac{a^{g}}{b}}$.
Findc.. ..(656)
recall (625).
$\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(c_{i}+c_{j}\right)}{ }^{p}=\frac{5}{10}$.
cross multiplyin (625). \qquad
$10 d^{2}\left(a_{i}+a_{j}\right) g^{g}=5 k_{\left(c_{i}+c_{j}\right)} p$
rewrite (659).....................(660)
${ }_{5 k}^{2}{ }_{\left(c_{i}+c_{j}\right)} p_{=10 d^{2}\left(a_{i}+a_{j}\right)} g$
divide both sides of (661) by $\left(5\left(c_{i}+c_{j}\right){ }^{p}\right)$. \qquad
$\frac{5 k^{2}\left(c_{i}+c_{j}\right)^{p}}{5\left(c_{i}+c j\right)^{p}}=\frac{10 d^{2}\left(a_{i}+a_{j}\right)^{g}}{5\left(c_{i}+c j\right)}$
$k^{2}=\frac{2 d^{2}\left(a_{i}+a_{j}\right)^{g}}{\left(c_{i}+c_{j}\right)} p$
find the square root of both side of (664). \qquad (665)
$k=\sqrt{\frac{2 d^{2}\left(a_{i}+a_{j}\right)^{g}}{\left(c_{i}+c j\right)^{p}}}$
recall (40). \qquad .(667)
$k=c_{i}+c j$ (40)
substitute (40) in (666). \qquad .(668)
$c_{i}+c j=\sqrt{\frac{2 d^{2}\left(a_{i}+a_{j}\right)^{g}}{\left(c_{i}+c_{j}\right)} p}$.

in one dimension (669) becomes
$c_{i}=\sqrt{\frac{2 d^{2}{ }_{\left(a_{i}\right)} g}{\left.{ }_{\left(c_{i}\right)}\right)^{g}}}$.
$c_{i}=d \sqrt{\frac{2\left(a_{i}\right)^{g}}{\left(c_{i}\right)^{p}}}$.
recall (36). \qquad (673)
$d=a_{i}+a_{j}$
in one dimension (36) becomes.
$d=a_{i}$. 675)
substitute(675) in (672). (676)
$c_{i}=a_{i} \sqrt{\frac{2\left(a_{i}\right)^{g}}{\left(_{c_{i}}\right)^{p}}}$
$c=a \sqrt{\frac{2(a)^{g}}{{ }_{(c)} p}}$.
(678) shows that " c " does not form common prime factor with " a " easily - REAL surdic. it also shows that $\mathrm{c}=\mathrm{a}$.(679)
when $\sqrt{\frac{2(a)^{g}}{(c)^{p}}}=1$
recall (678). \qquad
$c=a \sqrt{\frac{2(a)^{g}}{{ }_{(c)} p}}$.
square both sides of (678) ..(682)
$c^{2}=\left(a \sqrt{\frac{2(a)^{g}}{(c)^{g}}}\right)^{2}$
$c^{2}=a^{2} \cdot \frac{2(a)^{g}}{{ }_{(c)} p}$
cross multiplyin (684)
$c^{2} \times(c) p=a^{2} .2(a) g$
apply law of algebra.
$c^{2+p}=2 a^{2+g}$
note any value cannot just be substituted for p or g . p and g are
simultaneous values. a computer program is needed to solve for
p and g in (688)
Take note
$\mathrm{a} \neq 5$ here since one is in another type of set.
recall (688)..............692)
$\mathrm{c}^{2+\mathrm{p}}=2 a^{2+g}$
applying the law of logarithm to (688) ...(693)
$2+\mathrm{p}=\log _{\mathrm{c}} 2 a^{2+g}$
applying the law of logarithm to (694). .695)
$2+\mathrm{p}=\log _{\mathrm{c}} 2+\log _{\mathrm{c}} a^{2+g}$
$2+\mathrm{p}=\log _{\mathrm{c}} 2+(2+g) \log _{\mathrm{c}} a$.
studying (697). it will be seen that (697) will be a linear integer equation if
$\mathrm{c}=2, \mathrm{a}=2$ (simplest case) . (698)
so we can say $\mathrm{b}=2 \mathrm{a}$ where $\mathrm{a}=2$. on e willobserve that in thiscase I started from
the output (c^{Z}) so as to understand what happens in the processing stages of the numbers in (1). the ouput is the most important unit of a system that takes an input.
so if $b=2 a$ then it means $b=2$ a must satisfy (1). if it does not satisfy (1) then A.beals
conjecture will be finally, as a matter of final conclusion
be termed invalid forever.
recall (697).
$2+\mathrm{p}=\log _{\mathrm{c}} 2+(2+g) \log _{\mathrm{c}} a$.
substitute $(\mathrm{c}=2)$ and $(\mathrm{a}=2)$ in (697).
$2+\mathrm{p}=\log 22+(2+g) \log 22 \ldots \ldots \ldots \ldots \ldots \ldots(702)$
$2+\mathrm{p}=1+(2+g) \times 1 \ldots \ldots \ldots \ldots \ldots \ldots . .(703)$
$2+\mathrm{p}=1+(2+g) \ldots \ldots \ldots \ldots \ldots . .(704)$
$2+\mathrm{p}=1+2+g$
$p=1+g$.
(706) shows that p can take integer value and g also can take an integer value with the power of p greater than that of g by 1 . so x and $\mathrm{z}, \mathrm{a}, \mathrm{c}$ are integers.
finally, we need to verify if $b=2 a$ satisfies (1) and then if h is an integer.
recall (655) (708)
$b=a \sqrt{\frac{a}{a^{h}}}$.
if $\mathrm{b}=2 \mathrm{a}$ then $\sqrt{\frac{a^{g}}{b}}=2$. \qquad
$\sqrt{\frac{a^{g}}{b} h}=2$. \qquad
square both sides of (710) \qquad
$\left(\sqrt{\frac{a g}{b h}}\right)^{2}=2^{2}$
$\frac{a^{g}}{b^{h}}=4$.
$a^{g}=4 b^{h}$. \qquad
recall (688)
.(15)
$\mathrm{c}^{2+\mathrm{p}}=2 a^{2+g}$
recall (447)...................(716)
$a^{2+g}+b^{2+h}=c^{2+p}$.
substitute $(\mathrm{b}=2 \mathrm{a})$ and (688) in (447).
$a^{2+g}+(2 a)^{2+h}=2 a^{2+g}$
$(2 a)^{2+h}=2 a^{2+g}-a^{2+g}$
$(2 a)^{2+h}=a^{2+g}$. \qquad
apply thelaw of algebra in (720).
$(2 a)^{2+h}=a^{2} \times a^{g}$ \qquad
substitute (714) in (722).
$(2 a)^{2+h}=a^{2} \times 4 b^{h}$.
substitute $=2 \mathrm{a}$ in (724)
$(2 a)^{2+h}=a^{2} \times 4(2 a)^{h}$.
$(2 a)^{2+h}=a^{2} \times 2^{2}(2 a)^{h}$
apply the law of algebra to (727).
$(2 a)^{2+h}=(2 a)^{2} \times(2 a)^{h}$
apply the law of algebra in (729).
$(2 a)^{2+h}=(2 a)^{2+h}$.
since the left side of (731) is equal to the right side, then it means
$\mathrm{b}=2 \mathrm{a}$ is a solution to (1). this means b factors "a" by a common prime factor of 2 . finally we need to verify if h is an integer.
recall (714). \qquad .(732)
${ }_{a}{ }^{g}=4 b^{h}$. \qquad
apply the law of logarithm to (714)
$g=\log _{a} 4 b^{h}$. \qquad
apply the law of logarithm to (734)
$g=\log _{a} 4+\log _{a} b^{h}$.
apply the law of logarithm to (736). \qquad
$g=\log _{a} 4+h \log _{a} b$.
substitute $(\mathrm{b}=2 \mathrm{a})$ in (738).
$g=\log _{a} 4+h \log _{a} 2 a$. . 440)
$\log _{a} 2 a$ in (740) sets a constrain on "a". so "a" can only take 2 as value for integer value of g . it is impossible for " a " to take 4
as value.-end reasoning. also $\log _{a} 2 a$ also shows that "a" can take 2 n
values for (740) to be an integer equation since "a" can take 2 as value - mathematical reasoning. so, how is thisconfusion of the existence of 4 as a value of "a" understood, since it exists.
this also means, how is the end reasoning equal to the
mathematical reasoning or say prove the
end reasoning incorrect? \qquad (741)

ANS : this is because $\log _{2}$ can be converted to base 4 , base 8,16 etc and it willgive integer answers. having in mind that "a" must be 2
in a sense \qquad (74)

FORMULA: $\log _{\mathrm{X}} y p=1 / y \log _{x} p$.
Apply :change of base :
Ex 1: $\log 2 \mathrm{~b}=\frac{\log 4 \mathrm{~b}}{\log 42}=\frac{\log 4 \mathrm{~b}}{\log 2^{2} 2}=\frac{\log 4 \mathrm{~b}}{1 / 2}=2 \log 4 \mathrm{~b}$; so b can be $4, \mathrm{a}=2$
Ex $2: \log 2 \mathrm{~b}=\frac{\log 8 \mathrm{~b}}{\log 82}=\frac{\log 8 \mathrm{~b}}{\log 2^{3} 2}=\frac{\log 8 \mathrm{~b}}{1 / 3}=3 \log 8 \mathrm{~b}$; so b can be $8, \mathrm{a}=4=2^{2}$
so the 2^{n} values of "a" hides in b. since $b=2 a$. "a" naturally cannot have 2^{n} value for $\mathrm{n}>1$ excepts it hides in " b " like a baby in the womb of a pregnant lady. $\mathrm{a}=$ baby, $\mathrm{b}=$ pregnant lady \qquad ...(744)
Log transform ation \qquad
the log transform ation in EX1 and EX2 is a rare type. not Familair to a large number of persons wholive in the modern world but it exists and true. I was fortunate I had a teacher who knew it by example. my secondary school teacher taught me-Old British - textbook - during J.E.T.Sclass.
it is usually not published in modern books with examples. complex algebraic problems in log can be solved using the definition of logarithm.
so the above examples, explains the definition of logarithm.
DEFINE : logarithm : the logarithm of a number is the power - (whether integer or non integer, whether positive or negative) to which the base can be raised to get that number. ..(47)
so " a " can take 2 n values-(2,4,8 etc). so "a" becomes the hidden function as a result of logarithmic transform ation. "a" hides in b . so b is pregnant with "a". theend reasoning is the static judgement of the human eyes which is acurately correct in a sense but incorrect in the broad knowlegde of logarithm. this means logarithm is more complex than what the human eyes can give static judgement.in final conclusion, theend reasoning is
100% incorrect. \qquad .(748)
substitute $(\mathrm{a}=2)$ in (740).................(741)
$g=\log _{2} 4+h \log _{2} 2 \times 2$.
$g=\log _{2} 4+h \log _{2} 4$.
$g=\log _{2} 2^{2}+h \log _{2} 2^{2}$
apply thelaw of logarithm to(744).
$g=2 \log 22+2 h \log 22$.
apply the law of logarithm to (746).
$g=2 \times 1+2 h \times 1 \ldots \ldots \ldots \ldots \ldots \ldots . . .(748)$
$g=2+2 h$.
find h in (749).
$2 h=g-2$.
$h=\frac{g-2}{2}$.
(752) shows that $g \neq 1$. so g takes only $(n+2)$ values where $" n$ " is an
element of theset $-[0,2,4,6,8 \ldots]$. \qquad
so if g takes the above values, then h will be an integer.
this proves that h is also an integer. \qquad (754)
so if $g=4$. ...(755)
$h=\frac{g-2}{2}=\frac{4-2}{2}=\frac{2}{2}=1$
then $\mathrm{h}=1$. - for $\mathrm{a}=2$
so one can congratulate A.beal's that his conjecture holds true - valid 100% - only here for $\mathrm{b}=2 \mathrm{a}$ \qquad (78)
$a^{x}+b^{y}=c^{z}$ \qquad
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}$ and z are positive integers and x, y and z are all greater
than 2 , then A, B and C must have a common prime factor.

$$
\begin{equation*}
\text { General meaning of } \mathrm{b}=2 \mathrm{a} \text {. } \tag{759}
\end{equation*}
$$

$\mathrm{b}=2 \mathrm{a}$ means the below expressions exist in number theory

$a^{x}+b^{y}=c^{z}$

1) $2^{x}+(2 \times 2=4)^{y}=k^{z}$
$2^{x}+4^{y}=k^{z}$
2) $3^{x}+(2 \times 3=6)^{y}=l^{m}$

$$
3^{x}+6^{y}=l^{m}
$$

3) $4^{x}+(2 \times 4=8)^{y}=m^{j}$

$$
4^{x}+8^{y}=m^{j}
$$

4) $5^{x}+(2 \times 5)^{y}={ }_{h} p$
$5^{x}+10^{y}={ }_{h}^{p}$
$\ldots \ldots \ldots . . .+\ldots \ldots \ldots \ldots .=\ldots \ldots \ldots$.
for $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{m}, \mathrm{j}, \mathrm{p}, \mathrm{k}, \mathrm{l}, \mathrm{m}, \mathrm{h}-(1-(+\infty))$ and being positiveintegers.
Example 1-b $=2 \mathrm{a}$. \qquad ($\mathbf{6 1}$)
In baby explanation. $b=2$ a means $i(b)$ am two times of something - (a)
that exists in 2^{n} forms. so any day, any time, in any generation.
b willstill factor a out by 2 which is a prime number
when a solution is needed. \qquad .(762)
recall : $\mathrm{g}=4 \ldots \ldots$ (B5); $\mathrm{p}=1+g \ldots$ (706); $=1+4=5 ; h=1 \ldots$ (757).
recall (447)..................(764)
$a^{2+g}+b^{2+h}=c^{2+p}$
substitute the below values in (447).
$\mathrm{a}=2, \mathrm{~b}=4, \mathrm{c}=2, \mathrm{~g}=4, \mathrm{~h}=1, \mathrm{p}=5$
$2^{2+4}+4^{2+1}=2^{2+5}$
$2^{6}+4^{3}=2^{7}$. \qquad (767) - (Alex number - 1)
$2^{2+4}+2^{2(3)}=2^{2+5}$
$2^{6}+2^{6}=2^{7}$. (769)
$2^{r}+2^{r}=2^{r+1}$ \qquad (classic formula).
(770) is called the lower pythagorean of 2 -(sixth). it is a statement that created the origin of the fermats last theorem. the lower pythagorean of 2 means - equality only of all the powers(2 - only) or base numbers. so it is not possible for all the powers to be equal $(6,6,7)$ and all base numbers integers at thesame time. the equal powers cannot exceed 2 for binary power sums. since what is equal in (770) is 2 . \qquad ...(771)

Mathematical prove of the lower pythagorean of 2 - for $\mathrm{b}=2 \mathrm{a}$. \ldots...(772)
$a^{2+g}+b^{2+h}=c^{2+p}$ \qquad .(447)
c must be $2 ; \mathrm{c}=2$; a takes 2^{n} values; $\mathrm{a}=2^{\mathrm{n}}$ \qquad
$c^{2+p}=2 a^{2+g}$ (774)
$2^{2+p}=2\left(2^{n}\right)^{2+g}$
$2^{2+p}=2\left(2^{n(2+g)}\right)$. \qquad
apply thelaw of algebra in (776) (77)
$2^{2+p}=2^{1+n(2+g)}$.
$2^{2+p}=2^{1+2 n+g n}$.
$2+p=1+n(2+g)$.
$p=2 n+g n-1$.
substitute $(\mathrm{b}=2 \mathrm{a})$, (779) in (447)
$a^{2+g}+(2 a)^{2+h}=2^{1+2 n+g n}$. \qquad
apply, thelaw of algebra in (782).
$a^{2} \cdot a^{g}+(2 a)^{2+h}=2^{1+2 n+g n}$.
recall (714)
${ }_{a} g=4 b^{h}$.
substitute(772) in (714).
$a^{g}=4(2 a)^{h}$
substitute(773) in (787)
$a^{g}=4\left(2 \cdot 2^{\mathrm{n}}\right)^{h}$
apply thelaw of algebra in (789). .(790)
${ }_{a} g=2^{2}\left(2^{1+n}\right) h$
${ }_{a} g=2^{2} \cdot 2^{h(1+n)}$.
apply the law of algebra in (792). .(793)
$a^{g}=2^{2+h(1+n)}$.
recall (784)...............(795)
$a^{2} \cdot a^{g}+(2 a)^{2+h}=2^{1+2 n+g n}$
substitute(794) in (784).
(796)
$a^{2} \cdot 2^{2+h(1+n)}+(2 a)^{2+h}=2^{1+2 n+g n}$
$\left(2^{n}\right)^{2} \cdot 2^{2+h(1+n)}+\left(2 \cdot 2^{n}\right)^{2+h}=2^{1+2 n+g n}$.
$2^{2 n} \cdot 2^{2+h(1+n)}+\left(2^{1+n}\right)^{2+h}=2^{1+2 n+g n}$.
$2^{2 n+2+h(1+n)}+2^{(1+n)(2+h)}=2^{1+2 n+g n}$.
$2^{2 n+2+h+h n}+2^{2+h+2 n+h n}=2^{1+2 n+g n}$.
$2^{2 n+2+h+h n}+2^{2 n+2+h+h n}=2^{1+2 n+g n}$.
$2\left(2^{2 n+2+h+h n}\right)=2^{1+2 n+g n}$.
$2^{1+2 n+2+h+h n}=2^{1+2 n+g n}$.
$1+2 n+2+h+h n=1+2 n+g n$.
$2=1-1+2 n-2 n+g n-h-h n$. (806)
$2=g n-h-h n$.
$2=g n-h(1+n) \ldots \ldots \ldots \ldots \ldots \ldots . . .($ Wells key $1-$ Generating function $)$.
$2+h(1+n)=g n$. .(809)
$g n=2+h+h n \ldots \ldots \ldots(810)$
recall (802).
$2^{2 n+2+h+h n}+2^{2 n+2+h+h n}=2^{1+2 n+g n}$.
substitute (810) in (802). .(812)
$2^{2 n+2+h+h n}+2^{2 n+2+h+h n}=2^{1+2 n+2+h+h n}$.
let $r=2 n+2+h+h n$.
substitute (814) in (813).
$2^{\mathrm{r}}+2^{r}=2^{r+1}$. $(816)=(770)$
so two equations can be used to write number examples of the lower pythagorean of 2 . .(87)

1) Generating function
2) classic formula \qquad
Generating function - usage.
one will pick the value of $\mathrm{g}, \mathrm{h}, \mathrm{n}$ for (808) to hold. \qquad
$2=g n-h(1+n) \ldots($ Wells key $1-$ Generating function $)$. (808)

Examples. \qquad
$\mathrm{gn}=10, h(1+n)=8$
$\mathrm{gn}=12, h(1+n)=10$.
what is the significance of a Generating function? It proves that the mathematical models for all power sums that exists can be derived mathematically without using a computer search.
Example1. .824)
$\mathrm{a}=2^{n} ; \mathrm{n}=1, \mathrm{a}=2^{1}=2 ; \mathrm{a}=2, \mathrm{~b}=2 \mathrm{a}=4 ; \mathrm{g}=10, \mathrm{~h}=4$.
$\mathrm{gn}=10, h(1+n)=8$.
$n=1, h=4, g=10$.
$2=g n-h(1+n)$. .(808)
$2=(10 \cdot 1)-4(1+1)$
$2=10-4(2)$
$2=10-8$
recall (781).
$p=2 n+g n-1$
$p=2(1)+(10 * 1)-1$
$p=2+10-1$
$p=11$
recall (447). (82)
$a^{2+g}+b^{2+h}=c^{2+p}$.
$a=2, b=4, c=2, g=10, h=4, p=11$.
substitute (830) in (447). (831)
$2^{2+10}+4^{2+4}=2^{2+11}$
$2^{12}+4^{6}=2^{13}$(Alex number - 2)
$8192=8192$
$2^{12}+2^{2(6)}=2^{13}$
$2^{12}+2^{12}=2^{13}$
$2\left(2^{12}\right)=2^{13}$
$2^{1+12}=2^{13}$
$2^{13}=2^{13}$
Example 2.
$\mathrm{a}=2^{n} ; \mathrm{n}=1, \mathrm{a}=2^{1}=2 ; \mathrm{a}=2, \mathrm{~b}=2 \mathrm{a}=4 ; \mathrm{g}=12, \mathrm{~h}=5$
$\mathrm{gn}=12, h(1+n)=10 \ldots \ldots \ldots \ldots \ldots .$. 834 $\left.^{\prime}\right)$
$n=1, h=5, g=12$.
$2=\mathrm{gn}-\mathrm{h}(1+\mathrm{n})$.
$2=(12 * 1)-5(1+1)$
$2=12-5(2)$
$2=12-10$
$\mathrm{p}=2 \mathrm{n}+\mathrm{gn}-1$
$\mathrm{p}=2(1)+(12 * 1)-1$
$\mathrm{p}=2+12-1$
$\mathrm{p}=13$
$a=2, b=4, g=12, h=5, p=13$
recall (447).
.(837)
$a^{2+g}+b^{2+h}=c^{2+13}$ (447)
$2^{2+12}+4^{2+5}=2^{2+13}$
$2^{14}+4^{7}=2^{15}$.
.Alex number - 3)
$2^{2(7)}+4^{7}=2^{15}$
$4^{7}+4^{7}=2^{15}$
$4(1+1)=2$
$32768=32768$
$2^{14}+2^{2(7)}=2^{15}$
$2^{14}+2^{14}=2^{15}$
$2\left(2^{14}\right)=2^{15}$
$2^{1+14}=2^{15}$
$2^{15}=2^{15}$

Beal's conjecture is valid for the below classic equations
$2^{r}+2^{r}=2^{r+1}$ - classic

1) $2^{3}+2^{3}=2^{4}: 2(1+1)=2$: the factorized 2 is a prime number
2) $2^{4}+2^{4}=2^{5}: 2(1+1)=2$: the factorized 2 is a prime number
3) $2^{5}+2^{5}=2^{6}: 2(1+1)=2$: the factorized 2 is a prime number
for : $\mathrm{a},[\mathrm{b}, \mathrm{c}]$: beal's conjecture is 100% validin classic.

INVALIDITY COMMENT ON THE BEAL'S CONJECTURE

beal's conjecture discusses $\mathrm{a},[\mathrm{b}, \mathrm{c}]$. thismeans $[\mathrm{a}, \mathrm{b}],[\mathrm{a}, \mathrm{c}],[\mathrm{b}, \mathrm{c}]$.
so toinvalidate beal's conjecture forever. one needs only toinvalidate one of the three pairs in the bracket.
it has been proven above that beal's conjecture is valid for $b=2 a$ in classic.
Will the beal's conjecture be valid for $b=4 a, 8 a, 16 a, 32 a$? ANS $=$ No
seeing the, lower - pythagorean - of $-2, b=4 a, 8 a, 16 a, 32 a$ will be
solutions too, since $a=2^{n}$. this renders the beal's conjecture totally
invalid forever. $4,8,16,32$ etc are common factors and even numbers and not prime numbers. so it is "not a must prime situation". so there is
"no constrain" on the positiveinteger field. so the following binary
power sums displayed in the below examples can exist.......(841)
Example 1.(LP1). .(842)
$2^{r}+2^{r}=2^{r+1} \ldots$ the lower - pythagoras - of - 2
$2^{40}+2^{40}=2^{41}$
$.2^{2(20)}+2^{4(10)}=2^{41}$
$4^{20}+16^{10}=2^{41}$
$4(1+4)=2$
factoring 4 does not depend on factoring 2 which is a prime number
4 and 2 have independent existence.
.843)
Example 2...(LP2). .(844)
$2^{24}+2^{24}=2^{25}$
$2^{3(8)}+2^{4(6)}=2^{25}$
$8^{8}+16^{6}=2^{25}$
$8(1+2)$
factoring 8 does not depend on factoring 2 which is a prime number

8 and 2 have independent existence. .(845)
Example 3..(LP3) \qquad
$2^{20}+2^{20}=2^{21}$
$2^{4(5)}+2^{5(4)}=2^{21}$
$16^{5}+32^{4}=2^{21}$
$16(1+2)$
factoring 16 does not depend on factoring 2 which is a prime number.
16 and 2 have independent existence. \qquad (848)
factoring 16 - an even number does not depend on factoring 2 which is a prime number. 16 and 2 have equal and independent existence. beal's may argue that 2 is still a factor in these even factor examples. so he is still correct. A.O. Wellssays this argument is called simplicity. you willbe judged "only" with "all the written words in your conjecture ". "simplify" or transform is not in beal's conjecture statement. so simplicity does not hold - incorrect. if (847) is entered into a computer to verify beal's conjecture. the computer will reply "one match found - beal's invalid - i factored 16 and not a prime number". if however, beals conjecture statement contained "simplify or transfo rm" each match then recheck for beal's conjecture. then the algorithm will return (847) to classic and say "beal's valid- no match found". a conjecture statement is judged only by "logic"-objectivity not subjectivity. that 4 is a product of two primes -2 does not deny its perfect existence. it is not a crime. 4 says 2 is half of myself -4 . 2 says i am half of 4 the two previous statments are alike. who is the owner of "half" ? is it 4 or 2 ? ANS : NONE. they must share the half [50-(4)] - [50-(2)]. so 4 and 2 have equal existence in grammar and mathematics. beal's conjecture means eradicating the even domain with numbers greater than 2. thisis a very serious offence.
Beal's conjecture becomes invalid forever by the law of "Lowering the
power - LP". that is - " when the rth power is lowered".(84)
when the rth power is lowered - beal's conjecture gets representa tional-existence invalidity forever.
beal's conjecture on LP shows 100% mathematical-grammatical flaw.
this shows beal's didn't complete his studies in at least one of his countries
educational instutitions : primary, secondary , university. $\mathrm{R}+1$ means
$\operatorname{gramma}(\mathrm{R})+1$. thelower - pythagorean - of -2 obeys law of lowering which
gives it different representions. It is the closest number to
any number theorist.i actually study physics and never saw the
lower - p-2 because i never had reason to use it. i saw it the first day
i proved it on my laptop. however, assuredly, any person who says he studies number theory to an extent whether in school or out of school must have seen -100% the lower - p-2.it is likened to shape of molecules in chemistry. a given molecule actually will have a certain shape at a certain temperature-(r) and when the temperature changes, it willadjust itself for the external effect and take another shape at that new temperature - (r - lowered). the first and second shape cannot be thesame. This means the lower - p-2 is specially unique in number theory. if lowering is not neglected, beal or ANYBODY who jumps on the classic formula to give the root conjecture seeing it is obviously propoundable in deep - ancient study in a similar way to the fermat last theorem will commit "Drop out"-($\mathrm{R}+1$ law) - offence. this further means there are only two thoughts of great importance which is visibly deducible from the classic formula. they are : \qquad (850)

1) the fermat' slast theorem
2) beal's conjecture \qquad (81)

CORRECTIONTOTHE BEAL'S CONJECTURE1.

 .852)beal's conjecture statement - should have been "neglecting the lowering of power for invalidation which is allowed for validation"
$a^{x}+b^{y}=c^{z}$ $\qquad$$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}$ and z are positiveintegers and x, y and z are all greaterthan 2 , then A, B and C must have a common prime factor"
"the above statement means beal's admit Lowering of Power - (LP)can render his statement invalid which is observable in classic.(853)
Meaning of "Must"
a parent said to his child

- ken you must wash your teeth before you leave the room - LAW
- so the parent saw that a child left the room through the window
without washing the teeth.
this means this child broke the law of "Must"
the door of the room is the must - barrier. if, the child leff the room. this means the child broke the law of "must".- Re - affirmativ e statement. the child said "so it is not a must!!". ..855)
if it is a must, then-" how did the child escape out of the room?
- Parents speak useless grammar but children are cunning and in "play" and deep study help to correct these useless grammar used by their parents etc or anybody. \qquad .(856)

CORRECTEXPRESSION.

- ken you "must" wash your teeth before you leave the room "unless" you escape through some other means - LAW
"unless"- modifies the nature of "must".
Example of - Must. .858)

Principal : Applicants must have passed their O' level exam before applying.
applicant:I passed 250 exams not including the O^{\prime} level
Principal: Wells: Ans : disqualified
must = only - one condition
Examples of Must.

1) $2^{X}+2^{y}=2^{Z} \ldots \ldots$. Classic only.
2) $3^{X}+6^{y}=3^{Z}$. .861)
3) $7^{X}+7^{y}=7^{Z}$
4) $7^{X}+14^{Y}=7^{Z}$
"Must" holds perfectly in ((860) - (863)). "Must" is invalid in some
LP equations. "MUST"means the only condition of existence of something. \qquad .(84)
EXAMPLES of LP equations. \qquad
5) $4^{X}+4^{Y}=4^{Z}$. \qquad (LP1) \qquad
6) $3^{X}+9^{y}=3^{Z}$. $(L P 4): 9^{\mathrm{X}}+9^{\mathrm{Y}}=3^{\mathrm{Z}}: 9(1+1)=3$. \qquad
Anybody who jumps at any of the above LP equations ((866) - (867)
without neglecting LP will commit theDROP - OUT offence.

ALTERNATIVE CORRECTIONTOTHE BEAL'S CONJECTURE1...(869)

for only "UNIQUE" equations of (1) below
$a^{x}+b^{y}=c^{z}$ \qquad
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{x}, \mathrm{y}$ and z are positiveintegers and x, y and z are all greater than 2, then A, B and C must have a common prime factor" UNIQUE - means LP is not allowed for invalidation but LP is allowed for
validation. (870)

CORRECTIONTOTHE BEAL'S CONJECTURE2

"beal's conjecture - STRONG"(A.o Wells)is actually one of the greatest statements in mathematics history. beal's did not Get the real - ancient conjecture statement from classic.
beal's is a man who saw a great thing bigger than the fermat last theorem in ancient study but "L"ost its interpretation. this means this man must have "L" as the Last letter of his main name.bea \underline{L}
if LP offence is pardoned. Is there any other mathematical - grammatical offence commited by beal's in his conjecture statement ?.ANS : YES

FACTOR-MEANING

Factor is an English language word from the root word -"fact" which is a noun and "OR"-a suffix. factor is not mathematics language. it is applied in mathematics.
"sine, cosine, tangent "is English in a way but is purely a mathematics language. factor is not mathematics in any way.
FACT = WHOLE TRUTH.
FACTOR = WHOLE TRUTH,HIGHEST TRUTHDEDUCIBLE FROM A THING OR
GROUP OF THINGS.
FACTOR-means "highest" relationship. the maximum.
Q1 : what is the factor of 10 . This means what is the whole truth about 10 ?
ANS $=10.10$ is the ONLY factor of 10 . thismeans you don't need mathematics to know that 10 is the only factor of 10 .
ENGINEERING : A certain part of an engine A has a four - factor velocity relationship with the base B of the engine. Explain?.
ANS: this means, part A has different velocity relationships with part B but at a certain time. they exhibit a maximum velocity relationship. that is why the word "factor" is used

ANS : $\mathrm{a}=4 \mathrm{~b}$
In primary school-3-10yrs
Q3: WHAT IS THE FACTOR OF 10.
CHILD: ANS :1,2,5,10.
Children will give the above answer because that is what the teacher taught. why do teachers in primary school give such answers?
ANS : they give such answers because they don't understand the meaning of the
word "factor" as applied to mathematics.
Wells : correct Q3 : WHAT ARE THE DIVISORS OF 10
CHILD : ANS : 1, 2,5,10.
CHILDREN : WHATIS THE FACTOR OF 10 :
CHILD: ANS : 10
There is a study in primary school called HIGHEST COMMON FACTOR : thisis not the appropriate expression :
CORRECTEXPRESSION : common factor. factor itself means highest.
this further means all words having "factor" means and shows highest or maximum.

Examples :

1) Benefactor - show maximum attitude to give
2) Quality factor - the effective - maximum of a receiver - selectivity
3) Factoring company - collects maximum relationship between two persons - Money
4) factorial - maximum value of a number from 0 - multiplicative.eg 5 !
mathematics examples:
5) $3^{X}+6^{y}=9^{Z}$
what is the factor of 3 and 6 ? this means what is the highest relationship bewteen 3 and 6 .
the answer is 3 - only.
6) $7^{X}+7^{y}=9^{Z}$
what is the factor of 7 and 7 ? this means what is the highest relationship bewteen 7 and 7 .
the answer is 7 - only.
7) $4^{X}+10^{y}=9^{Z}$
what is the factor of 4 and 10 ? this means what is the highest relationship bewteen 4 and 10 .
the answer is 2 - only.
FACTOR is responsible for LP offence
8) $(2 \times 3 * 7)^{\mathrm{X}}+(2 \times 3 \times 7 \times 11)^{y}=(7)^{z}$; the factor is $2 * 3 * 7=42 \neq$ a prime number - reason careful with factor

BEAL'S STRONG - (A.O.WELLS)(87)
If $A^{X}+B^{y}=C^{Z}$, where A, B, C, x, y and z are positive integers and x, y and z are all greater than 2 , then $[\mathrm{A}, \mathrm{B}]$ must have a common prime DIVISOR.
THEORY
it is a must that: $\mathrm{A}=\mathrm{pk}, \mathrm{B}=\mathrm{ps}$
$\mathrm{p}=$ prime number, $[\mathrm{k}, s]=$ positive integer.
beal's statement does not have a THEORY. it contains only " grammar undefined" . so beal's statement fell prey of LP - classic. fermat last theorem does not need a theory.it is grammatically - mathematical. defined. beal's statement needs a theory. this shows it is more dificult than the fermat last theorem.

STRONG: Hit the nail on the head means :

1) only [A, B] is needed.
2) DIVISOR is the correct word not factor .
so beal committed the above two more offences. fermat last theorem
needed the result c^{n}, this is a line statement. $\mathrm{a}^{\mathrm{n}}+\mathrm{b}^{\mathrm{n}}=\mathrm{c}^{\mathrm{n}}-(n, n, n)$.
beal' s conjecture does not need the result " c ". even if it appears the result - c "obeys" his conjecture statement. beal's need c - only
if beal's conjecture is also saying the base $\mathrm{a}, \mathrm{b}, \mathrm{c}$ must be equal.
beals copied the fermat.
only one comparison willinvalidate his conjecture forever - this is what is needed.

DIVISOR - eradites LP invalidation forever.
BEAL'SSTRONG conjecture : as stated above with [A, B] and DIVISOR is a TRUEsaying.it is the second mostimportant statement in mathematics after the goldbach conjecture. the conjecture means numbers for which the "root numbers have no common prime - DIVISOR" does not exists in diophantine binary sum.
so the below equation does not exists - where $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{k}$ are integers.
$16^{\mathrm{X}}+17^{\mathrm{y}}=\mathrm{z}^{\mathrm{k}} ; x, y, k>2$ and positive integers, $\mathrm{z}>1$ and positive integer.
A reality is that it is IMPOSSIBLE to find a number that renders the beal's strong conjecture invalid forever using a computer - whether supercomputer. thisis a true saying from mathematical LOGIC - 99\% beal's strong conjecture can only be rendered invalid in a 1% chance. this means the equations that renders the beal' strong conjecture invalid HIDES in a complex - House Count field. so a fast moving computer will skip it at high operation speed. thesame as the fermat last theorem conclusion since both the fermat and beal's strong - A.o.wells are derived from Classic - Ancient study.so the only thing that can show the 1% counter - example existence is a written mathematical theory of existence

NEXT PAGE

not a machine example. a machine however, can find this counterexa mple if only - it has ANTI-HOUSE-COUNT - eg algorithm
the natural existence of these counter - examples is not mathematical
simplistic- LOGIC but mathematical complexity LOGIC - Of Logarithms.

MOST DIFFICULTPROBLEMSIN MATHEMATICSHISTORY

I learnt one world record said somewhere at a time that it is the fermat last theorem. No, sportmen are better than artists - penguins

ORDER OF MOST DIFFICULTPROBLEMSIN MATHEMATICS HISTORY

1) Goldbach conjecture
2) beal's - Strong conjecture (A.o.wells).

Goldbach conjecture in this paper - (below) is infallible so it gets the top rating - maybe they do that in long tennis. infallible means valid forever. then fermat last theorem discusses impossibility of powers - rooms of a building.beal's Strong conjecture discusses impossiblity of the root numbers. - foundation of building. it is the root numbers - foundation that carries the powers - the two rooms so beals - strong is more difficult than fermat and must precede explanation of fermat. a young man was asked - first thing to write power or root number in diophantine. he said i will first write the power? thisperson actually is not okay. root number is the answer. beal's conjecture - if stated in strong - Ancient study is actually a strong statement but rendered weak by beal. getting the real - ancient statement of beal's conjecture is more difficult than fermat last theorem. the errors of beal's would have been avoided if beal's ever saw weak or strong golbach and pondered. Goldbach not solvable. perhaps also beal's offences were pardoned then beal's conjecture. is the most difficult in mathematics - number theory.it is impossble to solve fermat last theorem without explaining the beal's conjecture - strong. any note showing the proof of the fermat last theorem and did not mention "beal" is an invalid writing "run away from such". in addition, since nobody has the proof of goldbach conjecture.
Q:one of the most interesting and valuable persons on Earth are ANS : WWF wrestlers-" AMERICANS"-you must lift yourselves - break your backs.
i willscrew you-"hulk hogan".
beal's knocked out by classic is a grievous offence." your case will be treated formally". don't get offended - your words and statement mislead generation s-so allow correction
Advice : before releasing your conjecture - make sure it is passed through a school of language having applied mathematics and endorsed. 97% of conjecture is language and 3% is mathematics. - i don't mean AMS.i mean intellectual AMS.

Since beal's conjecture is invalid forever in classic LP

Factoring 4,8,16etc which are even numbers in CLASSIC- LP leads
to the theorem below

ALEXANDERS O Wells1st binary power sum theorem : this states that for
binary power sums all even numbers $2^{n} ; n=2,4,8,16$ which are not prime numbers can be factored out from the root numbers.

WEAK CONJECTURE

Thisis a conjecture that is

1) weak in nature and readily invalidated in time eg:1-30yrs
2) strong in nature but rendered weak by the conjecturer for some omissions eg drop out, grammar failure, for not taking the strongest assumption. needs "All" assumptions. beal's need "All". so beal's most likely in life is a billionaire in dollars. needs "All" the money, a philantrophist - loves everybody. gives them money. you don't philantrophize with conjectures. "All" assumptions will fail because it contains both weak and strong assumptions.beal's conjecture falls in the second category of the weak conjecture. In summary, a weak conjecture contains two category

STRONGCONJECTURE

the conjecturer removed the easily proven facts even if the proof is not available but could be available by common sense if eventually found may be $30-400 \mathrm{yrs}$ or longer. so the conjecturer released ONLY the most difficult aspect of his conjecture statement. strong conjecture s contain minimal words eg :"this thing does not exist" -5 - supreme. or long words highly computerized - else, swap if, transform if etc. so strong conjectures could take centuries or milleniumbefore proofs of invalidation will be provided. a strong conjecturer must have some elements of computing science

EXAMPLE $2: \mathrm{B}=2 \mathrm{a}$; THE EXISTENCEPROOF of $-3^{x}+6^{y}=l^{m} \ldots$ (873)
HOMEWORK : Prove that below equations (1-2) exist.

1) $3+6=9$
2) $3^{3}+6^{3}=3^{5}$
the whole world willsay these existence proofs lie in the tetraset
$0.5,0.5,0.5,05$. however, this is not true. since "a" must be 3 .
so the mathematical set up and tetraset engine must be
reconfigur ed to suite $\mathrm{a}=3$ \qquad
$a^{3+g}+b^{3+h}=c^{3+p}$.
$\frac{d^{3}\left(a_{i}+a_{j}\right)^{g}}{k^{3}\left(c_{i}+c_{j}\right)} p+\frac{f^{3}\left(b_{i}+b_{j}\right)^{h}}{k^{3}\left(c_{i}+c_{j}\right)} p=1$.

$$
\frac{1}{3}+\frac{2}{3}=\frac{1}{3}+\frac{2}{3}
$$

let $\mathrm{A}=\frac{d^{3}\left(a_{i}+a_{j}\right)^{g}}{k^{3}\left(c_{i}+c_{j}\right)^{p}}=\frac{1}{3}$.
let $\mathrm{B}=\frac{f^{3}\left(b_{i}+b_{j}\right)^{h}}{k^{3}\left(c_{i}+c_{j}\right)^{p}}=\frac{2}{3}$.
solve (877). .(879)
$\frac{d^{3}\left(a_{i}+a_{j}\right)^{g}}{k^{3}\left(c_{i}+c_{j}\right)}{ }^{p}=\frac{1}{3}$.
$3 d^{3}\left(a_{i}+a_{j}\right)^{g}=k^{3}\left(c_{i}+c_{j}\right)$.
$k^{3}\left(c_{i}+c_{j}\right){ }^{p}=3 d^{3}\left(a_{i}+a_{j}\right)^{g}$.
$k^{3}=\frac{3 d^{3}\left(a_{i}+a_{j}\right)^{g}}{\left(c_{i}+c_{j}\right)^{p}}$
in one vectorial dimension.
$k^{3}=\frac{3 d^{3}{ }_{(a)} g}{{ }_{(c)} p}$.
substitiute ($k=c$) in (884).
$c^{3}=\frac{3 d^{3} a^{g}}{{ }_{c} p} \ldots \ldots \ldots \ldots \ldots . \ldots$
$c^{3} \times c{ }^{p}=3 d^{3} a^{g}$
substitiute $(d=a)$ in (887).
$c^{3+p}=3 a^{3} a^{g}$
$c^{3+p}=3 a^{3+g}$
apply thelaw of logarithm in (890).

$$
\begin{equation*}
\left.3+p=\log _{c} 3 a^{3+g} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . . \ldots 92\right) \tag{891}
\end{equation*}
$$

$3+p=\log _{c} 3+\log _{c} a^{3+g}$
$3+p=\log _{c} 3+(3+g) \log _{c} a$.
Find b. ...(894)
recall (880)
$3 d^{3}\left(a_{i}+a_{j}\right)^{g}=k^{3}\left(c_{i}+c_{j}\right){ }^{p}$
$3=\frac{k^{3}\left(c_{i}+c_{j}\right)}{} d^{3}{ }_{\left(a_{i}+a_{j}\right)}{ }^{g}$.
recall (878).
$\frac{f^{3}\left(b_{i}+b_{j}\right)^{h}}{k^{3}\left(c_{i}+c_{j}\right)}$ p $=\frac{2}{3}$.
$3 f^{3}\left(b_{i}+b_{j}\right)^{h}=2 k^{3}\left(c_{i}+c_{j}\right)^{p}$
substitute (895) in (897).
$\frac{k^{3}\left(c_{i}+c_{j}\right)}{d^{3}\left(a_{i}+a_{j}\right)^{g}} f^{3}\left(b_{i}+b_{j}\right)^{h}=2 k^{3}\left(c_{i}+c_{j}\right)^{p}$.
divide both sides of (899) by $\left(k^{3}\left(c_{i}+c j\right) p\right)$.
$\frac{f^{3}\left(b_{i}+b_{j}\right)^{h}}{d^{3}\left(a_{i}+a_{j}\right)^{g}}=2$.
$f^{3}\left(b_{i}+b_{j}\right)^{h}=2 d^{3}\left(a_{i}+a_{j}\right)^{g}$
$f^{3}=\frac{2 d^{3}\left(a_{i}+a_{j}\right)^{g}}{\left(b_{i}+b_{j}\right)^{h}} \ldots$
\qquad
in one dimensional vectorial space.
$f^{3}=\frac{2 d^{3} a g}{b^{h}}$..
Find the cube root of both sides of (905). .(906)
$\mathrm{f}=\sqrt[3]{\frac{2 d^{3} a g}{b^{h}}} \ldots \ldots \ldots \ldots . .007$
$f=d \sqrt[3]{\frac{2 a^{g}}{b^{h}}}$.
substitute $\mathrm{f}=\mathrm{b} ; d=a$ in (908).
$b=a \sqrt[3]{\frac{2 a}{b^{h}}}$
if $b=2 a$; then.
$\sqrt[3]{\frac{2 a^{g}}{b^{h}}}=2$.
find the cube of both sides of (912)
$\left(\sqrt[3]{\frac{2 a^{g}}{b^{h}}}\right)^{3}=2^{3}$.
$\frac{2 a^{g}}{b^{h}}=8$.
$\frac{2 a^{g}}{b^{h}}=8$.
$2 a^{g}=8 b^{h}$
${ }_{a} g=4 b^{h} \ldots \ldots . .0 .5,0.5$ tetraset $) \ldots((655)=(918))$
(918) show equality of cubic roots and square roots for a given condition.
this is also called "return to the validating ($0.5,0.5,0.5,0.5$)- tetraset".
so stilloperating in it in a way.
subtitute $b=2 a$ in (918).
$a^{g}=4(2 a)^{h}$
$g=\log _{a} 4(2 a)^{h}$
$g=\log _{a} 2^{2}{ }_{2} h_{a} h$.
$g=\log _{a} 2^{2+h} a^{h}$.
$g=\log _{a} 2^{2+h}+\log _{a} a^{h}$
$g=\log _{a} 2^{2+h}+h \log _{a} a$.
$g=(2+h) \log _{a} 2+(h \times 1) \ldots . .(0.5$ tetraset $\left.) \ldots \ldots .(\nabla 40)=(927)\right)$
$g=(2+h) \log _{a} 2+h$.
"a" can be 4 as previously explained (740) - better seen.
If $\mathrm{a}=2^{\mathrm{n}}$, then " h " takes values such that $: \frac{2+\mathrm{h}}{\mathrm{n}}=$ positive integer....(930a)
eg : $[n 0, h 0]=(0,1,2 \ldots$ ∞) (930b)
$[\mathrm{n}, \mathrm{h}]=[1,(0,2 .)].[2,(2,4 \ldots)],[3,(4 \ldots)],[4,(6 \ldots)],[5,(8 \ldots)] \ldots .(930 c)$
$g=(2+h) \log 32+h$931)
a must be $3 ; \mathrm{a}=3$; so substitute $\mathrm{a}=3$ in (931) (932)
for (931) to give integer values of g and h then. (932)
$(2+h) \log 32=0$

\qquad
(933)
\qquad
zeroth condition$2+h=\frac{0}{\log 32}=0$.(934)
$2+h=0$.(935)
$\mathrm{h}=-2$. zeroth condition solution 93)
substitute (933) in (931) (93)
$\mathrm{g}=0+\mathrm{h}$
$\mathrm{g}=\mathrm{h}$. \qquad .(general condition in the used tetraset domain) \qquad(89)i used tetraset which seems a dual set, because what opened the dooris a tetraset - thismeans a dual set embedded in a tetraset.
\qquad .(940)
so if $h=-2$, then $g=h=-2$, so $g=-2$(941)
recall (893) 442)
$3+p=\log _{c} 3+(3+g) \log _{c} \mathrm{a}$ 893)
let $\mathrm{a} \neq 3^{n}$, since if $\mathrm{n}=0$, " $\mathrm{g}^{\prime \prime}$ will not exist. so if $\mathrm{a}=3^{\mathrm{n}}$, then n must beconstrained to start from 1.thissimply means avoid values of " n " that makes" g " not to exist. - Design of a generating function.(943)
Example 1 (944)
$3+p=\log _{c} 3+(3+g) \log _{c} 3^{\mathrm{n}}$ 945)
$3+p=\log _{c} 3+(3+g) n \log _{c} 3, \mathrm{n}=0$
$3+p=\log _{c} 3 ; \mathrm{g}$ does not exist

\qquad (947)
however, i will use $\mathrm{a}=3^{1+\mathrm{n}}$ (948)
substitute $a=3^{1+n}$ in (893)$3+p=\log _{c} 3+(3+g) \log _{c} 3^{1+\mathrm{n}}$950)
c must be 3 - hidden; so substitutec $=3$ in (950) (\$1)
$3+p=\log _{3} 3+(3+g) \log 33^{1+\mathrm{n}}$ (952)
$3+p=\log 33+(3+g)(1+n) \log 33$ 953)
$3+p=1+((3+g)(1+n) \times 1)$. (954)
$3+p=1+(3+g)(1+n)$
$3+p=1+3+3 n+g+g n$ 956)
$3+p=4+3 n+g+g n$ (957)
$3-4=3 n+g+g n-p$ (958)
$-1=3 n+g+g n-p$ (959)
$-1=3 n+g n+g-p$. (960)
$-1=n(3+g)+g-p$ (.961); $g=h$. .(Wells key $2-$ Generating function)
substitute $\mathrm{n}=0$ in (961)(962)
$-1=0(3+g)+g-p$. (963)
$-1=g-p$ 964)
$p=g+1$ 965)
alternatively, (966)
recall : $3+\mathrm{p}=\log _{\mathrm{c}} 3 \mathrm{a}^{3+g}$ (892)substitute $\mathrm{a}=3 ; \mathrm{c}=3 \mathrm{in}$ (892)(967)
$3+\mathrm{p}=\log 33 \times 3^{3+g}$. (968)
$3+\mathrm{p}=\log 33^{1+3+g}$.(969)
$3+\mathrm{p}=(1+3+\mathrm{g}) \log 33$. (970)
$3+\mathrm{p}=((4+\mathrm{g}) \times 1)$(971)
$p=4+g-3$ 772)
$p=g+1$ 73)
using (965) model (974)
$a=3^{1+n}$ 948)
$n=0$, substitute $\mathrm{n}=0$ in (948) (975)
$\mathrm{a}=3^{1+0}=3 ; a=3$. 976)
$p=g+1$. (965)
substitute $g=-2$ in (965)
\qquad(977)
$\mathrm{p}=-2+1=-1 ; \mathrm{p}=-1$(978)
$g=-2, h=-2, p=-1, a=3 ; b=2 a=2 \times 3=6 ; b=6 ; c=3$(979)
recall : $\mathrm{a}^{3+\mathrm{g}}+b^{3+h}=c^{3+p}$ (875)
substitute(979) in (875) (980)
$3^{3+(-2)}+6^{3+(-2)}=c^{3+(-1)}$(981)
$3^{3-2}+6^{3-2}=3^{3-1}$ (82)
$3^{1}+6^{1}=3^{2}$. (twin pythagorean of 3) - first existence proof. (983)
$3+6=9 \ldots$. proof.

\qquad (984)
twin pythagorean of 3-means 3 occurs on either side of the binary power sum as a root number.
since $\mathrm{g}=\mathrm{h}$, the implication on the generating function for $\mathrm{a}=3$ is (990)
since g and h are the increments on the equal powers of a and b. \qquad
$3^{x}+6^{y}=3^{m} \ldots \ldots \ldots \ldots \ldots . .(986)$
$3^{3+g}+6^{3+h}=3^{3+p}$.
($g=h$)................ $\mathbf{\text { q }} 88$)
substitute (988) in (987).
$3^{x}+6^{x}=3^{m}$ \qquad .(990) \qquad (inified existence proof) ;for : x-(1-(+>))
A mathematician said he does not want to use any number but just derive all the possible existence of (990). however, number theory says that is not possible. one must test run values to view the possible existence of (990) or use the key - generating function. \qquad (991)
$\mathrm{a}^{3+\mathrm{g}}+b^{3+h}=c^{3+p}$
substitute $\mathrm{a}=3^{1+\mathrm{n}}, b=6, c=3$ in (875).
$\left.{ }_{(3} 1+\mathrm{n}\right)^{3+g}+6^{3+h}=3^{3+p}$.
\qquad
$p=g+1=0+1=1 ; p=1 \ldots \ldots \ldots \ldots \ldots . \ldots 94)$
subtitute " $n=0 " ; " g=0 "$ then ," $h=0 ", " p=1 "$ in (993).
$\left(3^{1+0}\right)^{3+0}+6^{3+0}=3^{3+1}$
$3^{3}+6^{3}=3^{4}$ \qquad .ゆ97)... House - counting
Thesum of the left side of (997) seems not equal to the right side. however, number theory says thisis what humans perceive but thisis not true according to the behaviour of numbers. the disparity in human perception and that of numbers is called house counting. house counting simply means 1) you don't count 5 as a number in number theory
2) you don't add or sum another number to it.

Thisis because of its supremacy. 5 behaves as the God of all numbers - the supreme being. So you cannot count a supreme being, as if counting human beings. neither can you see him with. \qquad (998)
the human eyes. so it is impossible to prove the right side of (997) as 3^{5} forever mathematically, in real space algebra. Does house - counting then mean imbalance or cheating in number theory. No, absolutely,
It is only saying-I am responsible for somethings, that is why I behaved
that way. number theory is saying (997) is actually correct see below.
$3^{3}+6^{3}=3^{4+i} \ldots \ldots \ldots \ldots \ldots(000) \ldots$............... n existence proof
$4+\mathrm{i}=5$;
Complex analysis..............(1)
$i=0+i ;| |=$ magnitude
$|\mathrm{i}|=\sqrt{0^{2}+1^{2}}=\sqrt{1}=1 ;|\mathrm{i}|=1$
$|4|+|i|=4+1=5$
$3^{3}+6^{3}=3^{4+i}$
$3^{3}+6^{3}=3^{5}$. \qquad
\qquad
i-means imaginary number. Imaginary means something that cannot be seen by thehuman eyes. Thisis reason an human being willsee only 4 . where did the writer discover housecounting as a phenomenon? The writer discovered house counting in FIG2 - below. this phenomenon has been known by the writer before derivng (997) (3)

Reasons or consequences of House - Counting in number theory :

1) number theory says human beings are pretenders and liars. not all things are physical. some thingsin life are spiritual - cannot be seen.
2) money can be in form of seen numbers(cash) and also it can vanish in an electronic form. when money is transferr ed viae - transaction. The owner of the money must lose a certain amount (3 units). - banking
3) house counting is responsible for the reflection theory of light.so when light of energy magnitude -243 is reflected on a smooth surface.
its magnitude diminishes by $3=31$ units per reflection .
so attenuation occurs in light theory. this value 3 units is the accurate earth value which will serve as a control for all deviced experimental gadgets. this is a natural phenomenon.
4) so since (1000) is a complex and light travels as a wave then light can be represente d as a complex wave form.
5) proves the existence of complex numbers - complex analysis as a field of study in mathematics (number theory). so if a student attended a complex analysis class and asked why and how complex analysis is a field of mathematics or has origin in mathematics and not the formulation of a professor - the lecturer.
The answer is the twin pythagorean of 3.- number theory-discovered by Alexander O Wells
6) the twin pythagoras of 3 is useful in the study of complex numbers .
7) All numbers are complex - devised by man. thecomplexity of all numbers is shown in -5 . this consequently means all numbers behave like integers. only 5 behaves complex in nature.
(1000) is saying 1 is an arbitrary number. It naturally does not exist in life. this means trees, animals, oceans etc exists in life but 1 does not exist anywhere in the world. so 1 is not a natural number.
but devised by humans who live in nature for counting purposes. so humans made 1 a natural number. so the first counting number is 1.1 exists naturally as a complex number - something not seen. so all counting numbers are devised by man.
finally from (1000), a complex number can be represente d by $(3,6,4)$
dimensional space?
ANS $=4$. double of cartesian space. -4 variables. $(y-x),(y-i)$
this is because 4 is closest toi in (1000)
8) provides support for the existence of the even domain as against its collapse.
9) since the supreme being is 5 . what is seen about the supreme being is 4 . then what is not seen or known about the supreme being is i. this means the day a man willsee the supreme being he willsee him as one entity. the modulus of i. this means there is just one supreme being. 10) missing code exists during the operation of a supercomputer as a result of house counting. this means skipping of the proof of existence (5) by thesupercomputer - it is too fast and as a result of the complex vector space existence in power sums which does not make the right side equal to left side. missing code is responsible for the dissappearance of fermats last theorem. this means the number that renders fermat last theorem invalid exists but fast machines skips it during computation due to house counting.

5-1-complex error

10-2 - complex error
15-3-complex error
see FIG 2
The first proof of existence in number theory is first revealed by the number 5 and 5 house counts. means when the machine is at 4 , it jumps to 6 and assigns 5 to the hardisk or memory of the computer.also when it is at 14 it jumps to 16 and assigns 15 to the harddisk of the computer. house counting is not experience d at low speed or surface numbers or equations.so a solution is
needed. so the supercomputer to be used must checkmate house counting in built and search algorithm before used to find problems in number theory. a supercomputer that does not have antihouse counting device will give search not found - which will make scientist deny existence of power sums that exists. An example of a computer that can detect and eradicate house counting is the CDC - code detector (6600).
11) mint binding - symbolizes storage
12) the fifth finger - (thumb) of the human hand binds the other four fingers. so if the thumbis touched - depending on the curvature of the wrist, any of the other four fingers willshake in tune. thesame also applies to the big toe of the human leg. so all informations about the four fingers, its control resides in the thumb or big toe.- the shaking of the four fingers when the thumbor big toe etc is touched is called house counting. the thumb is saying don't count 5 - me. modern robots hands dont house count because this phenomenon is not known to the designers - they are all rigid robots.
is house counting a new discovery? yes - by Wells does it exist in ancient time? wells discovered somehow later, that house counting existed in ancient past but humans are not aware of thisin its natural existence.

Ancient meaning of house counting

house counting means "tally"in statistics
if you count 1,2,3,4you don't count 5 . you store all the previous count in the fifth position. thisis ancient computing.

TALLY

5 -
1111-1-Stroke - prime number
10 -
1111-1111-11-2
15 -
1111-1111-1111-111-3
20 -
1111-1111-1111-1111-1111-4
this tally chart is: the beginning and end of number theory $=$ FIG2 below. although FIG 2 was obtained by mathematics. so the tally chart forms a truncated pyramid
$\mathrm{Q}:$ Willb $=3 \mathrm{a}, 5 \mathrm{a}, 7 \mathrm{a}, 9 \mathrm{a}, \ldots$. na be solution to (1) where n is an odd number?
Thiscan be verified by theengine as done for $b=2 a$. Alternatively, is there any other way to check this result without USING the engine? Yes.
The writer is not a mathematician of proof but of language. he uses language to establish the end of mathematics.this previous statement means two Important things.

1) An accurate thought(brain) in language must precede mathematical writing
2) Only a person with excellent communication skill in

Language eg English,italian, Spanish etc can be a mathematician.
The answer to the question above is
ANS : Mathematical abstraction.
if $\mathrm{b}=2 \mathrm{a}$ and $\mathrm{a}=30$.
this means $b=" 2 " \times 30=60, b=" 3 " \times 20=60 ; b=" 5 " \times 12=60, b=" 10 " \times 6=60$,
$\mathrm{b}=" \frac{60}{17}$ " $\times 17$. thismeans what is important about " b " is that it must be 60 .
This therefore means " b " can be any positive number factor of " a " whether
integer or non integer. so b is a multipleof all positive integers and all positive fractions on the real number line.
It is not just about the primes only. this validates the statement above that A beals conjecture of only prime factor solution is only 2% correct. so in conclusion, the A. beals conjecture is totallyinvalid forever for saying - only common prime factor solution.

Example $\mathrm{b}=4 \mathrm{a}$
$b=a \sqrt{\frac{a g}{b} h}$.
If $\mathrm{b}=4 \mathrm{a}$ then $\sqrt{\frac{a^{g}}{b^{h}}}=4$.
$\sqrt{\frac{a^{g}}{b^{h}}}=4$
square both sides of (4). \qquad
$\left(\sqrt{\frac{a^{g}}{b^{h}}}\right)^{2}=4^{2}$.
$\frac{a^{g}}{b^{h}}=16$. \qquad
$\left.\left.{ }_{a} g=16 b^{h} \ldots \ldots \ldots \ldots \ldots . ..\right)^{8}\right)$
$a^{2+g}+b^{2+h}=c^{2+p}$.
substitute $b=4 a$ in (447)
$a^{2+g}+(4 a)^{2+h}=c^{2+p}$
substitute $c^{2+p}=2 a^{2+g}$ in (9).
$a^{2+g}+(4 a)^{2+h}=2 a^{2+g}$
$(4 a)^{2+h}=2 a^{2+g}-a^{2+g}$.
$(4 a)^{2+h}=a^{2+g}$ \qquad
$(4 a)^{2+h}=a^{2} \cdot a^{g}$.
substitute (8) in (14).
$(4 a)^{2+h}=a^{2} \cdot 16 b^{h}$.
substituteb $=4 \mathrm{a}$ in (16).
$(4 a)^{2+h}=a^{2} \cdot 16(4 a)^{h}$
$(4 a)^{2+h}=a^{2} \cdot 16 \cdot 4^{h} \cdot a^{h}$.
$(4 a)^{2+h}=a^{2} \cdot 4^{2} \cdot 4^{h} \cdot a^{h}$.
$(4 a)^{2+h}=a^{2} \cdot a^{h} \cdot 4^{2} \cdot 4^{h}$.
$(4 a)^{2+h}=a^{2+h} \cdot 4^{2+h}$.
$(4 a)^{2+h}=(4 a)^{2+h}$.
so $\mathrm{b}=4 \mathrm{a}$ is a solution to (1)
example $\mathrm{b}=7 \mathrm{a}$
$b=a \sqrt{\frac{a^{g}}{b^{h}}}$.
if $\mathrm{b}=7 \mathrm{a}$ then $\sqrt{\frac{a^{g}}{b^{h}}}=7$. \qquad
$\sqrt{\frac{a^{g}}{b^{h}}}=7 .$.
square both sides of (24).
$\left(\sqrt{\frac{a^{g}}{b}}\right)^{2}=7^{2}$
$\frac{a^{g}}{b^{h}}=49$.
$a^{g}=49 b^{h}$.
$\left.a^{2+g}+b^{2+h}=c^{2+p} \ldots \ldots . .447\right)$
substitute, $\mathrm{b}=7 \mathrm{a}, c^{2+p}=2 a^{2+} g_{\text {in (447). }}$.
$a^{2+g}+(7 a)^{2+h}=2 a^{2+g}$
$(7 a)^{2+h}=2 a^{2+g}-a^{2+g}$
$(7 a)^{2+h}=a^{2+g}$
$(7 a)^{2+h}=a^{2} \cdot a^{g}$.
$(7 a)^{2+h}=a^{2} \cdot 49 b^{h}$.
$(7 a)^{2+h}=a^{2} \cdot 49(7 a)^{h}$.
$(7 a)^{2+h}=a^{2} \cdot 7^{2}(7 a)^{h}$.
$(7 a)^{2+h}=a^{2} \cdot a^{h} \cdot 7^{2} \cdot 7^{h}$.
$(7 a)^{2+h}=a^{2+h} \cdot 7^{2+h}$.
$(7 a)^{2+h}=(7 a)^{2+h}$.
example $b=10 \mathrm{a}$
$b=a \sqrt{\frac{a^{g}}{b} h}$.
If $\mathrm{b}=10 \mathrm{a}$ then $\sqrt{\frac{a^{g}}{b^{h}}}=10$.
$\sqrt{\frac{a^{g}}{b^{h}}}=10$.
square both sides of (40).
$\left(\sqrt{\frac{a g}{b h}}\right)^{2}=10^{2}$..
$\frac{a^{g}}{b^{h}}=100$..
$a^{g}=100 b^{h}$
$\left.a^{2+g}+b^{2+h}=c^{2+p} \ldots \ldots . .447\right)$
substitute $=10 \mathrm{a}, c^{2+p}=2 a^{2+g}$ in (447).
$a^{2+g}+(10 a)^{2+h}=2 a^{2+g}$.
$(10 a)^{2+h}=2 a^{2+g}-a^{2+g}$.

$$
\begin{equation*}
(10 a)^{2+h}=a^{2+g} . \tag{48}
\end{equation*}
$$

$(10 a)^{2+h}=a^{2} \cdot a^{g}$
$(10 a)^{2+h}=a^{2} \cdot 100 b^{h}$
$(10 a)^{2+h}=a^{2} \cdot 100(10 a)^{h}$.
$(10 a)^{2+h}=a^{2} \cdot 10^{2}(10 a)^{h}$.
$(10 a)^{2+h}=a^{2} \cdot a^{h} \cdot 10^{2} \cdot 10^{h}$.
$(10 a)^{2+h}=a^{2+h} \cdot 10^{2+h}$.
$(10 a)^{2+h}=(10 a)^{2+h}$.
example $\mathrm{b}=\frac{17}{16} \mathrm{a}$
$b=a \sqrt{\frac{a^{g}}{b^{h}}}$.
If $\mathrm{b}=\frac{17}{16}$ a then $\sqrt{\frac{a g}{b}}=\frac{17}{16}$.
$\sqrt{\frac{a^{g}}{b^{h}}}=\frac{17}{16}$.
square both sides of (56).
$\left(\sqrt{\frac{a^{g}}{b h}}\right)^{2}=\left(\frac{17}{16}\right)^{2}$..
$\frac{a^{g}}{b^{h}}=\left(\frac{17}{16}\right)^{2}$.
$a^{g}=\left(\frac{17}{16}\right)^{2} b^{h}$
$a^{2+g}+b^{2+h}=c^{2+p}$.
Substituteb $=\left(\frac{17}{16} a\right), c^{2+p}=2 a^{2+g}$ in (447). \qquad
$a^{2+g}+\left(\frac{17}{16} a\right)^{2+h}=2 a^{2+g}$.
$\left(\frac{17}{16} a\right)^{2+h}=2 a^{2+g}-a^{2+g}$.
$\left(\frac{17}{16} a\right)^{2+h}=a^{2+g}$
$\left(\frac{17}{16} a\right)^{2+h}=a^{2} \cdot a^{g}$
$\left(\frac{17}{16} a\right)^{2+h}=a^{2} \cdot\left(\frac{17}{16}\right)^{2} b^{h}$.
$\left(\frac{17}{16} a\right)^{2+h}=a^{2} \cdot\left(\frac{17}{16}\right)^{2}\left(\frac{17}{16} a\right)^{h}$.
$\left(\frac{17}{16} a\right)^{2+h}=a^{2} \cdot a^{h}\left(\frac{17}{16}\right)^{2}\left(\frac{17}{16}\right)^{h}$.
$\left(\frac{17}{16} a\right)^{2+h}=a^{2+h}\left(\frac{17}{16}\right)^{2+h}$.
$\left(\frac{17}{16} a\right)^{2+h}=\left(\frac{17}{16} a\right)^{2+h}$
$\mathrm{b}=\frac{17}{16} a$, means if $\mathrm{a}=16$, then $\mathrm{b}=\frac{17}{16} a=\frac{17}{16} \times 16=17$. this implies the below equation (71) exists in number theory.
$16^{\mathrm{x}}+17^{\mathrm{y}}=z^{t} \ldots \ldots(71) ;$ hint: $[\mathrm{x}=\ldots 5, \mathrm{y}=\ldots 5, \mathrm{z}=. .5, \mathrm{t}=\ldots 5]$
where $\mathrm{x}, \mathrm{y}, \mathrm{t}, \mathrm{z}$ are positive integers. $\mathrm{x}, \mathrm{y}, \mathrm{t}>2$. \qquad
equation (71) means the root numbers have "no common anything"
relationship whether prime numbers or just numbers.
the essence of (71) is that abstraction field exists between a and b.
Final conclusion - beal's conjecture is invalid forever as a result of mathematical abstraction that exists between the field of b and a or a and b.
this simply means "a" can be any positive integer and balso can be any positive integer whether prime or non prime. so mathematical abstraction renders beal's conjecture invalid forever on two count charges.

1) it is not a must.
2) it is not a prime.
so it is not a must prime.
why "invalid forever" and not "invalid"- the correct wo rd for 100% accurate study on a conjecture takes forever wh y a 50% study of a conjecture not 100% complete takes "invalid". eg the study of a conjecture using abstract algebra. invalid forever - means it is impossiblefor any futurist theory, hypothesis to mention validity about the beals conjecture forever - say -100 billion yrs from now \qquad .(73)
I can prove the exact values of the variables $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}$ but I will not include it in this work because no Government of the world can pay for it in cash. i actually mean. it is very difficult to prove (k) on paper - real space algebra because of house - counting, 4 - variable
however, there are two ways to prove this missing values
3) use the tetraset engine
4) use the summation pyramid.- see example below
hint : $[\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}]$ - must be 5 or a number that contains 5 . this follows from the supremacy of 5-precedence . the first number to prove inexistence is 5 -supremacy. The essence of (k) is to show that if (k) by supercomputing does not exist. (p) proves that it exists in the field of extremely large numbers. so the supercomputer used currently must be updated in power to the realm of the existence of (k)
this last example leads to the conclusion theorem on binary power sums. this is stated below.
Alexander O WellsConclusion theorem - on binary power summation:
this states that for all binary power sums, the root numbers can factor each other by all positive numbers on the real number line whether integer or non integer - so not a must prime.
Implication of the Wellsconclusion theorem : the beal' s conjecture is invalid forever. - Final conclusion. \qquad .(74)

NEXT PAGE

$\underline{\text { Binary power summation engine }}$
$\frac{d^{2}\left(a_{i}+a_{j}\right)^{g}}{k^{2}\left(c_{i}+c_{j}\right)^{p}}+\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}\left(c_{i}+c_{j}\right)^{p}}=1$.
(47) is the binary power summation engine. it is used for
$a^{x}+b^{y}=c^{z} ; s=2(a, b)$
" s " is the number of root number on the left side.
$\frac{e^{2}\left(a_{i}+a_{j}\right)^{h}}{k^{2}\left(d_{i}+d_{j}\right)^{m}}+\frac{f^{2}\left(b_{i}+b_{j}\right)^{k}}{k^{2}\left(d_{i}+d_{j}\right)^{m}}+\frac{g^{2}\left(c_{i}+c j\right)^{l}}{k^{2}\left(d_{i}+d_{j}\right)^{m}}=1$.
$e g(75)$ - simplified-2-cubic-for $a^{x}+b^{y}+c^{z}=d^{r} ; s=3(a, b, c)$

Unification Engine of all Power summations - (l)

given $: \sum_{i}^{S} a_{i}^{g_{i}}={ }_{d} p$

$$
i=1
$$

$a^{x}+b^{y}+c^{z} \ldots \ldots \ldots \ldots \ldots \ldots . a_{S} g_{s}=d^{v+m}$
$\sum_{i=1}^{S}\left[\frac{\left.e_{i}^{n_{i}}\left(\sum a_{j=1,2 . . r)^{h_{i}}}^{k^{v}\left(\sum d j=1,2 . . r\right)^{m}}\right]_{i}=1 \ldots \ldots . .1()\right) .}{}\right.$
a_{j} is an r dimensional vector. eg $a_{j-2}=a_{t}+a_{X}$
$g_{i}-(1-\infty) ; s-(2-\infty)$
$n_{i}+h_{i}=g_{i}$
$v+m=p$
$x=g 1 ; y=g 2 ; z=g 3$ etc for $\mathrm{a}, \mathrm{b}, \mathrm{c}$.

NEXT PAGE

General Law

given : $\mathrm{a}^{\mathrm{V}+\mathrm{g}}+\mathrm{b}^{\mathrm{V}+\mathrm{h}}=\mathrm{c}^{\mathrm{V}+\mathrm{p}}$
given : least simplified tetraset function $-\frac{\mathrm{E}}{\mathrm{N}}=\frac{\mathrm{d}^{\mathrm{V}}\left(a_{i}+a_{j}\right)^{g}}{\mathrm{k}^{\mathrm{V}}\left(c_{i}+c_{j}\right)}{ }^{p}$
then compute $\left[1-\frac{\mathrm{E}}{\mathrm{N}}=\frac{\mathrm{t}}{N}\right] ; \quad \frac{\mathrm{t}}{\mathrm{N}}=\frac{f^{2}\left(b_{i}+b_{j}\right)^{h}}{k^{2}\left(c_{i}+c_{j}\right)}{ }^{p}$

Solution:

$\mathrm{c}^{\mathrm{V}+\mathrm{p}}=N_{\mathrm{a}}{ }^{\mathrm{V}+\mathrm{g}}$ \qquad
$b=\sqrt[v]{\frac{t a^{g}}{b^{h}}} ; \mathrm{t}=\mathrm{v}-1 ; \mathrm{b}=\sqrt[v]{\frac{(v-1) a^{g}}{b^{h}}} \ldots \ldots \ldots . .(78) ; \mathrm{a}=\sqrt[g]{\frac{b^{v+h}}{(v-1)}}$.
(77) shows that "c" depends on the tetraset function -"N". however, (78) shows that " b " is not tetraset dependent. " b " does not depend on " N ".
Since " b " does not depend on " N ". this means any chosen tetraset or dual set operating in the tetraset "can not constrain" the field of " b ". this also means
" b " is impossibly affected by any tetraset or dual set operating in the tetraset.
"not constrain"- means "ABSTRACTION" EXISTS in the
"FIELD" of "b". (79) also shows that "a" is not tetraset or dual set dependent. so " b " and " a " are impossibly affected by any chosen tetraset or dual set operating in the tetraset.
ABSTRACTION - means "b" and "a" can have any
positive relationship.
whether fraction, integer, common prime factor no common prime factor etc.
FIELD-All positive integers.

Explain :how the computing tetraset or (operating) dual set CONSTRAINS?
ANS : (1), (31), (47) are all meaningless equations. it can only and only
be solved by supplying a tetraset(dual set) function. so the chosen tetraset or (operating) dual set will determine a certain unique solution.so each unique solution lies in a given type of tetraset(operating) dual set. the one you choose.

FERMAT LAST THEOREM-3 words

Wells father' s name - Francis
city - EPE-Lagos State
village - odo - shiwola - Rivers - wealth
F-Francis
E-EPE
R-Riverswealth
M-Mathematician ,
A - Alexanders
T-Theory.

LA - lagos

ST-state
Wells is actually the 3 rd(words) child of his daddy - Francis. a school.
reverend - father gave him francis. francis has an Islamic name-SIKIRU
wells is a citizen of Lagos State - indigene of Epe a city in lagos state. Epe is a place where descendant s of
Egypt - pharoah, and princes of Arabia migrated to after the destruction of
Egypt by the greeks and also after early islamic war in arabia in ancient times. some early jews also migrated to this village.slaves in egpyt.
since early Arabs invaded this village. the citizens are predominantly Muslims.so Wells grandfathe r is actually a muslim-although dead now
Wells has the islamic name - JIMOH SALAMI.So Salami is actually
Wells Surname. Wellsfather changed his fathers surname to a name he
liked. when Wells was born he also changed his fathers name to Wells.
so in a nut shell, the writer is GREEK, ARAB, EGYPTIAN,JEWISH
in blood.
EPE-means :
E-Egyptian
P-Princes
E-hEre
Wells was born on AUG 22ND 1986 - FRI- Islamic prayer day - why - Jimoh
Wells studied exploration geophysics - so chose "Wells"as his new surname.
so the writer is not a " white man"-although looks like an arab in physique.
Wells is a complete Nigerian.
writer's full name : Alexander Olugbenga Wells.

NEXT PAGE

Fermat has origin in classic - so it is tested in classic.
Real life approach to finding a, b, c, x, y, z

$$
c^{2+p}=2 a^{2+g} ; \quad c=2
$$

$$
2^{2+p}=2 a^{2+g}
$$

$$
2^{2+p}=2\left(a^{2} \times a^{g}\right) ; a^{g}=4 b^{h}
$$

$$
2^{2+p}=2\left(a^{2} \times 4 b^{h}\right) ; \quad b=2 a
$$

$$
2^{2+p}=2\left(a^{2} \times 4(2 a)^{h}\right)=2\left(a^{2} \times 2^{2}(2 a)^{h}\right)
$$

$$
2^{2+p}=2\left(a^{2} \times 2^{2}(2 a)^{h}\right)
$$

$$
2^{2+p}=2\left((2 a)^{2} \times(2 a)^{h}\right)
$$

$$
\left.2^{2+p}=2(2 a)^{2+h}\right)
$$

$$
\left.2+p=\log 22(2 a)^{2+h}\right)
$$

$$
2+p=\log _{2} 2+\log _{2}(2 a)^{2+h}
$$

$$
\begin{equation*}
2+p=\log _{2} 2+(2+h) \log 2(2 a) \tag{83}
\end{equation*}
$$

$2+p=\log _{2} 2+(2+h)\left(\log _{2} 2+\log 2 a\right)$
$2+p=1+(2+h)(1+\log 2 a)$.
$2+p=1+2+2 \log 2 a+h+h \log 2 a$
$2+p=3+2 \log 2 a+h+h \log 2 a$
$p-1=2 \log _{2} a+h+h \log 2 a$
$p-1=2 \log 2 a+h(1+\log 2 a)$. \qquad
$p-1-2 \log _{2} a=h\left(1+\log _{2} a\right)$
$\frac{p-1-2 \log _{2} a}{\left(1+\log _{2} a\right)}=h$
$g=\log _{a} 4+h \log _{a} b ; \quad \mathrm{b}=2 \mathrm{a}$
$g=\log _{a} 4+h \log _{a} 2 a$. \qquad (g and h)
$g=\log _{a} 4+h\left(\log _{a} 2+\log _{a} a\right)$
$g=\log _{a} 4+h\left(\log _{a} 2+1\right)$.
substitute (2) in (3)
$g=\log _{a} 4+\left(\frac{p-1-2 \log _{2} a}{\left(1+\log _{2} a\right)}\right)\left(\log _{a} 2+1\right) \ldots \ldots .(\mathrm{p}$ and g$) \ldots .(4)$.
recall. (日7)
$2+\mathrm{p}=\log _{\mathrm{C}} 2+(2+g) \log _{\mathrm{c}} a$.
$\mathrm{c}=2$
$2+\mathrm{p}=\log 22+(2+g) \log 2 a$
$2+\mathrm{p}=1+(2+g) \log _{2} a$
$p+1=(2+g) \log _{2} a \ldots \ldots \ldots \ldots . .(\mathrm{p}$ and g$\left.) \ldots \ldots .6\right)$
take note (4) and (6) are thesame equation - if $\mathrm{p}=5, \mathrm{a}=2$
find g in both cases one will get 4 .
recall (1)
$2+p=1+(2+h)(1+\log 2 a) \ldots \ldots \ldots \ldots \ldots .$.
recall (697)
$2+\mathrm{p}=\log _{\mathrm{c}} 2+(2+g) \log _{\mathrm{c}} a$
substitute $(c=2)$ in (697)
$2+\mathrm{p}=\log 22+(2+g) \log 2 a$
$2+\mathrm{p}=1+(2+g) \log _{2} a$
(1) - (7)
$2+p-(2+\mathrm{p})=1+(2+h)(1+\log 2 a)-\left(1+(2+g) \log _{2} a\right)$
$0=0+(2+h)\left(1+\log _{2} a\right)-(2+g) \log 2 a$
$(2+g) \log _{2} a=(2+h)\left(1+\log _{2} a\right) . .(\mathrm{g}$ and h$)$
take note (3) and (8) are thesame equation. if one use
$h=1, a=2$, in both one willget $g=4$ in both.
so the above relationships $(\mathrm{g}, \mathrm{h}),(\mathrm{p}, \mathrm{h}),(\mathrm{g}, \mathrm{p})$ is needed.
validation or invalidation of fermat
As done for beal's.it is only thesynchronous 4 -input supercomputing $(0.5,0.5,05,0.5)$ tetra set that can validate or invalidate fermats last theorem. the decision of this tetra set is final. so we want tofind if there a condition where all the increments on the $\mathrm{x}, \mathrm{y}, \mathrm{z}$ postive integer axiz-g,h,p respectively is simultaneouly thesame. i dont think it exists. but find out if it exists. so one will lay out the three relationships
to study thispossibility as; $\mathrm{g}=\mathrm{h}=\mathrm{p}$.
recall the below typical solution equations to (1)
$p-1=2 \log 2 a+h\left(1+\log _{2} a\right) \ldots \ldots \ldots . . .(1 a)$
$\left.g=\log _{a} 4+h\left(\log _{a} 2+1\right) \ldots \ldots . . \beta\right)$
$p+1=(2+g) \log 2 a \ldots \ldots \ldots \ldots . .6)$
(1a) becomes
$p=2 \log _{2} a+h\left(1+\log _{2} a\right)+1 \ldots \ldots .$.) $\ldots \ldots \ldots \ldots .$. . 87
(6) becomes
$p=(2+g) \log 2 a-1$.
so one has the below equations
$p=(2+g) \log 2 a-1$
$g=\log _{a} 4+h\left(\log _{a} 2+1\right) \ldots \ldots$. B)
$h=\frac{p-1-2 \log 2 a}{(1+\log 2 a)}$.
so studying (10), (3), (2) can $\mathrm{g}, \mathrm{p}, \mathrm{h}$ ever have equal value at thesame time. this is not possible by inspection.
this is because g depends on h. so both g and h cannot have equal value at a time.also $\log _{a} 4$ can never be zero and $\log _{a} 2$ can never be zero since one wants all varibles to exist as integers.
$g=\log _{a} 4+h\left(\log _{a} 2+1\right)$.
this means fermats last theorem remains validin any domain of reasoning forever. - FIRSTCONCLUSION
FIRSTCONCLUSION : means it is impossible to prove fermat last theorem invalid forever in real space algebra using any means - algebra etc. this shows the accuracy - grieviousness of the fermat last theorem. this means if one checks 10 trillion computing lines etc of equality binary cubic powers.
not one will be found disobeying fermat last theorem.
this means - no end cube will be found. \qquad (8)

Fermat last theorem which could not be proven for more than three centuries.
also had a second problem attached toit. which also could not be stated for also more than three centuries. however, the first problem and second problem is just one problem.
the first problem is fermat last theorem
what then is the second problem? ANS : elders knowlegde or key to fermat last theorem. all problems no matter how difficult always have equivalent when transformed to or viewed from another frame of reference. this is the meaning of elders knowlegde. it also means
"for everything you dont know, you know at least one thing about it - Wells.
if $\mathrm{a}^{\mathrm{X}}+\mathrm{b}^{\mathrm{X}}=\mathrm{c}^{\mathrm{X}} \ldots \ldots \ldots \ldots$.......ermats problem.

Elders knowledge1:prove that the increment in $\mathrm{a}, \mathrm{b}, \mathrm{c}$ cannot be concidentally equal. so if any body wrote something different from thiskey then such is an invalid writing.
Elders knowledge 2 : prove that $\mathrm{g}, \mathrm{p}, \mathrm{h}$ are dependent with at least one independent as a consequence of key 1. this means we cannot be equal only IF - I depend on you. so two keys are missing also for more than three centuries. key 2 is the main key about the fermat last theorem. $\underline{\text { main - what is expected for more than three centuries. }}$ \qquad

From the Precedence theory of supremacy below - Fig 2, Fig 4, Fig 6.
Fermat means a man cannot have 2 heads - Ancient Egypt - Carnox.
however, since 5 is a supreme number. so 5 behaves as the supreme being.
the creator of Heaven and Earth. so all things are possible with it - Bible
Mathew 19:26
this means binary powers sums having equal powers having 5 exists.
even if - not yet found. eg
$\mathrm{a}^{55}+b^{55}=c^{55} \ldots$. siamese
$a^{555}+b^{555}=c^{555} \ldots$ precious stone 1
$a^{415}+b^{415}=c^{415} \ldots$. precious stone 2
this means : fermat is invalid forever 2ND FINAL CONCLUSION.
External reader :
Point 1: Fermat last theorem is rendered invalid forever on 2nd final conclusion.
Point 2 : Mathematical theory on the supremacy of 5 is not that voluminous- not in real proof eg line by line.
so how can one trust this "assumption" of supremacy - 5. i am saying 5 is not an evidence - no real voluminous mathematical proof...
Writer - wells : Point 2 is allowed. truely no voluminous proof. supremacy of 5 came from the mood of the writer. this means every writing is accompanied by the writers mood. the mood contains the voluminous mathematical proof and since 5 has mood origin . Its volumeproof cannnot possibly be written. The mood of every writing bring outs the writers extraordin ary - innate intelligence. whatever the mood says will not be in volumeproof but can be verified. the instinct of a writer gives birth to the mood and the mood gives birth to the" supremacy of 5 "-that's just the way it's.

1) that's
2) just
3) the
4) way
5) it's.

In addition, any human being who - ever lived on the Earth and sings a song "that's just the way it's" must have a name having just 5 letters and this means he is the greatest musician that ever lived and this song must sell eg a million records at least - greatest hit. his name must start with NT.
Number Theory. ANS : nT - UPAC - changes
UPAC-SUPREMACY.
TUPACis 5 letter. n - TUPACis 6 letters - the number of a man.
if TUPAC- he will not live long. so must be dead by now if the song has ever existed.this is because another supreme being willorder for his execution. if N -TUPAChe will live long. this means when theexecutor targets him - he willsay No thisis the wrong person and go away. so the musician will still be alive even if he has sung the song. so N - is actually in the name of this black - american musician - TUPAC but he did not know. so he died young.
TUPAC means SUPREME musician - GREATEST of all - in time so if the above examples exist then this means the writer is saying " a man can have two heads - precious stone 2 ". No. Yes, with(aid) the supreme being a man - $(4-1)$ can have two heads. thisis the meaning. siamese and precious stone 1 is saying only thesupreme being can have two heads.
Q : the population of the world is over 1billion.find one human with two heads aided by thesupreme being. or give another evidence to suport invalidation of fermat the orem forever apart from "that's just the way it's". 1) SIAMESE: the writer will say truely non exists in the world. however, thisis the way out. some children not born normally exists and may be born eg in a space of 5000 yrs eg siamese, conjoined - brain - twins etc.such existence are rare. humans may live for 4000 yrs in a given age and may not see a siamese twin. this does not mean they don't exist. you can only see one if born in the age when such is born. all humans if asked do you want to give birth to a siamese?. they willsay no. so who is the cause of the inexistence-it is the natural desire of humans.in my language - siamese or any birth not goodly are called - ABAMI - unearthly creatures. all humans go to their prayer altars and requests good creatures. that early egyptian said a man cannot have two heads does not mean they never had siamese birth. no - they are only saying they are aware of the grievous or rare inexistence of precious stones - for Pharoah.
precious stone is not diamond. far more precious than diamond.
so equations that renders fermat last theorem invalid forever exist
but are very rare and such are called numbers of siamese, orders or numbers of precious stones. etc.
this is the phylosophical study of fermat last theorem. \qquad

Mathematical Evidence - invalidation of fermat last theorem -FOREVER
HOUSE COUNTIN G : explained above. supercomputers skip during search because of house counting. all counting machines moving at high speed will not read 5 . reading 5 is impossible. before it gets to 5 .it willJUMP to 6 . if 14 , it will jump to 16 . either on the left or right side of an equation. it assigns 5 to the hard disk. 5 is a storage number. only supercomputers that eradicates house counting can find these numbers in high fields. house counting accounts for complex space algebra, which eventually turns to a real number. fermats problem is a complex number which turns real - 5 fields.
proven theory is realible than unproven truth. this means the little that is known about housecounting is sufficient evidence - better than fermat invalidation number could not be found. after all we used a supercomputer. until a man can put his head in a supercomputer and count numbers in its manner as it operates then can such disprove the house counting phenomenon-discovered by wells. no human can travel with a supercomputer. but errors of a machine can be discovered in theory and corrected. all machines if not perfect have errors attached toit in operation and such must be discovered and put in place

mathematical proof to invalidate fermat last theorem - FOREVER

Final conclusion on the fermat last theorem must and must be drawn from
$\mathrm{p}, \mathrm{g}, \mathrm{h}$.

1) the first conclusion on fermat was by inspection. By inspection means
using the human eyes. mathematics is not aesthetic or art. the eyes is not
a logical tool. it is aesthetic in nature. mathematics is logic. so the human eyes is not a mathematician in complex.
it can compare fields - greater or less. or study static expressions.but will fail if a static expression behaves continuous through some unknown means. eg. a police officer saw a man. so he was asked what is the complexion of the man you saw? he said black 100%. not knowing the man he saw was actually 100% fair in complexion but masked.
secondly, can one put a pen in theeyes of a man to solve algebra.
No, thisis not possible? This means by inspection is faulty in maths. the human eyes cannot give final conclusion on the fermat last theorem.
also from above, taking a clue from the hidden value of "a" explained by logarithm transform ation. the eyes will not detect the hidden value problem. infact the eyes will argue 100% that hidden value cannot exist. so saying fermat is valid forever by inspection is an 100% incorrect statement \qquad ..(95)

What then is the Final conclusion on the Fermat last theorem.
5 - the supreme number says Siamese and precious stone numbers exists. the conclusion of a matter should explain if truely 5 can render fermat last theorem invalid forever. - i mean $\mathrm{p}, \mathrm{g}, \mathrm{h}$. if $\mathrm{p}, \mathrm{g}, \mathrm{h}$ does not predict the existence of 5 as a supreme number in content. then 5 - cannot in any way render the fermat last theorem invalid forever. this means that 5 is a supreme number is not false but the fermat last theorem willalways be valid forever. this is called mathematical logic. explanation - the profit of a company at the end of a certain year is $\$ 5$. so the accountant said this $\$ 5$ will buy a brand new helicopter for the company. the owner of the company shouted WHAT! \$5. so the owner of the company said in his heart after then . well truely, i started the company and i should be more intelligent than the accountant i employed. so he collected the $\$ 5$ and asked the $\$ 5$ with a loud voice "how can i buy a brand new helicopter from you".immediately, the $\$ 5$ replied. I am actually a computerized chip money. my password is exactly "what you said to me". the $\$ 5$ showed a screen that led to the treasury account of his late father. the $\$ 5$ was actually a property of his late father - his treasury information designed in his lab but stolen and mixed with theGovernment mint.he immediately retrieved the account information and eventually bought the helicopter after collecting the money in the bank. his late father had more than $\$ 100$ million in his treasury - (lost). \qquad (96)
$\$ 5$ is the equations - $\mathrm{p}, \mathrm{g}, \mathrm{h}$. so only $\mathrm{p}, \mathrm{g}, \mathrm{h}$ can explain how 5 will render the fermat last theorem invalid forever. if it does not, then as a

Final conclusion : Fermat last theorem is valid forever
$\mathrm{p}, \mathrm{g}, \mathrm{h}$ predict the existence of 5 .
Find: $4+\mathrm{i}$

NEXT PAGE

$\mathrm{S} 1: 5$ as earlier explained from the beals equation example is $4+\mathrm{i}$. this means one of the equations $\mathrm{p}, \mathrm{g}, \mathrm{h}$ must contain 4 .if it does not contain 4 . then 5 cannot render fermat last theorem invalid forever. this means
fermat last theorem is valid forever. so find this equation.
S = Search
$g=\log _{a} 4+\left(\frac{p-1-2 \log _{2} a}{(1+\log 2 a)}\right)\left(\log _{a} 2+1\right) \ldots \ldots .(\mathrm{p}$ and g$) \ldots .(4)$
$A N S:$ it is $\mathrm{g}-\log _{a} 4$
S2: After 4 is found. the next expression in that equation must be a plus (+) sign. if not a plus maybe - another sign eg minus(-), α, β etc then Fermat last theorem is valid forever on final conclusion
ANS : CORRECT-it is a plus
S3: after plus is found in thisequation, the next expression must appear complex - (i) to the human eyes. if it does not appear complex to the human eyes in any way, then fermat last theorem
is valid forever - (97)
ANS :TRUELY - the expression appears complex to the human eyes
the complex expression is $:\left(\frac{p-1-2 \log _{2} a}{\left(1+\log _{2} a\right)}\right)\left(\log _{a} 2+1\right)$
so three -3 searches, $[\mathrm{S} 1: \mathrm{S} 2: \mathrm{S} 3]$ are needed to validate the ability of supreme -5 to render the fermat last theorem invalid forever. if any one of the three search is missing then fermat last theorem remains valid forever. indeed : the three searches are found.
[S1:S2:S3]-mean to start with fermat is an order -3 problem which is provable by 5 .
SO, FINALLY, the supreme number - 5 will render the
fermat last theorem invalid forever.
Final conclusion :FERMATLAST THEOREM IS INVALID FOREVER
Even if, Fermat invalidation number is not currently found using a supercomputer. if the invalidation number did not house count.the final conclusion proves it exists in the field of Extremely largely numbers beyound modern computing.
IF you dont believe my writing, I will write a certain number below after releasing it in US when i get there. so you can use as a token of belief. this number may or may not be related to the fermat' s last theorem.

The number simply means - YOU ONLY KNOW WHAT YOU CAN DO. i have a friend who says it this way. YOU CANNOT KNOW MORE THAN
 WHAT YOUR BRAINCAPACIT YHOLDS - thanks

YOKWYCD :

fermat number can be found using the engine - three unknowns using the below questions but it is difficult to use the engine to find beal's number-4 unknowns. however, for both i will not try it, because
i have to attend to some other important things-may be 10 yrs from now. if you can do it, publish as a continuation of this work using the engine only.

H/W

Find the below numbers using a computer - divisor algorithm or the tetraset engine - it exist.
these numbers are extremely rare - could be missing in
100millioncomputing lines - but exist. they account for the order of unification fields and special unification fields but it exist.

1) $a^{35}+b^{35}=c^{35}$
2) $a^{5}+b^{5}=c^{5}$
3) $\mathrm{a}^{10}+\mathrm{b}^{10}=\mathrm{c}^{10} \ldots \ldots \ldots \ldots . . . \mathrm{E} u$ - explorer $)$
4) $a^{55}+b^{55}=c^{55}$
5) $\mathrm{a}^{555}+\mathrm{b}^{555}=\mathrm{c}^{555}$; a, b, c are positiveintegers.
hint : divisor will not housecount? why
6) there is just one in in the alphabet
7) 0 means cancelled

D-I - V-S - R-5 field

Also if "inspection" - FIRSTCONCLUSION is faulty then $\mathrm{p}, \mathrm{g}, \mathrm{h}$
must also state thismathematically.
$p+1=(2+g) \log 2 a$ \qquad . (p and g)
$A N S$:it is impossiblefor an human being not A.O. Wells
to transform (6) into (4) using algebra in any exam -
eg if given 100 yrs . \qquad .(99)
of examination time without seeing (4). this means you cannot know what you cannot see. you only know what you see. so what you know is just 1% due to what you see. (4) is called \log of theorem.
\log - of - theorem renders inspection judgement 100% wrong.
\log - of - theorem is a log expression derived as a result of a lot of complex
algebraic processes. if the whole world is asked to proof the
equivalent of (6) which is (4) for 100 million years
the whole world willscore 0 . transform ing (6) to (4)
is only possibly achievable by tailoring - if (4) is seen. tailoring means
if a number is seen in (4). the student will use it in target to achieve
(4). so human will not believe (4) is equivalent to (6) and exists.
\log - of - theorem says logarithm is a very big and complex field.
beyond human comprehension
so if the whole world cannot transform (6) to (4). so the human eyes cannot validate the fermats last theorem for final conclusion.
it is only saying fermats observation is grievous in truth.
so log expression behaves complex - beyond real space algebra -
this complex behaviour is shocking and unbelievable.
(6) is called logarithm of simplicity- what the human eyes can see.
(4) is called what the human eyes canot see.-complex.

In conclusion : log - of - theorem renders inspection judgement -
100% incorrect. .(100)
Fermat's Last theorem Title:
valid in R - invalid in R - valid in C - invalid in C - valid in R - invalid in $\mathrm{R}-6$

1) validin R - eyes
2) invalid in R
3) validin C
4) invalid in C
5) validin R
6) invalid in R
invalid in R - means fermat last theorem is invalid forever, the number exists in the real number space.
6 points - means : fermat invalidation number hides in half goldbach -5 .
But one day an human being - 6 will find the number
eg siamese, precious stones. since it hides in half - goldabch
then it is seriouly hidden. this means the probability of finding it with
a moving machine eg supercomputer is zero.
since it moves - counts at high speed.
decode this mentally.so only a static machine can find the number.......(101)

How to eradicate house - counting

1) name of computer -5 letters only. this creates a 5 field that stops
numbers having $5-$ eg - CDC $6600=$ CDCSIX00 $=$ CDCSI
there is just one C in the alphabet so 4 . yes. No $\mathrm{D}=$ different C - so 5
also, 5 chairs, 5 persons around the computer doing the search. if a computer is performing a search and 10 persons are around it.it will
house count.
2) passing a search through a static calculator - (divisor) to view 5 -fields
3) it is impossbile to eradicate house counting because of 5 -field growth.
so house counting can only be eradicated in just two.unless you(reader) know how to make it possible.
stages -1) and - 2) .(102)

NEXT PAGE

There are five implications of (258). they are section 1, section 2, section 3, section 4-goldbach, section 5-solitary-10

SECTION 1

X1-INDEPENDENT GRAPH

1) $b=2 k, \quad b=3 k, b=5 k, b=9 k, b=11 k$. so the k is the gradient of the line. so the intercept on the Y axis in all the graphs is 0 .

Graph1

Linear graph $y=m x+c ; m=$ gradient, $c=$ intercept on the y-axis. the data points can be generated - high school maths.

$$
\begin{array}{lll}
\mathrm{b}=2 \mathrm{k} ; & \mathrm{y}=2 \mathrm{x} & ; \mathrm{m}=2 \\
\mathrm{~b}=3 \mathrm{k} ; & \mathrm{y}=3 \mathrm{x} & ; \mathrm{m}=3 \\
\mathrm{~b}=5 \mathrm{k} ; & \mathrm{y}=5 \mathrm{x} & ; \mathrm{m}=5 \\
\mathrm{~b}=7 \mathrm{k} ; & \mathrm{y}=7 \mathrm{x} & ; \mathrm{m}=7 \\
\mathrm{~b}=11 \mathrm{k} ; & \mathrm{y}=11 \mathrm{x} & ; \mathrm{m}=11
\end{array}
$$

the graph below shows flight of eg an aeroplane at different angles on the run way. take off on run way. so ($\mathrm{b}=\mathrm{vk}$) is actually an air friction equation which explains air resistance to flight of an aeroplane at different take off angles. so can explain plane crash caused by air friction. Due to the geometry of the airplane and its take off angle so the best condition for flight is take off at optimum value of " v ". optimum means not too high nor the lowest- $\mathrm{b}=\mathrm{a}$. so take off angle of an aeroplane $=\tan ^{-1} 1=45^{\circ}$; since $\tan \theta=$ gradient .

Fig 1-Showing the independent graph
X2-DEPENDENT GRAPH

Linear graph $y=m x+c ; m=$ gradient=slope, $c=$ intercept on the y-axis. the data points here are generated from above. b is plotted on the y -axis and v plotted on the x -axis.
data points:

$1)$	$\mathrm{b}=10 ;$	$v=2$
$2)$	$\mathrm{b}=15$	$v=3$
$3)$	$\mathrm{b}=25 ;$	$v=5$
$4)$	$\mathrm{b}=35 ;$	$v=7$

the slope or gradient of this graph is expected to be 5 . But if not 5, an error has occurred somewhere. the graph is expected to be a straight line $(b=v k)$ graph which passes through the origin.

FIG 2- Prime number table

This is a theoretical example without plotting graph.
$\mathrm{m}=\mathrm{y}_{2}-\mathrm{y}_{1} / \mathrm{x}_{2}-\mathrm{x}_{1} ; \mathrm{y}_{2}=15, \mathrm{y}_{1}=10 \quad \mathrm{x}_{2}=3 \quad \mathrm{x}_{1}=2$
$\mathrm{m}=15-10 / 3-2=5 / 1=5$
so $\mathrm{m}=$ slope $=$ gradient $=5.5$ is a prime number. this means that the prime number 5 satisfies the beal's and fermat conjecture whether as an exponent or as a base number. this also means prime number has a great significance in the study of beal's or fermat's conjecture
MS-Excel plotted the FIG3 below. so still verify if the slope is not 5 by using a paper graph plot.

NEXT PAGE

FIG 3-PRIME FACTOR PLOT

For v equals 9
$10=2(1+4)$
divide both sides by 2
$5=(1+4)$
multiply both sides by 9
$5 * 9=9 *(1+4)$
$45=9 *(1+4)$
$\mathrm{b}=45$; v=9
this proves that in theoretical physics $9(3 * 3)$ is a prime number. but in pry school it is not
for v equals 11
$10=2(1+4)$
divide both sides by 2
$5=(1+4)$
multiply both sides by 11
$5 * 11=11 *(1+4)$
$55=11 *(1+4)$
b=55 ; v=11

for v equals 13

$10=2(1+4)$
divide both sides by 2
$5=(1+4)$
multiply both sides by 13
$5 * 13=13 *(1+4)$
$65=13 *(1+4)$
b=65 ; v=13
for v equals 15
$10=2(1+4)$
divide both sides by 2
$5=(1+4)$
multiply both sides by 15
$5^{*} 15=15^{*}(1+4)$
$75=15 *(1+4)$
$\mathrm{b}=75$; v=15
this proves that in theoretical physics $15(3 * 5)$ is a prime number. but in pry school it is not-why product of two prime numbers.
for v equals 17
$10=2(1+4)$
divide both sides by 2
$5=(1+4)$
multiply both sides by 17
$5 * 17=17 *(1+4)$
$85=17 *(1+4)$
$\mathrm{b}=85 \quad ; \mathrm{v}=17$
for v equals 19
$10=2(1+4)$
divide both sides by 2
$5=(1+4)$
multiply both sides by 19
$5 * 19=19 *(1+4)$
$95=19 *(1+4)$
$\mathrm{b}=95 \quad ; \mathrm{v}=19$
for v equals 21
$10=2(1+4)$
divide both sides by 2
$5=(1+4)$
multiply both sides by 21
$5 * 21=21 *(1+4)$
$105=21^{*}(1+4)$
$b=105$; v=21
this proves that in theoretical physics $21(3 * 7)$ is a prime number. but in pry school it is not
for v equals 23
$10=2(1+4)$
divide both sides by 2
$5=(1+4)$
multiply both sides by 23
$5 * 23=23 *(1+4)$
$115=23 *(1+4)$
$b=115 ; v=23$

The increase from one prime number (factor) to another prime number is 10 in the "b" WORLD starting from the second column of FIG 2. this 10 is the number in the first row of the first column of FIG 2-b data point-where the down arrow points. the first column is to be regarded as partially collapsed (totally collapsed-does not exist). because it has 2 and 10 which are both even numbers. 5 has supremacy over the even domain. this collapse is caused by the most important property of the real number line"distinction". so this is the reason the first and second column does not show the trend difference of 10 . that is between the first and second column the difference is 5 .
continue the trend to check for incoherence (difference not 10) and alarm when you find one.
the above trend proves beal's conjecture of common prime factor solution as meaningful because the above theory leads to a prime number or factor plot-which proves the existence of prime factors (5) as solutions to the beal's equation. so FIG 3 is called the prime number or factor plot. which shows the behavior of prime numbers in their solution to the beal's equation and also its application to airflight study as a case study. Also from common sense, checking the positive integer number line, the prime numbers are few compared to other numbers. so the percentage of "prime numbers"- on the real number line is about 2%. well you can give it any percent you wish.
Q: do prime numbers have trend. ANS -YES -difference of 10

Reality of "b"

From above it seems "b" is JUST a variable in conjecture equation (1) whether beal's or fermat- b world. it is not so. b has a real life name and meaning. Every letter or symbol in a scientific equation has a name. so all letters in (1) has a name by which its appropriate value may be known without using any computer or exerting struggle.
Mathematical Theory and Modeling
ISSN 2224-5804 (Paper) \quad ISSN 2225-0522 (Online)
Vol.5, No.1, 2015

Define b : how can one define b in a real sense forgetting about any conjecture? or what is the significance of b in number theory.
studying FIG 3. it will be found that $\mathrm{r}_{11} * \mathrm{r}_{22}=\mathrm{r}_{12} * \mathrm{r}_{21} ; \mathrm{b} 1 * \mathrm{v} 2=\mathrm{b} 2 * \mathrm{v} 1$. this general relationship holds till infinity.
$\mathrm{r}_{11^{-}}$number in row 1 column 1 (b1)
$\mathrm{r}_{22^{-}}$number in row 2 column 2 (v2)
$\mathrm{r}_{12^{-}}$number in row 1 column 2 (b2)
$\mathrm{r}_{21^{-}}$number in row 2 column 1 (v1)
so b is called- the equation index or factor of the prime- factors of the real number line.
EXAMPLES
$75 * 17=85 * 15 ; \quad 17-15=2 ; b=2 a$
$1275=1275$
$95 * 21=105 * 19 ; \quad 21-19=2 ; b=2 a$
1995=1995
the 2 in $\mathrm{b}=2 \mathrm{a}$ validity proof of beal's conjecture is the difference between consecutive even, odd, numbers-(prime number-first column)

Section2

Even number plot

As one obtained the prime factor plot. one can also obtain the even number plot to study if any trend exists in it. it is expected to give an even number or 5 as the gradient from which one can conclude the goldbach conjecture.
$\mathrm{b}=10$; $v=2$
For v equals 4
$10=2(1+4)$
divide both sides by 2
$5=(1+4)$
multiply both sides by 4
$5^{*} 4=4^{*}(1+4)$
$20=4 *(1+4)$
$b=20 \quad ; \mathrm{v}=4$

For v equals 6
$10=2(1+4)$
divide both sides by 2
$5=(1+4)$
multiply both sides by 6
$5^{*} 6=6 *(1+4)$
$30=6 *(1+4)$
$\mathrm{b}=30 \quad ; \mathrm{v}=6$

For v equals 8
$10=2(1+4)$
divide both sides by 2
$5=(1+4)$
multiply both sides by 8
$5 * 8=8 *(1+4)$
$40=8^{*}(1+4)$
$\mathrm{b}=40 \quad ; \mathrm{v}=8$

For v equals 10
$10=2(1+4)$
divide both sides by 2
$5=(1+4)$
multiply both sides by 8
$5 * 8=8 *(1+4)$
$40=8^{*}(1+4)$
$\mathrm{b}=40 \quad ; \mathrm{v}=8$

FIG4-even number table
b1* v2= b2* v1 holds in FIG4
so b is called the equation index or factor of the even integers of the real number line

Obtaining the gradient - a theoretical example without plotting graph.
$\mathrm{m}=\mathrm{y}_{2}-\mathrm{y}_{1} / \mathrm{x}_{2}-\mathrm{x}_{1} ; \mathrm{y}_{2}=20, \mathrm{y}_{1}=10 \quad \mathrm{x}_{2}=4 \quad \mathrm{x}_{1}=2$
$\mathrm{m}=20-10 / 4-2=10 / 2=5$
so $\mathrm{m}=$ slope $=$ gradient $=5$
this again proves the pre-eminence of 5 above all numbers in number theory. it has a special baby honour. Although $1,2,3,4$ is more supreme than 5 but because 5 has a special supremacy. all this numbers 1,2,3,4 honour 5 by abandoning their supremacy so hiding their personality so only 5 is seen in all situations. so the above shows that 5 will not let 4 show its superior supremacy that it should prove goldbach conjecture.
MS-Excel plotted Fig 5 below. so still verify if the slope is not 5 by using a paper graph plot.

FIG 5- EVEN NUMBER PLOT

Q: Which is more meaningful- prime or even numbers? ANS: even numbers
Q: Which is most important- prime or even numbers? ANS: prime numbers
Q: Which is has a larger field -prime or even numbers ? ANS: even numbers.
even numbers have the larger field -this is why it is more meaningful than the prime numbers. prime numbers are the only numbers that exist. even numbers do not exist. since primes are the only numbers that exists they are the only tool to study even fields which exists in levels of difficulties. even numbers have hypothetical- real life existence. hypothetical means- can something be made even? -evenness is a philosophical issue-(almost impossble) which is solvable by the primes. primes proves (real life) indeed things can be made even. but naturally evenness impossibly exists- read -rock story above.
eg- philosophy of evenness: Wells says it is impossible to take even steps when walking on the road if centre of foot is 0 point.
prime numbers: it is possible aided by myself-prime. this means when the feet is primed-glued eg even movement is achievable.
who collapsed the even domain? the supreme number- from below. this is not true. this makes the supreme number a wicked entity. the even domain naturally does not exist. this means even numbers do not exist. this is its origin or main reason for its collapse. the even domain however only comes into existence when aided by the prime. so even numbers can be brought to existence. it is said by Wells either above or below that when the odd domain is replicated the even domain collapses. this statement is also not the main reason for the collapse of the even domain. the previous statement- simply means number theory knows that all humans in the world will have written in their books "odd numbers" and odd numbers do not exist and can be impossibly brought into existence. this means a natural human will want to replicate the number domain with the odd number so the even domain must collapse. so number theory is predicting human behavior as another reason for the collapse of the even domain. so only, when you read wells note will you know that only one number set exists naturally and it is the prime numbers. it is said that the largest field is the even domain. in what magnitude? the prime has one field then the even has unbound -infinite fields-of study. the simplest statement -first thing to know-based on even number naturally do not exist or mathematically- thinkable observation or first application of the even domain is below .

1st application of the even domain-even numbers:

WELLS BASKET CONJECTURE OR WELLS BANANA BASKET(N-PEG) CONJECTURE-

Wells STRONG: it is impossible for an human being whether male or female to put a first basket at a point and put a second basket at a second point, if the centre base of the two baskets has a mark each, the distance between the two centre bases can never be an even number. it is possible to be an integer in one to an infinite trials but it is impossible for it to be an even number in an infinite trials. call this basket the banana basket-contains bananas. was it that wells had performed this experiment before? No. it is from the breakdown of this note-theory .

Weak 1: The experimenter can use a third basket -any number of baskets in continuation. let him measure the distance between any pair of baskets. it is impossible for the distance to be an even number. when I have money in future I will release a $\$ 1$ million grant for any human being who can prove this conjecture invalid forever. try it in your office. also as a game for students-friend pair-mates.
note- after first pair measurement the instructor-another person should relocate the basket(s) randomly again for the experimenter to perform his next set of measurement putting his own basket in another position for measurement of evenness between any pair again.

Weak 2: if a man puts a first basket at a point on the floor, then it is impossible for his wife or pair element (another person) in an infinite trial to put a second basket at a second point on the floor which has an even number distance from the first basket. if a basket is not used, a movable plastic peg(N -any number of pegs)-having a pointed mouth can be used eg of height 1 m etc. the peg (basket) in any of its number can be computerized so that it will give the accurate precisional measurement relative to its other members- the peg (basket) - (CLO) after being moved by the experimenter(s). CLO- collection (total number) of baskets or pegs etc-the object used.

Weak 3: if a man builds a first house at a point it is impossible for him to build an infinite number of houses having an even centre distance from the first house without pre- measurement.
the obliquity of the earth without performing any astronautic calculations cannot be an even number. so unless the obliquity of the earth is even, can the wells basket(N-PEG) conjecture be rendered invalid forever.

LESSON FROM THE BASKET (N-PEG) CONJECTURE

Wells :ANS: EVENNESS NATURALLY IS AN IMPOSSIBLE CREATION. IT IS ONLY POSSIBLY ACHIEVED BY PRE-MEASUREMENT-WHAT IS KNOWN-(ruler)-PRIME NUMBER.
$2^{\text {nd }}$ application of the even number- even domain-(Theory design)
is there a general mathematical method to prove the validity or invalidity of any given conjecture forever: yes: when a conjecture is given, if its theory-(long note) of evenness is found then what the conjecture says is valid forever and if its theory of evenness is not found then this is its theory of oddness then the conjecture becomes invalid forever. so in disproving a conjecture forever the THEORY OF ODDNESS which suites the conjecture must be found-application to abstract algebra, if algebra is not used.

All even conjectures are valid forever- goldbach-10, proof of solitary 10-valid forever.
$3^{\text {rd }}$ application of the even number- even domain- HOW CAN I DISCOVER A VALID FOREVER CONJECTURE
how can I make a mark in the history of science? what types of conjectures are needed? must I be a Christian like goldbach before I can give a valid forever conjecture according to the spellings of goldbach's name? must I have read very close to all the books in the world before I can discover a valid forever conjecture by working in the office all night, all my years carrying out research.. is there a unifying frame for valid forever conjectures? this is a great philosophical issue- NP vs P problem-1?

WELLS SOLUTION (NUMBER THEORY): Anybody who wants to have his name in the history of mathematics forever eg for releasing conjectures -statements that are valid forever is to find even conjectures- ANS: FIND EVEN CONJECTURES!. "ALL" EVEN CONJECTURES ARE VALID FOREVER. since "ALL" -then there is a place where one can get "all" of the same type of behavior. so one will say -"the even domain accounts for unification fields in science".

Example: there is something true-valid forever about nos, $2,4,6,8 \ldots$. which is not known. it is firstly the numbers and secondly or in other forms the numbers in some mathematical or scientific statements eg geometry.

WELLS UNIFICATION THEORY OF EVEN NUMBERS: All true things-(whatever you say that makes a meaningful sentence only) about even numbers are valid forever. this means all even conjectures are valid forever. eg if you say- you can draw a 20million sided polygon in a square -ANS- it is true forever-without performing experiments- next find out. so, EVEN NUMBERS ARE SOLUTIONS TO ALL PROBLEMS IN THE UNIVERSE.
so all conjectures based on Wells even domain unification theory are titled: Wells even conjectures- then tells us the
subcategory- what you studied-your meaningful sentence using the even numbers-arrangement etc. finally- the even domain is beyond imagination in size- "larger than the bounds of infinity"
$4^{\text {th }}$ application of the even number- even domain-NP VS P problem- LAW OF THE EVEN DOMAIN
How do I know if a Diophantine conjecture equation is valid or invalid forever in a second without solving it? eg the fermat last theorem or beal's conjecture? a great issue of philosophy? words of thought?-NP VS P problem. beal's conjecture was stated to be most difficult problem in number theory by wells. this means wells admits "no -comment" on NP vs P problem. the NP vs P problem is actually the most difficult and greatest problem in number theory. the margin of difficulty between the beal's conjecture and the NP vs P problem is more than infinity.
ANS: Fermat last theorem and beal's conjecture have two-(even) root numbers on the left side(1). this means for you to invalidate the conjectures, you will need to travel to infinity-eg with an airplane. a man spent about 7 hrs in the air plane travelling to India. so he lamented "this trip is just too long". so can such travel to infinity with an airplane. the two problems are the most difficult problems in history-almost impossible to solve-due to the even left. however, fermat and beal's conjecture is odd on the right -has one root number. this means- both can be rendered invalid forever from the right. achieving this is an almost impossible task due to the left -even roots but odd theory of the right root number proves fermat and beal's conjecture are invalid conjectures forever in just a simple line without writing mathematics- not even a letter. so if in abstract algebra- I will say an even ring is valid forever- can be impossibly broken while an odd ring can be damaged. as examples,- as a lead- if a perfect study of something is observed eg about a double pair equation. An equation having two root numbers each- on the left and on the right then such a conjecture is valid forever. if three root numbers on one side and two on the other side-invalid forever-due to the odd- three root numbers. if four on one side and three on the other side -almost impossible to prove but invalid forever- due to the odd three root numbers. four on one side and two on the other side- valid forever. the solution of the NP vs P problem is a fundamental law of the even domain and it is one of the greatest achievement of Wells-fundamental law solution of Diophantine conjectures. so any NP vs P problem can be subcategorized eg Diophantine etc. each answer gives a type of fundamental law. any Diophantine power sum conjecture is solvable and checkable in the least time- of 1 second- by the even domain. see added note below. However, A.O.Wells is a Christian

Euler sum of powers: odd on the right- has one root number- so invalid forever-without using a computer.
Collatz-conjecture- has an even part-so impossible to invalidate forever. but since has an odd part-mentioned is an invalid conjecture forever through the odd ring. supercomputer operation uses loops- can detect-even rings. odd rings are damageable. so not rings. looping engines will not detect the odd rings of the collatz conjecture or odd rings.

Example 1: Give a proof of Fermat last theorem-(37x yrs-back)-ANS: it is an invalid conjecture forever-because of the right-odd root number.
so all undergraduates having known this, will design different solutions but they all will have the same conclusion-invalid forever. all students gets the mark for the correct conclusion. so the lecturer picks the best design or model-theory of the student of invalidity forever. each stage of each students writing will depend on certain pre -existing fundamental laws. anywhere the students misuses the law then such model is discarded for correction or final rejection.

LESSON FROM Example 1

Andrew wiles proved fermat valid: this is a mysterious event to my hearing and all I hear in science in general apart from the chemist's world. chemist are the best mathematical scientist. Anytime chemists write an equation- the right must balance the left. chemist will tell you, it is possible to write-(correct) a chemical reaction, the reaction may not be feasible-fundamental.
Wiles proved fermat valid. how did you know he is correct? A mark guide should exist before exam scripts are marked. this means: if I ask the whole world what I intend to write next the whole world will score zero-Except Chemists.
ANS: right from day one when fermat problem existed. the next step is to pick the OBJECT OF SCIENCE.
if mixing two chemicals will cause explosions you should know and be prepared for it-either moving your face far from the mixing-law of evenness etc.

1) design a FUNDAMENTAL LAW(read below elders key)-mark guide. this fundamental law can be just a line statement. this fundamental law will help to mark the script of anybody who solves fermats last theorem.
In summary, right from day one after the design of the fundamental law, the whole world would have known if fermat last theorem is valid or invalid forever before the script is marked-anybody solves it. so any fundamental hypothesis submitted will be tested and it will most likely fail until the correct hypothesis is passed. "you cannot write a story about a country or remote village in a place you have not travelled to". if you say there is a pink river somewhere elsewhere you will be told- no pink river. you must have gotten to the conclusion of a matter before you begin.
2) solve the problem- heading towards the fundamental agreement.

The study of the design of fundamental laws help mathematicians or scientists to understand the rudiments or underlying principles guiding their fields, so most problems will be solved easily and not form a pile.
so all conjectures have two problems if not experimental in nature like the basket conjecture- which depends only on measurement. so the two problems are 1) design of fundamental law-marking guide 2) solving the problem so if the fundamental law is not found then no solution can be submitted even if correct. here, the whole world wanted to SOLVE fermat last theorem-valid or invalid (37xyrs) without knowing the answer.

Spy from below- there is a certain point where the right odd root number lifts the explorer-10. fermat is invalid forever here. what is the fundamental law for Riemann hypothesis- prime numbers is only a tool- Riemann invalid forever. the even domain is the biggest.-(0.8)

Example 2: Prove that fermat will be insolvable for more than three centuries, impossible to find using a supercomputer. ANS- Fermat has -left even root numbers. supercomputer can not find the invalidation number- (super-1, computer-2.). a super computer having 3 odd names or whose engine is divided into odd chambers only can find this invalidation numbereg Tri-Super-computer.
Q: if Andrew Wiles wrote an academic note on fermat last theorem and ended on an even number of pages, what is his conclusion?

Wells: valid forever.

Q: Is Wiles conclusion correct?
Wells: incorrect-reason above- odd root-right.

Q:What did Wiles fermats paper discuss in length for having valid conclusion: the left root numbers- so left valid or supercomputing data -valid-experiment.

Q: Can you name a theory that invalidates wiles work? since the output of a system is more important than the input.eg a nuclear reactor generates the cheapest and highest amount of energy in the world but its exhaust fumes kills 10,000 persons in a day. so the output of this plant is not good. so discarded despite its input. so output checked first before input. so the output-right precedes the input -left side of (1). so wiles work will be rendered invalid by precedence theory.

PRECEDENCE- discusses the supreme no 5 . so number theory says humans who commit this precedence error have 5 letters as a name-W-I-L-E-S, E-U-L-E-R, (B-E-A-L-i). since beal is just 4 letter. beal is a well known human in the worldmaybe a billionaire. T-H-E-O-R-Y, has 6 letters. so these
humans also have 6 letters as a name- (A-N-D-R-E-W-6)(wiles), (A-N-D-R-E-W-6)-(beal), F-E-R-M-A-T- 6

Also, any person prior to reading this note on even check of conjecture will fall prey of precedence theory. take note I did not say odd check- odd numbers do not exists. you know when I was a small child-primary, secondary school. my teacher uses some formulas to calculate length of circles- they give odd number answers.

Wells: Circle lengths-circumference are never odd. those formulas are erroneous. a circle is an even entity-pair symmetric even length(semi-cirlce) + even length(semi-cirlce) $=$ even length , odd length(semi-cirlce) + odd length(semi-cirlce) $=$ odd length. you don't need to measure the length of a semicircle before you know the perimeter of a circle is an even answer. pie should be just 3.0. pie has 3 sticks $111=\Pi$. a symbol was written by the sage-wise of old but humans could not read. primary school babies are better than professors-eg Euler.
the only instrument that can be used to draw a circle is the compass. so the pin of the compass rests on a left root number, the pencil of the compass rests on the second left root number of (1) to give a circle-even entity. so all those my teachers are great mathematicians. they would have ruined my career.

Example 3: Why is it easy to solve a quadratic equation? ANS: Whole world: it has highest power of 2-which is easy for man

Wells: it is easy to solve because it has three(odd) terms. x-square, x and a constant. an equation having even number of terms is not easy to solve or say impossible to solve. only odd number terms-equations are easy to solve-power-3,5,7 etc if quintic power- it has a certain level of difficulty which is unique and highly problematic-may be impossible to solve.

$5^{\text {th }}$ application of the even number- even domain-: MAGDEBURGH-SPHERE

Magdeburgh sphere in physics- I read in a book of physics when in high school of a pressure sphere- magdeburgh more than a decade ago. check for the correct spelling and story. the book said two horses on each side of the sphere can not pull the sphere apart-open it.
it was discussed under pressure. this statement is not just a pressure effect as stated by the physicist. it is a result of the evenness of the sphere. - so better called even- pressure- effect.

Explanation

the sphere is an even entity. the two horses- one on each side is another even entity, making two even entities. the first even entity gives unbeatable result- the first lock. the second even entity gives another unbeatable-undamageable result- $2^{\text {nd }}$ lock. a ring is even and impossible to damage. so the first lock -even entity-sphere locks up with the second lock -even entity two horses-making damaging or separating the sphere more difficult and impossible. so the event of two horses, one on each side trying to open apart the sphere is called the $2^{\text {nd }}$ LOCK OF EVEN. Trying to separate the sphere by an even entity-horses or two persons one on each side makes the sphere more stronger and impossible to pull apart forever. so number theory proves that this account is true. two horses- (any even entity-split) one on each side cannot separate the magdeburgh sphere. so the Magdeburgh experiment is best understood by A.O.WELLS-2nd Lock Of Even. it is not a pressure effect in any way.

Star-horse.
Ellipse -the magdeburgh sphere.
curved line- horse lock line.

How can the magdeburgh sphere be separated into two hemispheres?

1) one-(odd) horse only will separate it-alone with the sphere.
2) a third horse is needed on any side of the magdeburgh event. this third horse will pull with its teeth the tail or leg of the horse in its front.
Q1: in case 2) which side pulls the magdeburgh sphere apart?. this is another issue. since the third horse joins one horse on one side then they become two-even horses-so forming another even ring. making two even rings. the sphere is the first ring. so the third horse on any side it joins- reinforces the madgeburgh sphere again to higher limits of infinite impossible damage. so it is the singular-(one-odd) horse on the other side that has the power and
strength to damage the magdeburgh sphere. however, prior to this note all humans will say it is the two horses that will pull apart the sphere. since truly adding the two strengths in the two horses-seriously tensioned two horses in pulling mood. yes truly the two horses appears energetic. but can say ironous. A s the two horses on one side pulls the sphere there strength travels along the body of the sphere to strengthen the single(odd) horse on the other side. this means in the real world the singular horse is more powerful than the two horses. so it is a case of three to one strength. if the internal energy of an horse is one joule. the singular horse will have 3 joules of energy-counted its own internal energy. the two pulling horses have zero energy. appear energetic and not actually energetic as a result of instantaneous transfer of strength. the sphere pulls apart finally from the side of the singular -odd horse.

Q2: which horse-side is the first to fall as a result of recoil? ANS: some may not know there will be a recoil. however a recoil exists. most answers will be- the single horse. Wells: No. ANS: the even horses will retreat and fall first- not aware of the open ring on the side of the single horse immediately the sphere splits another open ring-third ring-face of an hemishpere is formed on the side of the singular horse so this third ring creates impossible to defeat(fall) strength to the singular horse. so the third ring transfers all the 3joules energy in the singular horse back to the two horses on the other side with great speed. so the singular horse will have zero energy while the two horses will receive this magnified transfer of 3 joules of energy. so this 3joules of energy which the two horses receives in speed drowns the two horses to a fall or near fall. In tug of war- (pair-two side rope pulling game) -the stronger side does not fall-reason for first answer by people or observers above- magdeburgh is not tug of war.

Q3: in there no physics in magdeburgh? Yes.
when the sphere opens on the side of the singular horse- an open system cannot retain energy. so the 3joules energy in the singular horse will seek for the nearest closed system which is the lock of even of the two horses on the other side. the speedy transfer of this energy damages the lock of even between the two horses making it-the two horses to fall in shameless ways or brings it to near fall. the physics is- energy storage, transfer, magnification of energy
so in a nutshell madgeburgh sphere discusses the theme below:
Numbers of the lock of even, energy storage, conservation,transfer, magnification of energy. when energy is transferred to a ring at a speed the energy becomes magnified-ring magnification. this energy can damage the ring. the ring-lock of even can store energy-eg a flywheel. so if asked can a flywheel store energy-ANS: yes it is a ring-lock of even. so not to be discussed under pressure.

OTHER QUESTIONS

1) Q: if three horses- on each side? so three pairs- three locks of even. .the sphere-a lock of even-forming four locks of even.
Q: will the sphere open when pulling begins ANS: NO ,WHY? all locks of even to the fourth infinite impossible to damage stage.
2) Q: if two horses on each side? so two locks of even. the sphere-a lock of even-forming three locks of even.

Q: will the sphere open when pulling begins ANS: NO ,WHY? all locks of even to the third infinite impossible to damage stage.
3) Q: if four horses- on each side? so four pairs- four locks of even. .the sphere-a lock of even-forming five locks of even.

Q: will the sphere open when pulling begins ANS: NO ,WHY? all locks of even to the fifth infinite impossible to damage stage.
4) Q: if three horses on each side and a man on only one side, will the sphere open -ANS: YES. the man is the odd and not symmetric to anything in the experiment.
note- a lock is formed by symmetric objects on different sides only. different- means must not coincide-so joined by something at least 1 mm . so if two hemispheres will form a lock-(sphere lock) etc they can impossible be on the same side. so
one hemisphere must be on the right and the other on the left. similarly, if horses will form a lock, each can be on different sides-(horse lock). humans quickly notice right and left-so wonder how? it is the rope, joining material-weld, material of connection that creates the locks and locks exists only with symmetric objects.

CONCLUSION: interpreting the magdeburgh sphere takes a high level of intelligence and brilliance.
physicist believe in equations-but numbers in the equation is not physics- is mathematics(number theory). although wells a physicist-interpreted the magdeburgh's sphere. there are an infinite pages of discussion with this magdeburgh's sphere. any physics equation not having the competence PROOF READ of a number theorist is invalid to an extent-everything is not physics-eg gravity. magdeburgh sphere event is not a pressure effect- "not again" related to pressure in any way- it is caused by The Lock Of Even and energy- I can actually write a film on this story the "Lock of even"- world class hollywood film. it means a lot more than what Wells explained.

Definition of evenness: must have at least two symmetric parts. it is almost an impossible achievement or creation. eg only non living things show such easily eg circle-ring, square, rectangle etc. there is no place you can divide an human being and get two symmetric parts. although biologist-medics" use the word "bisect". this is because they are brainless. there is no place you can divide an animal eg a rat and get two symmetric parts. I as a person, you won't find me go to hospitals for treatment or for any reason because I have doctors etc in great fear. I am afraid one day they will bisect me and I will have two heads. so how will I be able to join back two heads to form one head. an human being has one head, one heart etc. so any time I am sick etc I take natural herbs. bisect means must be symmetrical. eg bisect an angle means divide the angle into not just two parts but two equal parts, the same in all things. if I bisect 90 degree. then I will get two- 45 degrees-symmetric. so careless misuse of even -bisect caused the remote consciousness of its in inexistence. $2=1+1,4=2+2-$ symmetric etc.
so there are infinite bounds of the application of the even domain

Section3

Odd number plot
odd numbers do not exist. only the prime exists. odd numbers are from human fall of knowlegde. however, since humans said some numbers are odd, then as the even number plot is obtained. the odd number plot can also be obtained to study if any trend exists in it. it is expected to give an odd number or 5 most likely again as the gradient.

$$
\mathrm{b}=10 ; \quad v=2
$$

for v equals 1
$10=2(1+4)$
divide both sides by 2
$5=(1+4)$
multiply both sides by 1
$5^{*} 1=1^{*}(1+4)$
$5=1 *(1+4)$
$b=5 \quad ; v=1$
for v equals 3
$10=2(1+4)$
divide both sides by 2
$5=(1+4)$
multiply both sides by 3
$5^{*} 3=3^{*}(1+4)$
$15=3^{*}(1+4)$
$\mathrm{b}=15 \quad ; \mathrm{v}=3$
for v equals 5
$10=2(1+4)$
divide both sides by 2
$5=(1+4)$
multiply both sides by 5
$5^{*} 5=5^{*}(1+4)$
$25=5^{*}(1+4)$
$\mathrm{b}=25 \quad ; \mathrm{v}=5$

For v equals 7
$10=2(1+4)$
divide both sides by 2
$5=(1+4)$
multiply both sides by 7
5* $7=7$ * $(1+4)$
$35=7 *(1+4)$
$\mathrm{b}=35 \quad ; \mathrm{v}=7$

FIG 6-Odd number table

b1* v2= b2* v1 holds in FIG5
so b is called the equation index or factor of the odd integers of the real number line
so from the three statements about b . b is finally named- the equation index or factor of the real number line.
obtaining the gradient- theoretical example without plotting graph.
$\mathrm{m}=\mathrm{y}_{2}-\mathrm{y}_{1} / \mathrm{x}_{2}-\mathrm{x}_{1} ; \mathrm{y}_{2}=15, \mathrm{y}_{1}=5 \quad \mathrm{x}_{2}=3 \quad \mathrm{x}_{1}=1$
$\mathrm{m}=15-5 / 3-1=10 / 2=5$
so $\mathrm{m}=$ slope $=$ gradient $=5$

MS-Excel plotted Fig 7 below. so still verify if the slope is not 5 by using a paper graph plot.

FIG 7-ODD NUMBER PLOT

Abstract

What about the name of "a" in (1) "a" has a name that is related to a constant factor (of the real number line) from the fact that it is always 5 as explained above. so a and b can swap their names. so a can be the equation index of the real number line while b takes the constant factor of the real number line. a or b are letters on the left side of (1)

SECTION 4

GOLD BACH CONJECTURE

EXISTENCE OF THE GOLD BACH CONJECTURE

5 is the slope from the prime factor, even and odd number plot. this shows the significance of 5 and the existence of the goldbach conjecture. so one can write the below
$5=2+3$; this means 5 can be expressed as a sum of two prime numbers. this means 5 which is an odd number behaves like an even number whose attribute was explained in the goldbach conjecture.

VALIDITY PROVE OF THE GOLD BACH CONJECTURE

FIG 6 shows that the step change from one odd number to another odd number in the (b axis) is 10 . a step change of 10 is also observed for the even number as explained. a step change of 10 is also observed for the prime numbers as explained. all three plots- prime number, odd and even number plot has a slope of 5 . this proves the existence and validity of goldbach conjecture. the underlined three means goldbach conjecture is referring to three numbers in relationship.

Important notice

An unknowledgeable person would reason and say that the prime factor plot was not important because it has a discontinuity. so saying three plot is a way of cooking lies in theory. secondly, if the whole world was to chose the most important plots among the three plots. the whole world will chose the even and odd plot-this will make the whole world unknowledgeable. so the whole world will score 0 . however, this is Alexanders answer- the most important plots do not exist but there is just one most important plot which is the prime number plot. it is the most important plot on the real number line. the other two plots can be done without. this means prime numbers are the most important numbers on the real number line. so one needs three plots-read reasons below.

simple knowledge of prime numbers - Examples

1) It reveals a law of economics that when a commercial good is very very very expensive, only two percent (2\%) of the world will be able to buy it. eg those who can buy the Rolls Royce Phantom Coupe out of the world are 2% of the world. why $2 \%-\quad$ if branded well- half of S. Arabia, Brunei, Qatar, Kuwait population etc will buy it. After making the 2% sales, diminishing returns sets on this company that owns the phantom brand to liquidate it. this diminishing return thus sends the end profit of this company to 2%. so if this company makes $\$ 10$ dollars as profit. 2%-refers to the prime numbers. eventually the account will draw back to $\$ 0.2$. so this leads to say the only way to maximize self profit when selling very very very expensive commodity is to sell the company (brand) to another person or company who has 98% wealth after a particular season of self maximized profit.

Also when a good is cheap like tomato in the market- 98% of the world will be able to buy it. why 98% - Everyday, all over the world, humans buy tomato. so if a company sells tomato. it makes 98% sales. later, diminishing returns sets on this tomato company to liquidate it. this diminishing return thus sends the end profit of this company to 98%. so it loses 2% of its profit. so if this company makes $\$ 10$ dollars as profit. eventually the account will draw back to $\$ 9.8$.this is because tomato is a general commodity.
2) If there are 10 students in a class and they all write a promotional exam. now two students have the same score in the exam. so the teacher will give these two students the same rank of first $\left(1^{\text {st }}\right)$. so for the number of students in the class to be 10 . or in order for the teacher not to start looking for the where about of the last person in the class- Asking did he write the exam or didn't he write the exam? The second rank after the two first $\left(1^{\text {st }}\right)$ is $3^{\text {rd }}$. As simple as this question is 98% of the world will score zero by chosing ($2^{\text {nd }}$) if they encounter it in a multi-choice exam in the first time without pondering carefully. the $2^{\text {nd }}$ position collapses. so reason I revealed this type of question-it is rare.
having two first at a time. just like, it is rare having two fastest athletes cross the finish line at the same micro time not time. This second example is explained below.

Simple knowledge in theory- why is the prime number plot the most important plot in number theory?

The start discontinuity in the prime number plot show the two most important properties ($10 \& 2$) of the real number line. these two most important properties of the real number line are that;

1) All the numbers in any plot are obtained from the real number line. so how can one be sure that the number one is using to prove the goldbach conjecture is from the real number line and not from an unknown complex world? prime factor plot.
2) "no number repeats itself twice on the real number line"- from below. this "collapse" of the even domain is revealed when the prime number set is "withdrawn" from the set of the odd numbers. so when the odd domain which contains prime numbers is "repeated" the even domain cleaves or collapses.
"withdrawn"- means trying to say primes are not odds-primes are odds.
so FIG2 = FIG6- Except for start discontinuity.

So if asked to prove the Goldbach conjecture. the first line of proof is to show that the "source numbers" are from the real number line and it simply means draw the table of the prime factors-not from a complex field.
$10=5+5 \ldots \ldots \ldots . .(1)$. (1) means the step change for the three plots is equal to the double sum of the gradient in a plot. goldbach conjecture says -sum of two positive prime integers is an even positive integer.

Another theoretical formulation or model eg : $a^{x}-b^{y}=c^{z}$ will lead to some other interesting results. however the below still follows from (1) by manipulation.
$4=2+2$
$6=3+3$
$8=3+5$

Gold bach conjecture is only valid in the b -domain. this is because the step change occurred in the b domain. . this b domain is an unsual and an almost impossible to locate domain. it was possibly located by the solution to the conjecture (1). so any one who can not solve (1) mathematically, will not be able to prove the goldbach conjecture.

GRAPHICAL PROVE OF GOLD BACH CONJECTURE

step change- means a movement by an external agent etc (man, robot) etc. all numbers on the real number line are static they don't move. so each curve in FIG 8 represents a step change along three numbers-5,15,25

in FIG 8- the width or area inside one semi curve is 10 . two numbers brought 10 into existence. each semi dome is called the goldbach. $10(5+5)$.

PROVE OF GOLDBACH IN THEOREM

MATHEMATICAL FORMULATION OF THE GOLDBACH CONJECTURE

theorem

1) prime number
$\mathrm{b}=(\mathrm{b} 2, \mathrm{~b} 3, \mathrm{~b} 4$, \qquad ..)
$\mathrm{v}=($ set of prime numbers starting from $3 ; 3,5,7 \ldots \ldots \ldots)$
plot b against v - the slope is x

$$
\begin{gathered}
\mathrm{b}_{\mathrm{n}} * \mathrm{v}_{\mathrm{n}+1}=\mathrm{b}_{\mathrm{n}+1} * \mathrm{v}_{\mathrm{n}} \text { or } \\
\mathrm{b}_{\mathrm{n}+1}-\mathrm{b}_{\mathrm{n}}=\mathrm{y}
\end{gathered}
$$

Find the set b, v. find x and y
2)
even numbers
$\mathrm{b}=(\mathrm{b} 2, \mathrm{~b} 3, \mathrm{~b} 4$, \qquad
$\mathrm{v}=($ set of even numbers starting from $2 ; 2,4,6 \ldots \ldots \ldots$)
plot b against v - the slope is x
$\mathrm{b}_{\mathrm{n}} * \mathrm{v}_{\mathrm{n}+1}=\mathrm{b}_{\mathrm{n}+1} * \mathrm{v}_{\mathrm{n}} \quad$ or $\quad \mathrm{b}_{2} * \mathrm{v}_{3}=\mathrm{b}_{3} * \mathrm{v}_{2}$
$b_{n+1}-b_{n}=y$
Find the set b, v. find x and y
3)
odd numbers
$b=(b 2, b 3, b 4, \ldots \ldots \ldots \ldots)$
$\mathrm{v}=($ set of odd numbers starting from $3 ; 3,5,7 \ldots \ldots \ldots$)
plot b against v - the slope is x

$$
\mathrm{b}_{\mathrm{n}} * \mathrm{v}_{\mathrm{n}+1}=\mathrm{b}_{\mathrm{n}+1} * \mathrm{v}_{\mathrm{n}} \quad \text { or } \quad \mathrm{b}_{2} * \mathrm{v}_{3}=\mathrm{b}_{3} * \mathrm{v}_{2}
$$

$b_{n+1}-b_{n}=y$
Find the set b, v. find x and y
$y=x+x=$ goldbach conjecture
Mathematical Theory and Modeling
ISSN 2224-5804 (Paper)
Vol.5, No.1, 2015
hint: it may be thought that simultaneous equation may not lead to the set b. this is not true. this proves that b's root is not a function of any conjecture. " b " is what should be known in mathematics or in number theory without any knowledge of any conjecture or its solutions.

solution-prime factor

$$
b_{n} * v_{n+1}=b_{n+1} * v_{n}
$$

$$
b_{n+1}-b_{n}=y
$$

```
5a = 3b.........(1)
```

 \(b-a=y \ldots\) (3)
 $7 \mathrm{~b}=5 \mathrm{c}$. \qquad

$$
c-b=y \ldots(4)
$$

y in (3) and (4) should be a number from experience because if not a number, non of a,b,c,y will give a number. so the question will be unsolvable. since y is not a number then one must find y first in order to solve this four equations. from (1)
$5=3 \mathrm{~b} / \mathrm{a}$
from (2)
$5=7 \mathrm{~b} / \mathrm{c}$
(5) $=(6)$
$3 \mathrm{~b} / \mathrm{a}=7 \mathrm{~b} / \mathrm{c}$
b cancels on both sides
$3 / a=7 / c$
$3 \mathrm{c}=7 \mathrm{a}$. \qquad
$(3)=(4) \ldots \ldots \ldots \ldots(10)$
$\mathrm{b}-\mathrm{a}=\mathrm{c}-\mathrm{b} \ldots \ldots \ldots \ldots$. (11)
$b+b=c+a$
$2 b=c+a$
$c+a=2 b$Mathematical Theory and Modeling
$3 \mathrm{c}=7 \mathrm{a}$.
$7 \mathrm{a}=3 \mathrm{c}$.
find a in (16)
$a=3 c / 7$
recall (2)
$7 \mathrm{~b}=5 \mathrm{c}$
find b in (2)
$\mathrm{b}=5 \mathrm{c} / 7$.
recall (14)
$\mathrm{c}+\mathrm{a}=2 \mathrm{~b}$
substitute (17) and (18) in (14)
$\mathrm{c}+3 \mathrm{c} / 7=2(5 \mathrm{c} / 7)$
multiply both sides of (19) by 7
$7(\mathrm{c}+3 \mathrm{c} / 7)=2(5 \mathrm{c} / 7) 7$
$7 \mathrm{c}+3 \mathrm{c}=10 \mathrm{c}$
$10 \mathrm{c}=10 \mathrm{c}$ (22).
$10=10$.
(22) means 10 what you don't know means 10 what you don't know. the- what you don't know is the (c). so what you don't know is 10 . This is because the two c's will cancel out and you will be left with 10 on both sides. so (23) means 10 what you now know means 10 what you now know. so what you now know is 10 . Or say (22) means you are solving a problem that has to do with 10 . so move from there. scientists who lived in past years would have called (23) indeterminate solution.
since one is to first find y . so $\mathrm{y}=10$
recall (3), (4)
$b-a=y$
$\mathrm{c}-\mathrm{b}=\mathrm{y}$
substitute 10 in (3), (4).
$\mathrm{b}-\mathrm{a}=10$.
$\mathrm{c}-\mathrm{b}=10$
Find c in (25)
$\mathrm{c}=10+\mathrm{b}$
substitute c in (2)
$7 \mathrm{~b}=5 \mathrm{c}$.
$7 \mathrm{~b}=5(10+\mathrm{b})$
$7 \mathrm{~b}=50+5 \mathrm{~b}$
$7 \mathrm{~b}-5 \mathrm{~b}=50$.

```
2b=50.
\(\mathrm{b}=50 / 2=25\).
\(\mathrm{b}=25 \ldots \ldots \ldots .\). (32)
recall (2)
\(7 \mathrm{~b}=5 \mathrm{c}\)
``` \(\qquad\)
substitute (32) in (2).
\(7(25)=5 c \ldots \ldots \ldots \ldots \ldots\). 33 a)
\(5 \mathrm{c}=7(25)\)
\(\mathrm{c}=7(25) / 5\)
\(\mathrm{c}=7 * 5\)
\(\mathrm{c}=35\).
recall (1)
\(5 \mathrm{a}=3 \mathrm{~b}\).
substitute (32) in (1).
\(5 \mathrm{a}=3 * 25 \ldots \ldots \ldots \ldots \ldots \ldots .\). (34)
\(\mathrm{a}=3 * 25 / 5\).
\(a=3 * 5=15\)
\(\mathrm{a}=15\).
\(\mathrm{b}_{\mathrm{n}+1^{-}} \mathrm{b}_{\mathrm{n}}=\mathrm{y}\)
\(\mathrm{c}-\mathrm{b}=\mathrm{y}\)
25-15=10.
so since \(a, b, c\) are known one can compute the gradient theoretically it is 5 . this same mathematical procedure can be done for the even and the odd.

Goldbach in his conjecture was saying prove that - the change in the equation index or factor of the real number line (b) is equal to the double sum of the gradient on the real number line \(-\Delta b=m+m\)

Every even integer greater than 2 can be written as the sum of two primes, \(10=5+5,5\) is the prime number. whatsoever is said about the goldbach is true to infinity-prime number decomposition. this is because of the constancy of the equation index of the real number line to infinity.
FINAL CONCLUSION: GOLDBACH IS VALID FOREVER-since the equation index holds till infinity.
goldbach conjecture is an infallible conjecture-this means all the words in this name are the most important in the life of a man.

G-good
O - one -mind
L-loving
D - don't be devilish, don't
B - be a beast, bad etc
A- active-not lazy, accountability,

C - Christian, cautious
H - holy

\section*{INVALIDITY PROVE OF GOLDBACH CONJECTURE}

There is another frame of refrence where goldbach conjecture proven above seems not to exist. this accounts for why goldbach will almost never be proven. this Invalidity prove of goldbach conjecture is also called WELLS NON REPEATA CONJECTURE.

The slope of a graph represents a general view of the graph. the 10 used above is not a general view but an aspect of the graph . the slope in FIG 3, FIG 5 and FIG 7 are all equal to 5 . this shows the pre-eminence of 5 above all numbers on the real number line or in number theory. it has a special baby honour. since 5 is the slope and precedes \(6,7,8\) etct then 5 is more supreme than \(6,7,8\) etc- Precedence theory . this SUBSEQUENTLY means all numbers that precedes 5 are all more supreme than 5 . so \(1>2>3>4>5\) - order of supremacy. so the supreme numbers are (\(1,2,3,4,5\)). however 5 has a special supremacy over these numbers \((1>2>3>4)\) because 5 is closest to the set of numbers from (6--infinity-non supreme). since this whole set of non supreme numbers outnumbers the supreme numbers. then one will say again 5 has a special supremacy over all numbers.
all numbers whether supreme or non supreme honour 5 by abandoning their supremacy so hiding their personality so only 5 is seen in all situations. so the above shows that 5 will not allow any number on the real line to show their superior supremacy over 5 most especially the even domain. this helps one to conclude that prime number 5 has superiority over the even and other numbers in the odd domain. it will not let \(4=2+2\) or any number bring out its head in a general view of number theory. since it does not allow other numbers to bring out their heads in number theory then this means goldbach conjecture will be unsolvable for centuries since no other number in the real number line brings out its head. so only a person that can solve (1) to obtain the \(b\) domain can prove the goldbach existence.

\section*{THEORETICAL PHILOSOPHY 1}
so a person that bears the name Euler, Einstein will not be forgotten in the history of the world because their name starts with letter " e " which is the \(5^{\text {th }}\) letter of the alphabetic table. his works are valid or renowned from one generation to the other until the Earth does not exist again. this previously explained is called theoretical philosophy. check if Rutherford has a name like "earnest".

\section*{THEOLOGY}
man was created on the 6 day- a creature with dominion over the earth. so since 5 is superior to 6 . this means that a supreme being (5) came on the 5thday to create man. this means a supreme being existed before the creation of man and has supremacy of dominion over man. (check). Also, man is known to have dominion over all things on the earth. however, since it is established that a supreme being came through the \(5^{\text {th }}\) day to create man. this further means
1) all things created on the \(5^{\text {th }}\) day have dominion or superior authority over man. if any was created.
2) since the supreme being can create. this means the supreme being created 5 animals, 5 plants etc on the \(5^{\text {th }}\) day that are more supreme in authority than man if any was created. this means that if a man does not recognize as an example the plant created on the \(5^{\text {th }}\) day and he maltreats this plant eg spits on it. then that man is subject to condemnation.
3) from 2) that man has dominion over all things as written in the Bible simply means not all things in entirety but this all things is defined-has a closure. man does not have dominion over what is created on the \(5^{\text {th }}\) day.
4) so if God created nothing on the \(5^{\text {th }}\) day then man has all compassing dominion over all things on the earth.
5) since 5 behaves like an even number eg 6 from goldbach existence proof . this means the supreme being which is represented by 5 - who also created man has some elements of jealousy with man. this further means this supreme being tends to behave or compare himself with a man. why does 5 not remain 5 why does it want to behave like another number-even.

\section*{SINCE ALL three slopes are 5 \\ (three-dealing with three numbers (goldbach conjecture)}

Goldbach conjecture is below
\(5=2+3\) \(\qquad\) .(1)- most important property of the real number line (distinction).
(sum of two primes= prime number not even). 2 is a number and 3 is a different number from 2. (5, 3,2) are all distinct numbers . so no repetition of numbers in (1)
(1) is not \(4=2+2\) (repetition of 2-no distinction) or the other examples of goldbach conjecture. a number does not repete twice on the real number line.

This proves that goldbach conjecture is mere fallacy. it does not exist. it cannot be proven for the even positive integer in number theory because of the supremacy of 5 over the even domain. or one can say (1) is the validity of goldbach in the general view domain. this previous statement means by manipulating (1) one can obtain \(4=2+2\) which is the goldbach conjecture. this is achievable by subtracting 1 form both sides of (1) and the manipulation can only be done by an external agent. Summary of the previous statement- how can one prove the goldbach conjecture for the even numbers when their domain is collapsed by the supreme number 5? it is difficult.so goldbach will elude proof for more than one century minimum.

\section*{EXAMPLES OF GOLDBACH CONJECTURE}
\(4=2+2\)
\(6=3+3\)
\(8=3+5\)
\(10=5+5\)
so (2), (3), (4), (5) etc does not exist in number theory in the general frame of refrence. or exists impossibly in the general frame of refrence-due to elusion above.

\section*{IN THE GENERAL FRAME OF REFERENCE.}
this reason is called the WELLS NON REPETA THEOREM.
recall (2)
\(4=2+2\)
WELLS NON- REPETA THEOREM means no one number or integer repeats itself for more than once on the real number line eg there are five 1 's, three 3 's, four 5 's on the real number line is an invalid statement. there is only 1 one, , one 3 , one 5 on the real number line. the same law applies to the non integers whether positive or negative.
so if \(2+2=4\). this means the first 2 is from the real number line and the second 2 is a work of an external agent which uses imaginative logical arithmetic. so this external agent added the second 2 . so this second 2 was not taken from the real number line. this external agent can be an human being, robot etc and it is this same external agent that drew the two curves in FIG 8. so external agent source is proven in the validity theory and invalidity theory of goldbach conjecture. this proves the fact that the general view is indeed a general view.
If one says
\(4=2+2\).
if (2) is valid then a mathematician will ask you, where did you get the second 2 ?. since there is only one 2 on the real number line?
if there is only one 2 on the real number line then, the probability of existence of two 2 's is 0 . so number theory cannot be used to account for the existence or operation of an event (goldbach conjecture) whose probability of occurence is 0 in the general view.

picked from the real number line
so 4 is a sum of the number on the real number line and the external input number. the same applies to (3), (4), (5). general view works on probability.
since no number on the real number line repeats itself more than once. then this means the domain of any number on the real number line does not intersect the domain of another number on the real number line. so no one number can have more than one domain on the real number line.

\section*{VENN DIAGRAM}

U= universal set
A= subset of \(U\)
\(B=\) subset of \(U\)
\(\mathrm{U}=(1,2,3,4,5,6,7)\)
\(\mathrm{A}=(1,2,3)\)
\(B=(2,4,5,6)\).
VENN DIAGRAM 1
\(\operatorname{SET~D}=(\mathrm{A}-(\mathrm{AnB}))=(1,3) \quad\) SET E \(=(\mathrm{B}-(\mathrm{AnB}))=(4,5,6)\)

FIG 9-VENN DIAGRAM SHOWING THE INTERSECTION OF SET A AND SET B-IMAGINATIVE VIEW.

FIG 9 shows an imaginative world-external input. this is also because "no two identical or the same numbers or things or events can exist at two different places simultaneously. so 2 cannot exist in A and simultaneously in B.
Fig 9 has a loop of intersection. so there is 2 inside this intersection loop. these Venn rectangle are not closed. sorry i don't know how to draw with MS- word very well.

\section*{NEXT PAGE}

\section*{VENN DIAGRAM 2}

SET C \(=(1,2,3)\)
SET \(D=(4,5,6)\)

FIG 10-VENN DIAGRAM SHOWING NO INTERSECTION OF SET A AND SET B-REAL LIFE VIEW. so in the real world A AND B do not intersect.

Q: If asked to explain why no two numbers on the real number line repeat itself
Ans: This question is referring to the WELLS NON- REPETA THEOREM

\section*{THEORETICAL PHILOSOPHY 2}

Goldbach means bag of gold. so a bag of gold is an inanimate object. so a bag of gold cannot speak. or one can say anything an inanimate object speaks is invalid. so goldbach is invalid in the general view-difficult for humans to prove.

\section*{CORRECTION TO FIG 2}

FIG 11-real prime number table

Q : is 1 a prime number?
\(\mathrm{b} 2-\mathrm{b} 1=5 ; \quad \mathrm{v} 2-\mathrm{v} 1=1\) \(\qquad\)
\(\mathrm{b} 3-\mathrm{b} 2=5 ; \quad \mathrm{v} 3-\mathrm{v} 2=1\) \(\qquad\)
(7) and (8) are the same so 1 is a prime number. 1 can be called the reverse prime. reverse because it precedes 2 . prime because it behaves like 2 which is a prime number. so any formula showing the study of prime must begin with 1 and have a negative sign-reverse-forward.
riemann zeta function equivalent
\(\zeta(\mathrm{s})=\prod_{\mathrm{p}}\left(1-\frac{1}{\mathrm{p}^{\mathrm{s}}}\right)=\left(1-\frac{1}{2^{s}}\right)^{-1}\left(1-\frac{1}{3^{s}}\right)^{-1}\) .)
this table FIG 11 is called the beginning and end of number theory or mathematics having previously said before that the primes are the most important.
so with the aid of this table all problem in mathematics to infinity can be solved.

\section*{NATURAL EARTH MATHEMATICS(NEM)}

Means the natural study of numbers in the prime, even, odd factor table to give solutions to problems without performing too much task. As an example- FIG 11 is used by magicians, wise men of old, astrologers, in ancient Egypt to give solutions to problems.

\section*{APPLICATIONS OF NATURAL EARTH MATHEMATICS}
1) Goldbach conjecture
2) Questions on primes
3) House counting
4) Solve conjectures, puzzles etc eg Euler sum of power conjecture
5) provides answers to any question in the universe-can explain all things about the universe.

On 7 June 1742, the German mathematician Christian Goldbach wrote a letter to Leonhard Euler (letter XLIII) \({ }^{[5]}\) in which he proposed the following conjecture:

Every integer which can be written as the sum of two primes, can also be written as the sum of as many primes as one wishes, until all terms are units.

He then proposed a second conjecture in the margin of his letter:

Every integer greater than 2 can be written as the sum of three primes.

ANS: 5-1-means every integer can be written as itself. (\(1^{\text {st }}\) column)
10-2- every even (10) integer greater or equal to \(4\left[(5-1)\left(1^{\text {st }}\right.\right.\) column) \(]\) can be written as a sum of two primes (2 \(2^{\text {nd }}\) column)
15-3- Every integer greater than 2 (> second column) can be written as the sum of three primes (\(3^{\text {rd }}\) column).

\section*{VARIANTS OF THE GOLDBACH}
1) the others follow in the same manner in the \(v\) row. similarly, (\(\mathrm{b} 1-\mathrm{v} 1-\mathrm{v} 2\)) relationship means \((\mathrm{b}(\mathrm{n}-1)+(\mathrm{v}(\mathrm{n})-\mathrm{v}(\mathrm{n}-1))=\mathrm{p}+\mathrm{q}\). so as examples of the variants of the goldbach.
a) \(\mathrm{b} 1+(\mathrm{v} 2-\mathrm{v} 1)=5+(2-1)=5+1=6\). so we say every integer greater than 6 can be expressed as a sum of 2 prime. not 1 prime because you don't count 5
b) \(\mathrm{b} 2+(\mathrm{v} 3-\mathrm{v} 2)=10+(3-2)=10+1=11\). so we say every integer greater than 11 can be expressed as a sum of 2 primes
c) \(\mathrm{b} 3+(\mathrm{v} 4-\mathrm{v} 3)=15+(5-3)=15+2=17\) so we say every integer greater than 17 can be expressed as a sum of 3 primes take note: \(\mathrm{v}=\) prime numbers- for prime factor table
\[
\begin{aligned}
& \mathrm{v}=\text { even number }- \text { for even factor table } \\
& \mathrm{v}=\text { odd number }- \text { for odd factor table }
\end{aligned}
\]
relates to the previously drawn graph.
1) \(10=m+m=m * 2=m 2 ; y=10, x=2\)
2) \(15=m+m+m=m * 3=m 3\)
3) \(25=\mathrm{m}+\mathrm{m}+\mathrm{m}+\mathrm{m}+\mathrm{m}=\mathrm{m} * 5=\mathrm{m} 5\)
4) \(35=m+m+m+m+m+m+m=m * 7=m 7\)

\section*{STRONG-EULER-GOLDBACH}
\(\mathrm{P}+\mathrm{Q}=2 \mathrm{~N} ; 2 \mathrm{~N}=10 ; \mathrm{N}=5, \mathrm{P}=\mathrm{Q}=5\)

\section*{QUESTIONS ON PRIMES}

Q1:35 will contain how many primes if you add 3,one-5,7. ANS \(=7\)-v-row
Q2:45 will contain how many primes if you add 3 , one-5,7. ANS \(=9-\mathrm{v}-\) row
Q3: how many 7 are in Q1: Ans \(=3=b-35\)
Q4: how many 7 are in Q2: Ans \(=4=b-45\)
so the prime number table can explain everything about all numbers, its decomposition, prime numbers etc.
but it must be studied using natural earth mathematics-natural talent. if a number is missing. it is present-find it. the same applies to the even and odd factor table. you study it in the morning when the brain is fresh and having eaten. study a trend and try to unify the trend for coherence.

\section*{Discovery of House Counting (NEM)}

During the study of goldbach prime decomposition OR called shapes of numbers. Wells discovered house counting.
wells regarded v as the shape of a certain primed number

\section*{Natural earth mathematics}
\(\mathrm{v} 1=5-1\)
\(\mathrm{v} 2=10-2\)
\(v 3=15-3\)
\(\mathrm{v} 4=25-5\)
\(v 5=35-7\)
\(1+2=3-v 3\)
\(5+10=15-b 3\)
\(15+25=40-\) not \(35-\) no \(v\)
\(3+5=8-\operatorname{not} 7-\) no \(v\)
so wells concluded: summation of numbers is only valid in three domains. this means out of all possible prime decomposition of a number, only 3 is unique(\(\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3\))- so summation only holds in \(\mathrm{v} 1, \mathrm{v} 2, \mathrm{v} 3\). all other decompositions are not unique representations of that number. so a positive integer can have only 3 maximum unique shapes. so the other possible shapes will be cancelled for performing some certain offences and regarded as unwanted or unacceptable representations- the are not guided by law of summation-which is logic.

Decompose 10
1) \(3+7\)
2) \(1+9\)
3) 5+5 = Cancel = house count

Decompose 15
1) \(2+11+2\)
2) \(9+3+3\)
3) \(7+7+1\)
4) \(3+7+5-\) cancel- house count

So 15 has four -3 prime representations. so the writer cancelled the \(4^{\text {th }}\) representation. since 3 is the maximum unique representations and recalled the supremacy of 5 and called the offence of the \(4^{\text {th }}\) decomposition of 15 - house counting. so the writer went back to 10 and cancelled its \(3^{\text {rd }}\) representation (5+5) and looked at FIG 9 and gave it two count charges
1) 5 cannot be used more than once-5-1
2) 5 cannot be counted-house counted.
so 10 has only 2 unique representations-easy put. so if a number cannot be counted it means it serves as the house or place or storage for counting other numbers.

\section*{Meaning-House Counting}
house counting or reflection means 5 serves as an house that stores other numbers. if 5 is to be counted with some other numbers. 5 says since I am supreme why should I be counted like the others in summation- don't add all of us together. I
will add them to myself. so count the others and put them in my
house I will tell you the sum. eg \(5=2+3\). so 5 is not counted. so 5 forms the house. so if you radiate light into the house you will not find any number. house counting is a consequence of the supremacy of 5 and makes it behave complex-imaginary not seen. so \(5=4+\) i. it is also called reflection theory because only a light radiation can view the house and detect 5 .

\section*{Examples of house counting}

EX1: \(5=2+3 ; \quad=5\)

EX2: \(6=5+1\)

5= storage
\(5=\) storage

EX \(3: 10=5+5\)

so if computer is searching for fermats invalidation number. when it gets to 5 it will record 0 . eg if \(3^{5}\), it will read \(3^{0}\) then move to the next number. the curve is actually a sealed bag and reflection of light is from outside. for numbers to be added to
5. the reflected light reflects 5 out in space from the body of the house and adds it to the other numbers stored in the house count-sealed bag.
so knocking the bag means house counting. 5 is saying don't touch me. 5 is added only by reflection.

\section*{Essence of this study- house counting-rubbish}
there are so many other laws for determining unwanted representations of numbers. if this laws are known. bank servers will be on better security. the whole world does not even know about house counting let alone an hopeless linux server. Wells will not reveal all of them in writing. because it can aid both the good and evil-hacker. so a person like wells can destroy any bank server with simple number theory programs-just numbers. so only house counting is revealed.

\section*{SOLVING CONJECTURES}

FIG11: the table is actually owned by a certain God who is worshipped by Christians and had 12 disciples when he came to the planet earth.

Euler's conjecture is a disproved conjecture in mathematics related to Fermat's last theorem which was proposed by Leonhard Euler in 1769. It states that for all integers \(n\) and \(k\) greater than 1 , if the sum of \(n k\) th powers of positive integers is itself a \(k\) th power, then \(n\) is greater than or equal to \(k\).

In symbols, if \(\sum_{i=1}^{n} a_{i}^{k}=b^{k}\) where \(n>1_{\text {and }} a_{1}, a_{2}, \ldots, a_{n}, b_{\text {are positive integers, then }} n \geq k\).

ANS (NEM):

each box in the table-FIG11- has 4 sides. that is any number in the table is stored in a four sided square. so a column in FIG 11-forms 8.

ANS:
1) 5 - is stored in a regular \(=\) constant shape- 4 , a box- 4 down and a box up-4- 1 is the content. \(e=144^{5}\)
2) two box share a border LINE-minus. two box each of side four- means supreme numbers can be repeated. so 4-side of a box one box=3; 133
3) a box looks like 0 and each of the two boxes looks like \(1 ; 110\)
4) two box- having 8 sides hides a box having 4 sides; 84 .
5) two box \(=2,8\)-sides in 1 container, \((8-1=7)\) minus is discovered ; 27 .

Final Ans: \(27^{5}+84^{5}+110^{5}+133^{5}=144^{5}\)
disciple \(=144^{5}=(12)^{2.5}=12^{10=E I}\)
\(E I=\) equation index of the real number line \(=10\). so Euler's problem can be solved without using a computer or super computer.

Take note-the supreme numbers are \(1,2,3,4,5\) while the supremous-most supreme is 5 . so \(1,2,3,4,5\) can be repeated as many times as needed in power sum derivation. THE EARLY EGYPTIANS HAD THE COMPUTATIONS OF THE FERMATS NUMBER BUT LOST IN HISTORY. SO CDDS, SUPERCOMPUTERS HAD BEEN IN FORM OF THE TWO TABLES ABOVE-ALL KNOWLEGDE HAD BEEN, BEFORE DISCOVERED BY MODERN HUMANS OR END HUMANS. SCULPTING DID NOT BEGIN IN ITALY, IT STARTED IN EGPYT, THE FIRST DRILLING MACHINES-ESP, ETC WERE DISCOVERED IN AFRICA.-EGYPT

The above question has all answers in the first column of Fig 11. this can be called the \(1^{\text {st }}\) problem in power summations. the second difficult problem will have its answer in the second column. it follows in this order. so the second problem discusses something constant -2 and third- something constant 3 -fermat both hiding in a 4 side-box. since they share boundary-v2-v3.

The conjecture represents an attempt to generalize Fermat's last theorem, which could be seen as the special case of \(n=2\) : if \(a_{1}^{k}+a_{2}^{k}=b_{\text {,then }}^{k} 2 \geq k_{\text {. Although the conjecture holds for the case of } k=3 \text { (which follows from Fermat's last theorem for }}\) the third powers), it was disproved for \(k=4\) and \(k=5\). It still remains unknown if the conjecture fails or holds for any value \(k \geq 6\).
\(k=5\)

The conjecture was disproven by L. J. Lander and T. R. Parkin in \(\underline{1966}\) when, through a direct computer search on a CDC 6600, they found the following counterexample for \(k=5:{ }^{[3]}\)
\[
27^{5}+84^{5}+110^{5}+133^{5}=144^{5} .
\]

Yet another counterexample \(85282^{5}+28969^{5}+3183^{5}+55^{5}=85359^{5}\) was found by Jim Frye in 2004.

Q: most populous of numbers?

ANS: all numbers are stored in 4 boxes till infinity \(=4\), if you compute \(144^{5}\). at least one -4 will be in the answer. numbers that show special effect must contain at least One -4.

Q: \(2^{\text {nd }}\) most populous of numbers

ANS: all four boxes are paired to infinity and form \(8=8\), so 8 and 4 are always welded together. the next number after 4 that show special effects-solutions to conjectures is 8 -see Jim Frye
\(12=\) Father of the pinocchios- father of all numbers that show special effects, \(12=4 * 3\). numbers that show special effects are called the pinocchios.

3: so after 4, 3 is also another most important number that show special effect- in the Pinocchio, it is a supreme number pinochio is a word in another JOURNAL of Wells.

5 is the supremous of all numbers. it can be repeated in as many times, one wants and powered to any number. it always has a solution- see Jim Frye
if I am to explain FIG 11, I will write over an infinite pages of notes in number theory and still not stop. so I have to attend to some other things.

28969- has 969- why? 969 are the errands. the fact is that, it must start with supreme numbers-(2). 8-double-supreme- means has 4-the known supreme in a two fold. 8 is however not the supremous of numbers. it only means anywhere supreme numbers \(1,2,3,4\) are used, 8 is the next. so numbers having 8 eg \(18,28,38,48,58,68,78 \ldots \ldots\), are very very dangerous in number theory.

Alternatively,
a box each has 1 and 2 having -2 boxes on their heads- \(12^{2}\), then pick 5 . so you have \((144)^{5}\). it follows in that order.

P-R-E-C-E-D-E-N-C-E = 10=EXPLORER, then add the even domain as explained above-the even domain can solve all problems
\(10+2=12\)

Deducible laws or statement for verification from FIG 11 -Using the supercomputer

\section*{follow \(144^{5}\)}

\section*{FIG 11}

LAW 1a-using the box
1) \(a^{5}+b^{5}+c^{5}+d^{5}=e^{5}=144^{5}\)
2) \(\mathrm{a}^{5}+\mathrm{b}^{5}+\mathrm{c}^{5}+\mathrm{d}^{5}=\mathrm{e}^{5}=244^{10}\)
3) \(a^{5}+b^{5}+c^{5}+d^{5}=e^{5}=344^{15}\)
4) \(\mathrm{a}^{5}+\mathrm{b}^{5}+\mathrm{c}^{5}+\mathrm{d}^{5}=\mathrm{e}^{5}=544^{25}\)
5) \(a^{5}+b^{5}+c^{5}+d^{5}=e^{5}=744^{35}\)
6) \(\qquad\)
since the box is a constant till infinity-that is all numbers are stored in a four square box. this means whatever the even (4) number says is true till infinity- this is the unification theory of the even domain stated above. it is coded.

LAW 1b-if the root number is \(=b n-v n=b 1-v 1=5-1=4\)
1) \(a^{5}+b^{5}+c^{5}+d^{5}=e^{5}=144^{5}\)
2) \(\mathrm{a}^{5}+\mathrm{b}^{5}+\mathrm{c}^{5}+\mathrm{d}^{5}+\mathrm{e}^{5}+\mathrm{f}^{5}+\mathrm{g}^{5}+\mathrm{h}^{5}=\mathrm{e}^{5}=244^{10}\); root numbers \(=10-2=8=4 * 2\)
3) \(\mathrm{a}^{5}+\mathrm{b}^{5}+\mathrm{c}^{5}+\mathrm{d}^{5}+\mathrm{e}^{5}+\mathrm{f}^{5}+\mathrm{g}^{5}+\mathrm{h}^{5}+\mathrm{i}^{5}+\mathrm{j}^{5}+\mathrm{k}^{5}+\mathrm{l}^{5}+\mathrm{m}^{5}=344^{15} ; \quad\) root numbers \(=15-3=12=4 * 3\)
4) \(\qquad\)
\(\underline{\text { LAW 1c-if } b n-v n ~ i s ~ r e p e a t e d ~ t w i c e ~ s i n c e ~ t w o ~ b o x ~ i n ~ n u m b e r ~}=\mathrm{b} 1-\mathrm{v} 1=5-1=4\)
1) \(\mathrm{a}^{5}+\mathrm{b}^{5}+\mathrm{c}^{5}+\mathrm{d}^{5}=\mathrm{e}^{5}=144^{5} ; 5-1=4\)
2) \(\mathrm{a}^{5}+\mathrm{b}^{5}+\mathrm{c}^{5}+\mathrm{d}^{5}=\mathrm{e}^{5}=288^{10} ; 10-2=8\)
3) \(\mathrm{a}^{5}+\mathrm{b}^{5}+\mathrm{c}^{5}+\mathrm{d}^{5}=\mathrm{e}^{5}=31212^{15} ; 15-3=12\)
4) \(\mathrm{a}^{5}+\mathrm{b}^{5}+\mathrm{c}^{5}+\mathrm{d}^{5}=\mathrm{e}^{5}=52020^{25} ; 25-5=20\)
5) \(\qquad\)

LAW 1d-if the root number is \(=\mathrm{bn}-\mathrm{vn}=\mathrm{b} 1-\mathrm{v} 1=5-1=4\)
1) \(a^{5}+b^{5}+c^{5}+d^{5}=e^{5}=144^{5}\)
2) \(\mathrm{a}^{5}+\mathrm{b}^{5}+\mathrm{c}^{5}+\mathrm{d}^{5}+\mathrm{e}^{5}+\mathrm{f}^{5}+\mathrm{g}^{5}+\mathrm{h}^{5}=\mathrm{e}^{5}=288^{10}\); root numbers \(=10-2=8=4 * 2\)
3) \(a^{5}+b^{5}+c^{5}+d^{5}+e^{5}+f^{5}+g^{5}+h^{5}+i^{5}+j^{5}+k^{5}+1^{5}+m^{5}=31212^{15} ; \quad\) root numbers \(=15-3=12=4 * 3\)
4) \(\qquad\)

Find the above laws if you think are true forms-exists? so the note of derivation can be continued to infinity for anybody who will not marry. similarly the even number table can be used to write infinite notes.

\section*{SECTION5}

\section*{SOLITARY NUMBER}

PROVE THAT 10 IS A SOLITARY NUMBER

\section*{CAGE THEORY OF SOLITARY NUMBERS}
a thing is solitary if it exists in a confinement or caged. so it does not change over a long period of time because it has no way of interaction with other things. so we can have a solitary monk etc. a monk is expected to live in the sanctuary all the days of his life and not to marry till he dies. so if a number is termed solitary, then we say the number does not take external input to itself which will tend to change the solitary number by either increasing or decreasing it. secondly, the solitary number does not release parts of its value to be decreased in any way. or say, its releases parts of its value impossibly to be decreased. so a solitary number is confined and remains constant in value in a domain of reasoning of the real number line or in number theory. so from the validity prove of the Goldbach. the number in the semi curve OR dome - in FIG 8 is 10 . so 10 is a solitary number. so 10 does not change within each semi-curve till infinity. so any number that hides or finds itself in the goldbach is called a solitary number. another conjecture model can give possibly the existence of another solitary number. note solitary 10 is observed in the three plots-prime, even, odd plot. a solitary number eg10 is also known as the change in the equation index of the real number line and this change is constant. anything that exhibits constant-not changeable character till infinity is termed solitary.

Q: Who drew the semi-dome- an external agent. what does this mean?
ANS: if you fold your arms you cannot know 10 is a solitary number. the person who discovered solitary 10 must have taken effort to write some mathematical steps to discovery

Lessons from solitary number-10

\section*{Example 1: A passenger in a moving car}

In classical physics. when an object eg (passenger-man) is in a car moving at a certain speed. All the physicist who ever lived
will say because the object is in the car. so both the object and the car move with the same speed. so when the brake of the car is applied in danger then there will be a recoil of the passenger to show the law of inertia. however, Alexander says this discussed theory above is total nonsense and foolishness of thought and reasoning by these long departed physicists. so Alexander says when an object is in a moving car. that object is solitary. so "behaves" as if caged. so it does not move. it has zero velocity while the car is moving before the brakes are applied in danger. the only event or thing that moves is the car. This leads to WELLS (two) postulates of motion. This states that;
1) it is impossible for a carried object or particle to travel at the same speed as the carrier
2) it is also impossible for this carried object or particle to travel faster than the carrier in any direction by leaving the carrier. In baby knowledge, the two laws means: a thing cannot travel at the same or greater speed as what carries it such a system will exist impossibly. a passenger cannot jump out of a moving bus at a speed greater than that of the moving bus in any direction- this event can exists impossibly.

\section*{Application of the WELLS postulate of motion}
1) A super energetic baby missile can be impossibly launched from an energetic carrier missile._this is because the carrier missile must have energy more abundant than the baby missile to be launched.
2) A Satellite being lifted to orbit by a rocket can impossibly have more energy than the rocket.
3) High energy (like energies) particle only exists among itself. this is because high energy particles impact change in momentum or energy to only high energy particles that exists in its vicinity. so it is impossible for a creature like man to exist in the sun. this looks silly. this is what it means in baby knowledge. a man can be driven by a car simply because it can receive change in momentum from the car when its brake is applied - so one will call the car and man-like energies. it is impossible for unlike energies to exist together. this is because the energy lost by one can not be accommodated by the other.
4) man is looking for a material that can be used to build a rocket that can penetrate the sun. this is not the solution to entering the sun. man himself is not a like energy with the sun. so after getting this material that can withstand the temperature of the sun and the rocket is built and man drives it to enter the sun. the theory of like energy will kill all
those-human beings in this sun rocket even though they are inside the rocket shielded from the heat of the sun. it seems mysterious it is not. it is -SOLITARY10. it is real. so this leads to say for a successful exploration into the sun. a material that can withstand the temperature of the sun is needed. so, any man that will enter this rocket must put on or wear a like energy material as the sun. however, I don't know what type of material this is. but it exists-if you can find it. so solitary numbers predicts that astronauts who travel to other planets eg Mars wear certain serious materials on their body. this will keep them alive most importantly in the rocket and finally where they are heading to when they come out of their rockets or spaceship. so solitary numbers eg 10 is used for mysterious exploration.

Q: prove that astronauts wear heavy materials in journey? the answer is- explain the physics of the passenger in a moving carsolitary number cage theory

\section*{Continuation Of Example 1}
so for any change in motion or behaviour that a particle or object or thing in a system shows. this change in behavior exhibited by the object originated or was impacted from the change in the major system behavior. so a system can be divided into two parts: a major system and minor system. eg, for a moving car having some passengers. the moving car is the major system while the passengers and all the other content of the car constitute the minor system. so the sum of the major and minor system constitute the system. so for a passenger that drifts backwards when the brake of moving car is suddenly applied. this means the passenger drifted because of the loss of momentum of the moving car(major system) which resulted in a backward increase of momentum in the passenger. so this creates an energy conservation. it is not a function of inertia or same speed effect.

\section*{Example 2}

When a caged lion is in a moving car. since it is caged. it means it is solitary. so the lion is not moving. so has zero velocity. this further means in a way that the lion did not move from its initial rest position - the position the lion was before its cage was put into the car that set for motion to the destination of the car. so the lion does not change in character in any way during motion while in the moving car. so when the car stops at the destination and you bring down the lion cage and another person tries put his head into the cage of the lion. if it has a wide opening. the lion will kill the person. this means the lion is saying - I am still a lion, I have not changed in any way. only the car has changed in its properties-wear and tear. check the tyres they are no longer brand new but my teeth is still brand new. so two caged lions are called solitary lions. so one is not a friend of the other. so each lion has no friend because each is caged. so no way of interaction. so a solitary number or solitary numbers are numbers that have no friends or termed friendless. They don't make friends because they are confined or caged.
so if a person finds himself in the wild forest due to any circumstance and he suddenly sights a lion that is not caged. the person will say "OH MY GOD THIS (ONE) LION WILL EAT ME". however, the study of solitary numbers says that since this sighted lion was not caged-so not solitary. then it means this sighted lion has so many friends that are lions whether males or females. the total number of friends for a sighted lion is nine. so for every one lion sighted by a prey there is a total of nine lions also
waiting to devour that prey. so seeing one lion means seeing ten (10) lions that will eventually eat the person-the prey. so the right statement from a person with the knowledge of solitary numbers is "OH MY GOD TEN (10) LIONS WILL EAT ME today". so UNCAGED ANIMALS HAVE FRIENDS-nine in number. it takes discovery channel to know this. it is inherent in solitary number study in number theory. also, since the behavior of a solitary number does not change-constant within the goldbach. this means the behavior of a solitary-caged animal does not change. this is why a constant difference of 10 is observed in the prime factor, even and odd number plot to infinity on any plot. this constant 10 also implies that a caged or solitary lion (animal) is ten times more
vicious and deadly than a lion in the wild forest-free to move or domestic lion.

\section*{Query or a fault of Example2 by somebody}
the writer said the caged lion in the moving car is not moving, so has zero velocity.
Q: if the caged lion was initially at POINT A and the moving car later drove it to POINT B. didn't the lion move? since there is a distance between POINTA AND POINTB and this distance is not zero.
this person also released these two sentences below about example 2 and concluded that they meant the same thing in physics.
1) the lion moved from point \(A\) to point \(B\)
2) the lion was transported from point A to point B .

\section*{Alexander's answer}
the two sentences above (1) and (2) seems the same in reasoning but they are not. says the writer-Alexander in deep reasoning. they are two different expressions entirely.
1) the lion moved from point \(A\) to point \(B\)-means the lion is something. it has a locomotive part-eg legs. so it used this locomotive part to move from Point A to Point B. here the lion expends its internal energy and becomes weaker in this transit from point A to point B. 1) is a lie on the lion in example 2. so how did the lion move?. did it move itself or was it conveyed? anything that moves by locomotion is not solitary-so not caged and not conveyed.
2) the lion was transported from point A to point B. means the lion as an animal was conveyed by another mechanism of transportation. so here the lion does not expend its internal energy. so its internal energy is constant. example 2 is discussing this point-the lion is transported. here again the lion is solitary- caged.
so from the above explanation 1) and 2) are not the same. so when an animal is conveyed. it means the animal is not moving-or changing its attributes. so has zero velocity. the explanations are so because physics is a science of truth. these two statements is also an origin of special relativity -frame of reference. so when an event is viewed from different frames of reference measurements are different.

\section*{Why is physics a science of truth}
simple: a lady received a dirty slap on her right cheek and a vector analyst stooped down at her right leg to take measurement of the magnitude of the vectorial force that hit her right cheek. this vector analyst is not a physicist. the event took place on her right cheek. so measurement must begin on either her right or left cheek. it must take place in the vicinity of the event.-truth.

Why is 10-Solitary- I disagree with all your above stories
Given an equation: \(x^{2}+2 x+4=0\).
ANS: any of the variables or constant in the given quadractic can be moved from one side of the equation LHS to the other RHS etc this movement of either variable or constant "does not affect" the equality(=) sign in any way. you don't move the equality sign. so the equality sign is termed "solitary". it is the equality sign that is called the equation index of the real number line and has value 10 . so all questions must have an answer only if it is a question. since one will say the ANS to the question "is or \(=\) " . this is why the equation index can solve all problems in the universe.

\section*{What is the origin of solitary numbers}

The partial or total collapse of the even domain of the numbers on the real number line gave birth to solitary numbers. so solitary numbers have just one origin-collapse this collapse has been explained above. the 10 was first noticed as significant in the prime number table (\(10 \& 2\)). 10 and 2 are both even numbers. it is said that this domain is collapsed. this therefore tells us as matter of fact that \(95 \%\) of all solitary numbers are even numbers. the rest are numbers having 5-by virtue of wanting to behave like an even number etc. or other supreme numbers-(1234) in its mixed digits.

\section*{MILLENNIUM QUESTION \\ NP vs P -PROBLEM}

\section*{ANS: NP \(\neq \mathrm{P},[\mathrm{NP}-\) UNTIL- P\(]=[\) NP-R-EI-T-P] \\ NP- not possible-}

R-reason
EI-equation index
T-time
P-possible
An indeterministic problem in time algorithm becomes deterministic in time algorithm only when the "Equation Index" is used or reasoned in time. this means "only- until" the Equation Index of the real number line is used by "YOU" then will it become possible or deterministic in time algorithm. this means all impossible to solve problems in mathematics or existence or universe is
solvable, checkable in time by the equation index of the real number line-10-the explorer. this further means if you set any question for yourself and you can not solve it - in the end when somebody does, 10 is contained in the answer-simplistic algorithm. it can either be multiplied, divided etc by 10.10 implies 5 . when the supreme being moves in an even domain, all problems in the universe is solvable. so the supreme being has two legs like a man. fermat also is rendered invalid by 10-the equation index-explorer.

\section*{SYMBOL OF INFINITY}
the equation index if known how to use travels faster than any supercomputer or rocket in existence till the end of the world. that is unbelievable questions can be solved with it.
\(\square\) - efficient rocket in existence.

INFINITY SYMBOL: has a flat side-1 and a curved end -0.
the crossed lines means: \(\mathrm{b} 1 * \mathrm{v} 2=\mathrm{b} 2 * \mathrm{v} 1=\) the equation index
efficient- means incomparable in speed to existence. travels to infinity or end of existence before any human creation or gadget-supercomputer. so the symbol of infinity is showing the equation index(10-explorer) of the real number line which can travel to infinity.

\section*{SYMBOL OF INFINITY-HUMANS- INCORRECT}

0 - incorrect
this tells you all symbols have reason in design eg gamma, beta etc

\section*{APPLICATION OF SOLITARY 10-MYSTERIOUS PROBLEM 1 \\ Simple application of the Equation index of the real number line \\ World record}

188888887777777777777777777999999999999999999945555555333388888888888777777777777777777777777777777777 7777777777777777777777779999999999999888
 22222222222222222222222222444 4443333333333333333333333333333333 33 33 33 33 333 3334 \(445 * \mathrm{x}=\mathrm{y} * \mathrm{z}\)
the number can be extended to infinity but the writer wants it to end with 5 . Find \(x, y, z\).

\section*{QUESTIONS}
1) Can an human being solve the problem-eg print 10 million pages of it ?
2) Is it possible for an human being to solve the problem?
3) Can the latest supercomputer in the world loop the most intellectual algorithm to solve this problem?
4) Who is the most intelligent :supercomputer or an human being?
5) What is the name of the supercomputer to be used at the end of the world?

\section*{Answers}
1) Can an human being solve the problem? No human being can solve it. humans will try for million of years and will not get the answers.
2) it is not possible until possible (NP (not possible) until P). Only Alexander can solve it-the writer. if the world has an idea of FIG 1. the whole world will still score 0 for 100 million years for some reasons.
3) A supercomputer cannot loop such large numbers. Imagine if the given number is further increased. so a supercomputer cannot solve it.
4) the whole world will say supercomputer. since it can perform search operation to large values. however, this is not true, an human being is the most intelligent(male or female). there are calculations supercomputers built by man will not be able to solve or display in the age of man.
5) The name of the supercomputer is the (paper, sharpened pencil and eraser-(PSPE)).

\section*{Solution}

Most important: The problem appears linear having one solution set. however, this is not true. it is a quadratic problem having two sets of solutions-NP different paths.since more than solution set is possible, can one explain why the solution set to the mysterious question is two and not one without writing equations? solitary -10 is \(a b\) value. \(b\) has two values. This is because \(b\) has the forward and backward multiplier index.
\[
\bullet^{*}+\bullet^{*}=\bullet^{*} \ldots \ldots \ldots . . \text { (1) }
\]
b is either of the root dots on the left side of (1). the total number of root dot on the left side of (1) is 2 . so the solution to the mysterious question must have two solution sets

Three equations are needed to find three un knowns. so the whole world will say since these three equations are not known then the only solution is to use a supercomputer looping search. since the digits are longer than what a modern day supercomputer can hold then no human solution.
however the equation index gives the direct solution to this problem. so the equation index is a model for solving three to four dimensional problems minimum.

What is this long number explaining: SHOWs that an "infinitely" long number ending with 5 in an equality product has solutions for the unknowns.

\section*{model}
\(k=25, x=7\)
\(25 \times 7=35 \times 5 \ldots \ldots \ldots \ldots \ldots\). \() \ldots\) forward multiplierindex equation
\(25 \times 3=15 \times 5 \ldots \ldots \ldots \ldots \ldots \ldots\). \() \ldots\). backward multiplierindex equation
\(k \times x=(k+10)(x-2)\)
.ß)forward multiplierindex equation
\(k \times(x-4)=(k-10)(x-2) \ldots \ldots\) (4) backward multiplier index equation
(3) and (4) is called a simultaneous construct. they are equations whose
variables do not give any number on solution. the answer is always a
variable expressed in terms of another variable. this simply means
infinite solutions exists for the simultaneous construct. this means no matter
the approach one employs to solve (3). one will never get any value as answer
\(k x=(k+10)(x-2)\).
\(k(x-4)=(k-10)(x-2) \ldots \ldots .(4)\)
(3) \(\div(4)\)
\(\frac{k x}{k(x-4)}=\frac{(k+10)(x-2)}{(k-10)(x-2)}\)
\(\frac{x}{(x-4)}=\frac{(k+10)}{(k-10)}\)
\(x(k-10)=(x-4)(k+10)\). \(\qquad\)
\(x k-10 x=x k+10 x-4 k-40 \ldots \ldots \ldots \ldots . . .(8)\)
\(-10 x-10 x=-4 k-40\).
\(-20 x=-4 k-40\).
multiplyboth sides of (10) by -1
\(20 x=4 k+40\).
divide both sides by 4
\(\frac{20 x}{4}=\frac{4 k}{4}+\frac{40}{4}\)
\(5 x=k+10\)
divide both sides of (13) by 5
\(\mathrm{x}=\frac{k+10(E I)}{5}\)
\(x_{1}=\frac{k+10}{} ; y_{1}=k+10 ; \mathrm{z}_{1}=x_{1}-2 \ldots \ldots \ldots \ldots\)
5
\(x_{2}=x_{1}-4 ; y_{2}=k-10 ; z_{2}=x 1-2\).
(14), (15), (16) are called the mysterious exploration equations(MEE). they are used to solve mysterious problems eg problems involving mysterious numbers, particles that travel at mysterious speeds, rocket problems, scientific discovery,
cosmic particles etc. the given large number is k . so the problem is human solved because of the power of solitary -10 . so if x and z cannot be computed out of laziness. y always has the simple computable answer which is to just add or subtract 10 from the given k . in transforming the index - an infinite solution exists.

\section*{Mysterious problem 2}

if light travels \(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\). what distance does light travel in what given timefor its speed to equal the given value. no scientist could solve this problem for million of years.
the first number in b row is 10 . so this means only solitary -10 can solve this problem. remeber solitary -10 is also called the explorer
\[
\begin{align*}
& 3 \times 10^{8} m / s \times x=y \times z \\
& 3 \times 10^{8} m / s=\frac{y \times z}{x} \ldots \ldots \ldots \ldots \ldots(7) \\
& y \times z=\operatorname{dis} \tan c e, x=\text { time } \\
& \mathrm{MEE} \\
& \left.\mathrm{x}=\frac{k+10}{5} \ldots \ldots \ldots \ldots . . \mathrm{MEE}\right) \\
& x_{1}=\frac{k+10}{5} ; y 1=k+10 ; \mathrm{z} 1=x 1-2 \\
& x_{2}=x 1-4 ; y_{2}=k-10 ; \mathrm{z} 2=x 1-2 \\
& y 1 \times \mathrm{z} 1=\text { distance } 1, x_{1}=\text { time } 1 \ldots \ldots . . \text { ature } 1 \\
& y 2 \times \mathrm{z} 2=\text { distance } 2, x_{2}=\text { time } 2 \ldots \ldots . . \text { ature } 2
\end{align*}
\]
```

$x_{1}=\frac{k+10}{5} ; y_{1}=k+10 ; \mathrm{z}_{1}=x_{1}-2$
$x_{2}=x_{1}-4 ; y_{2}=k-10 ; \mathrm{z}_{2}=x-2 ; \mathrm{z}_{1}=\mathrm{z}_{2}$
$x_{1}=\frac{\left(3 \times 10^{8}\right)+10}{5}=60,000,002 ; y 1=3 \times 10^{8}+10=300000010$;
$z 1=60,000,002-2=60,000,000$
$x_{2}=60,000,002-4=59,999,998 ; y_{2}=3 \times 10^{8}-10=299,999,990$
$x_{1}=60,000,002 ; y_{1}=300000010 ; \mathrm{z} 1=60,000,000$
$x_{2}=59,999,998 ; y_{2}=299,999,990 ; z_{2}=z 1$
distances
$y 1 \times \mathrm{z} 1=300000010 \times 60,000,000=18,000,000,600,000,000$
$y_{2} \times \mathrm{z} 2=299,999,990 \times 60,000,000=17,999,999,400,000,000$
time
$x_{1}=60,000,002 s, x_{2}=59,999,998 s$
MEE means MYSTERIOUSEXPLORATION EQUATIONS
the summary of the 1st and second mysterious problem is that any
measurement that ends in 5 or 0 is a relativistic measurement.
whose known accuracy is $100 \%$ of the third matter.

```

NEXT PAGE
(MEE) is not a surface equation but an in-depth equation. thismeans it can only be understood by a person with very high intelligence quotient. (MEE) means the below
1) however, since the problem has two solution set. then this means light has two nature call it wave 1 and wave 2 nature. thisis responsible for the duality of matter. two things are identical if identical in all ways. having two different distances means there are two different entities.
2) In general MEE is saying any particle in the universe with speed attribute has two wave nature. this can also be called the real wave nature and the complex wave nature. this means there are times when it is in motion and times when it stops moving comes to rest. thisfurther means their are times it reduces its speed which predicts its vanishing or absorption. if a man can run then it means another entity like a man exists.ANS: woman.
3) if asked, does the speed of light change when it changes from one nature to another. yes, its speed changes since their are two different distances. so the speed of light is not a constant. Einstein - wrong. light has different distances.
4) the argument that a particle called neutrino is faster than light is a valid and accurate statement. In a sense, it simply means neutrino is the higher speed of light. or a unique neutrino travels at that speed.
5) the velocity of highly energetic particles or light - like particles is a relativistic and indeterministic issue (\(99 \%\)). so relativity is a branch of physics. this further means these particles are spacelike and not timelike. so only their distances can be computed. it is impossible to calulate anything called time with thisparticles using any human device or experiment forever (99\%). so timeis a constant - newton correct - einstein wrong. timehas no relativity while space is inhomogenous - changes. since not time- like, then laws of mathematics or physics cannot determine the accurate speed of space - like particles in \(99 \%\) cases. so the speed of light given as \(3 \times 10^{8}\) is not correct \(99 \%\).
6) what then is \(3 \times 10^{8}\) ? it represents a convergent point where two waves meet and add their energies(compton). At thisconvergent point, wave 1 and wave 2 speed becomes equal leading to the birth of another matter called the particle. it is this particle that is responsible for the knocking off of electrons on the surface of a metal - photoelectric effect. so \(3 \times 10^{8}\) is the speed of the particle nature of matter \(-1 \%\) known. so the speeds of the real wave and complex wave nature of matter is indeterministic as far as maths and physics is concerned forever.
so duality of matter is a wrong phenomenon. so matter exists in
three states. which are the real wave, complex wave and the particle.
the triality of matter. just like the solid, liquid and gas. this means when a man and a woman(duality)comes together in mating another matter is born - a child.

wave 2

\section*{Home Work}
find the distance travel and time travel of a cosmic particle having
the speed \(410 \times 10^{100000000000} \mathrm{~m} / \mathrm{s}\).

\section*{Property of the equation index of the real number line.}
1) the equation index of the real number line is a unique quantity-has value 10 -constant.
2) the equation index of the real number line is not unique - can be transformed
the equation index of the real number line is not unique means any index can be "transformed" to another index by "algebra" when solving equations.
given: \(\quad 2 * 15=10^{*} 3\)-index1
the question can be transformed to any given index eg: \(25 * 7=35 * 5\)
how: add \(x=2-2\) to 3 in index 1 , expand take the other forms to the other side.
so \(10^{*} 1=10^{*} 1\) can migrate to any other index.
statement 1) and 2) accounts for the two dots on the left side of \(1(a, b)\)
\(\frac{\text { Riemann Hypothesis }}{\left.\xi(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\ldots \ldots \ldots \ldots \frac{1}{\infty^{s}} \ldots . \text { for } \mathrm{R}(\mathrm{s})>1 \ldots \ldots . .1\right)}\)
\(\left.\int_{0}^{1}\left[\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\ldots \ldots \ldots \ldots \frac{1}{\infty^{s}}\right] d s=0 \ldots \ldots \ldots \ldots \ldots . \mathrm{Q}\right)\)
Function solute \(\ldots \ldots \ldots \ldots\). .
when i was in high school, although in Nigeria called secondary school i was this very brilliant mathematician. so i had a friend who one day encountere d my mathematical brilliance and always told my other classmates that "alexander can proof anything-in mathematics". he gave me this tag because - i always solved all diffuclt mathematical proof problems he tried solving for weeks and could not despite his own level of brilliance,
however, when i got to the university. At a certain time, i discovered indeed i cannot prove all thingsin mathematics. so there is this field in mathematics i respect so much called INTEGRALS.integrals if not the most difficult problem is the second most difficult in mathematics. i tried my best in this field writing papers eventually i quit. the solutions to problems i solved by creating unique models to solve these difficult integrals, humans could not read. so i had all my papers rejected. i just could not solve integrals in real calculus - all cyclic zeros.......(4)
there is no way i can help Riemann Hypothesis except i use my unique models which i design. so it is not a must you agree with thispaper. I have previously stated i cannot solve integrals in real calculus. a young man said in solving an infinite series he would need an infinite sheet of papers for solution. A.O WELLS-says" this is not true".
this leads to FUNCTIONSOLUTE.function solute means whenever you see an "integral" dont try solve toit. but let all your mission be " how can i remove thisintegral \(100 \%\) "-unplug the integral.
\(0=\int_{0}^{1} \frac{1}{s} d s\).
\(0=\int_{\frac{1}{s}}^{1} d s=[\ln s]_{0}^{1}=\ln 1-\ln 0=0-0=0\). \(\qquad\)
\(0{ }^{s}\)
The right hand side can be any integratable function called a
"function - solute"
but the function solute must give 0
recall (2).
..(9)
\(\int_{0}^{1}\left[\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\ldots \ldots \ldots \ldots \frac{1}{\infty^{s}}\right] d s=0 \ldots\) \(\qquad\)
substitute (6) in (2).
.(10
\(\int_{0}^{1}\left[\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\ldots \ldots \ldots \ldots . . \frac{1}{\infty_{\infty} s}\right] d s=\int_{0}^{\frac{1}{s}} \frac{1}{d s . .}\)
if (11) is not true mathematically then stop reading.
but if correct continue reading
cancel out the integral signs and differenti als on both sides.
\(\frac{1}{1^{S}}+\frac{1}{2^{S} s}+\frac{1}{3^{S}}+\frac{1}{4^{S}}+\ldots \ldots \ldots \ldots \frac{1}{{ }_{\infty} s}=\frac{1}{s}\)
find \(s\)
.(4)
rewrite (13)
\(\frac{1}{s}=\frac{1}{1_{1}^{S}}+\frac{1}{2^{S}}+\frac{1}{3^{S}}+\frac{1}{4^{S}}+\ldots \ldots \ldots \ldots .\).
\(\frac{1}{s}=1^{-S}+2^{-S}+3^{-S}+4^{-S} \ldots \ldots \ldots \ldots \infty^{-S} \ldots\)
\(\frac{1}{s}=\frac{1^{-S}+2^{-S}+3^{-S}+4^{-S} \ldots \ldots \ldots \ldots \infty^{-S}}{1}\)
cross multiplyin (17).
\(\frac{1}{1^{-S}+2^{-S}+3^{-S}+4^{-S} \ldots \ldots \ldots . \infty^{-S}}=\frac{s}{1}\).
the previous steps looks childlike-yes, mathematics is meant for babies not for professors - an average professor - old man will be bored with the childlike trick tuming up and down. so don't be bored. .(20)
rewrite (19) \(\qquad\) (1)
\(s=\frac{1}{1^{-S}+2^{-S}+3^{-S}+4^{-S} \ldots \ldots \ldots . \infty^{-S}}\)
\[
\begin{equation*}
s=\frac{1}{\frac{1}{1^{S}}+\frac{1}{2^{S}}+\frac{1}{3^{S}}+\frac{1}{4^{S}}+\ldots \ldots \ldots \ldots \ldots \frac{1}{{ }_{\infty} S}} . \tag{23}
\end{equation*}
\]
find the Least Common Multiple(LCM) in (23).
the LCM is the product of all the singular denominators
recall (23) \(\qquad\) (26)
\[
\begin{aligned}
& s=\frac{1}{\frac{1}{{ }_{1} S}+\frac{1}{{ }_{2} S}+\frac{1}{3^{S}}+\frac{1}{4^{S} S}+\ldots \ldots \ldots \ldots \frac{1}{{ }_{\infty} S}} \\
& \mathrm{~s}=\frac{1}{\left[\left(2^{s_{3}} s_{4} s_{\ldots \infty} s^{\prime}\right) 1+\left(3 s_{4} s_{5} s_{\ldots \infty} s^{\prime}\right) 2+\left(2 s_{4} s_{5} s_{\ldots \infty} s^{\prime}\right) 3+\left(2 s_{3} s_{5} s_{\ldots \infty} s^{\prime}\right) 4+\right.} .
\end{aligned}
\]
\[
\begin{aligned}
& \left(2 s_{3} s_{4} s_{5} s_{6} s_{7} s_{9} s_{\ldots \infty} s^{\prime}\right) 8+\left(2 s_{3} s_{4} s_{5} s_{6} s_{7} s_{8} s_{10} s_{\ldots \infty} s^{\prime}\right) 9+ \\
& \underline{\left(2 s_{3} s_{4} s_{5} s_{6} s_{7} s_{8} s_{9} s_{11} s_{\ldots \infty} s_{10+}, ~\right.} \\
& +\ldots \ldots \ldots] \\
& { }_{1} s_{2} s_{3} s_{4} S_{5} s_{6} s_{7} s_{8} s \\
& { }_{\infty} S
\end{aligned}
\]
cross multiplyin (28).
\(=1 s_{2} s_{3} s_{4} s_{5} s_{7} s_{\ldots, \infty} s\)
factorize the first two brackets : (1-2) \(+(3-4)+(5-6)\).
\[
\begin{align*}
& \text {] }=1^{s_{2}} s_{3} s_{4} s_{5} s_{7} s_{\ldots \infty} s \tag{32}
\end{align*}
\]
divide both sides of (32) by (\(5^{s} 6^{s_{7}} s_{8}{ }^{s} \ldots \ldots . \infty^{s}\)).................83)
\(\left[\begin{array}{l}\left(3^{s} 4^{s}\right)\left(2^{s}+1\right)+2^{s}\left(3^{s}+4^{s}\right)+\left[\left(2^{s} 3_{3}{ }_{4} s\right)\left[\frac{5^{s}+6^{s}}{5^{s} 6^{s}}+\frac{7^{s}+8^{s}}{{ }_{7} 8_{8} s}+\right.\right. \\ \frac{9^{s}+10^{s}}{9^{s} 10^{s}}+\frac{11^{s}+12^{s}}{11^{s} 2^{s}}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots\end{array}\right]\)
\(=2^{s} 3^{s} 4^{s}\). .34).
\(A=\left[\left(2^{s} 3^{s} 4^{s}\right)\left[\frac{5^{s}+6^{s}}{5^{s} 6^{s}}+\frac{7^{s}+8^{s}}{7^{s} 8^{s}}+\frac{9^{s}+10^{s}}{9^{s} 10^{s}}+\frac{11^{s}+12^{s}}{11^{s} 12^{s}}+\ldots \ldots \ldots\right]\right.\)
susbstitute A in (34).
\(s\left[\left(3^{s} 4^{s}\right)\left(2^{s}+1\right)+2^{s}\left(3^{s}+4^{s}\right)+A \ldots \ldots \ldots ..\right]=2^{s} 3^{s} 4^{s}\).
expand (37).
..38)
\(\left[s\left(3^{s} 4^{s}\right)\left(2^{s}+1\right)+s 2^{s}\left(3^{s}+4^{s}\right)+A s \ldots \ldots \ldots ..\right]=2^{s} 3^{s} 4^{s}\)
the first necessary and sufficient condition for (39) solution is below..(40)
\(\mathrm{A}=0\). .(41)
\(s 2^{s}\left(3^{s}+4^{s}\right)=0\). \(\qquad\)
\(s\left(2^{s}+1\right)=2^{s}\)
the second is: \(\mathrm{A}=0 .\). (43a);
\(s\left(3^{s} 4^{s}\right)\left(2^{s}+1\right)=0 . .(43 b) ;\)
\(s\left(3^{s}+4^{s}\right)=3^{s} 4^{s} . .(43 c) \ldots .\). use this
(40) seems a trivial statement. it is not trivial.i have used this same
statement to find the infinite solutions of a difficult equation elsewhere.
it is called function analysis.
((41), (42), (43)) are an \(100 \%\) mathematical - algebraic - statements.
(41) - means you are solving a problem where you need a whole lot of a complex summation entity tobe equal to 0 .
recall (43).
\(s\left(2^{s}+1\right)=2^{s}\)
expand (43).
\(\mathrm{s} 2^{s}+s=2^{s}\)
(43) is actually a very difficult equation to solve. naturally, the whole world will not be able to solveit.- including Wells.it proves that theriemann zeta hypothesis is a world unsolved problem in mathematics. so one would resort to a computer for solution. but "it must be solved" because it contains the solution to the riemann zeta function. i was actually dossing and solving - then i saw a way out. why was i dossing? - i actually naturally don't have hope of success in difficult integrals.

\section*{Solution} ..(49)
\(\mathrm{s} 2^{s}+s-2^{s}=0\).
\(\mathrm{s} 2^{s}-2^{s}=-s\). \(\qquad\)
\(2^{s}(s-1)=-s\). \(\qquad\) (52)
find thes - root of both sides of (52)
\(\left(2^{s}(s-1)\right)^{\frac{1}{s}}=(-s)^{\frac{1}{s}} \ldots \ldots \ldots \ldots \ldots . .(54)\)
\(\begin{array}{lll}1 & 1 & 1\end{array}\)
\(\left(2^{s}\right)^{s} \bullet(s-1)^{s}=(-s)^{s}\) \(\qquad\)
\(\underline{1} \quad 1\)
\(2(s-1) S=(-s) S\) \(\qquad\)
divide both sides of (56) by \((s-1) S\) .67)
\[
\frac{2(s-1)^{\frac{1}{s}}}{\frac{1}{\frac{1}{s}}}=\frac{\frac{1}{(-s)}}{(s-1)^{\frac{1}{s}} \frac{1}{s}}
\]
\[
\underline{1}
\]
\[
2=\left[\frac{-s}{s-1}\right] \frac{-}{s} .
\]
\(\qquad\) 1
\(2=\left[\frac{-s}{-(-s+1)}\right] \stackrel{-}{S}\)
1
\(2=\left[\frac{s}{(1-s)} \bar{S}\right.\)
" s " is a complex valued function.
\(\mathrm{s}=a+i b\), where \([\mathrm{a}, \mathrm{b}]=\) real number, \(\mathrm{i}=\) imaginary element.......(63)
from (61) if "s" is a complex valued function then :
\(\frac{s}{(1-s)}=z=\) another complex valued function..
\(\mathrm{z}=\mathrm{w}+i \mathrm{~h} ;\) where \([\mathrm{w}, \mathrm{h}]=\) real number; \(\mathrm{i}=\) imaginary element.
substitute (66) in (61). .(.67)
-
\(2=\mathrm{z}\) S
(68) is then fed into a computer for solution. the computer
will reply this is the simplest question on the planet - Earth.
(68) means abstract algebra can exist - only within algebraic limit. solving (68) is not algebraic but abtract - using what already exists.
-
\(2=\mathrm{z}\) S \(\qquad\)
(68) means find the root(s) - (s) of certain number(s) - (z) such that the answer is always - 2, display - the root(s) and the certain number(s). abstract - a known solution to (68) - since i did not solveit, is \(\mathrm{z}=4\) \(\qquad\) .(69), \(s=2\). \(\qquad\) .(70)
1
\(2=4 \overline{2}\)
\(\mathrm{s}=2\) - means :" the unknown non-trivial solution of the riemann zeta function is \(2^{\prime \prime}\).
since \(\mathrm{s}=2\), then \(\mathrm{s}=2+0 i=\) pure real number
riemann said must be 0.5 . the value 2 - renders riemann zeta hypothesis invalid forever.
Elders knowlegde - any proof of the reimann hypothesis must be able to predict at least one value of the trivial zeros of the riemann zeta function. .(1)
predicting one value means it connects directly to a fundamental law which is used to test the correctnes s of the hypothesis. if it cannot predict any of these non trivial values then any such writing is invalid.
since \(s=2\), a pure real number not a complex number then one can say the Riemann zeta function is \(90 \%\) or an absolutely convergent series. since \(s=2\), this means there is a man he likes fixing poles every 2 m from his house. so if one saw him fix a pole in the morning at 2 m point from his house. it means in the night when one willsee him he must have fixed poles at \(-2,-4,-6,-8,-10,-12-\) trivial zeros \(-2,4,6,8,10,12,14\) - non - trivial zeros.
\[
\text { meaning of } \mathrm{s}=2
\]
\(s=2\), will mean the point \(\overline{"+2 " \text { on the } \mathrm{x}-\mathrm{ax} i \text { is. starting from } 0 .- \text { cartesian. }}\) this is the meaning to almost everybody. A.o. Wellssays thisis not true. " the last equation that led to \(s=2\) did not say -" start from 0 "."
so what then is the meaning of \(\mathrm{s}=2\) ?
so \(s=2\), means my vectorial displacement is always - a constant 2 . so \(\mathrm{s}=2\) is not a fixed point in any measurement plane - in a sense. WHY? the equation leading to \(s=2\) was not "solved for fix". so \(s=2\) tells us how to locate the fixed points satisfying the riemann zeta function. so the following points are solutions to the riemann zeta function. [-2,-4,-6,-8,-10,-12- trivial zeros] -[2,4,6,8, 10, 12, 14 - non - trivial zeros].

\section*{meaning : solve for fix}
if : \(\mathrm{x}^{2}-x-2=0 \ldots \ldots \ldots \ldots(71 a)\)
\(x^{2}-2 x+x-2=0\)
\(x(x-2)+1(x-2)=0\)
\((x+1)(x-2)=0\)
\(x=-1, x=+2\)
it is solved from begining to the end. so two points \(-1,+2\) which are the answers are fixed points that satisfy the quadractic equation.
so remainder theorem of 4-2 = +2 which is a solution, will not give 0 .
this means 4 will not satisfy (71a) even if 2 satisfies (71a). the difference - (71b) eventually will not be a solution to (71a).
so remainder theorem difference s fails for fixed points.
\(f(4)=4^{2}-4-2=16-4-2=16-6=10\)
\(f(2)=2^{2}-2-2=4-4=0\)
\(f(4)-f(2)=10-0=10\).
the equation leading to \(s=2\) was not solved for fix. so \(s=2\) tells us how to locate the fixed points satisfying the riemann zeta function by applying vectorial movement. so \(-1,+2\) are unique points of the curve. if any other point is used in difference to get this unique points-it willfail. so counting from zero applies here. so only: \(f(-1)-f(2)=0\), or \(f(2)-f(-1)=0\)

\section*{Define : the riemann zeta function}
a function such that its " consecutive" remainder theorem is always a constant eg -2
-4 is a solution to the riemann zeta function - it acts like 0 - a pole

\section*{Meaning of 0}
if a point satisfies \(O R\) is a solution to a polynomial, function eg - riemann zeta etc then its Remainder - using "remainder theorem" must be 0 . R-Riemann similarly,
-2 is also a solution to the riemann zeta function - it acts like 0 - another pole so whenever riemann zeta moves from one pole to another it gains 2 .
\(0-0=0\) - output,
SO [-4,-2 \(\ldots\) OR constant Moves of 2 are solutions to the riemann zeta function. the output zero means 2 is also a solution to the riemann zeta function. riemann zeta from (2) is a "REMAINDER THEOREM HYPOTHESIS"- problem. that is why one is looking for points that makes the R. zeta function \(=0\)

FIG1: GRAPH TO SHOW POLES OF THE RIEMANN ZETA FUNCTION; s=2

NEXT PAGE
riemann tried - 0.5. the answer is just theinverse of his prediction. theinverse of the decimal supreme.this shows Riemann's expectation was closest to the answer but just a narrow miss.
recall (65). (72)
\(\frac{s}{(1-s)}=\) \(\qquad\)
find \(s=\) make \(s\) the subject of the formula in (65)(3)
\(s=z(1-s) \ldots \ldots \ldots \ldots \ldots . .(74)\)
\(s=z-z s \ldots \ldots \ldots \ldots \ldots\)..........)
collect like terms in (75).................(76)
\(\mathrm{s}+\mathrm{zs}=\mathrm{z} . \ldots \ldots \ldots \ldots \ldots . .\). (77)
\(\mathrm{s}(1+\mathrm{z})=\mathrm{z} . \ldots \ldots \ldots \ldots \ldots\). . \({ }^{(8)}\)
\(\mathrm{s}=\frac{\mathrm{Z}}{(1+\mathrm{z})}\)
substitute (69) in (79)
\(\mathrm{s}=\frac{4}{(1+4)}\)
\(s=\frac{4}{5=\text { supreme no }}\)
\(s=\frac{4}{5}=0.8 \ldots \ldots \ldots \ldots \ldots(.83) ; s=0.8+0 i=\) pure real number
Another non trivial zero of the riemann zeta function is 0.8 . riemann said 0.5 . so riemann is incorrect again. this again shows the riemann zeta hypothesis is
invalid forever. \(\qquad\) ...(84)

Riemann asserts -0.5 . so \(0.8-0.5=0.3\). this shows Riemann is three (3) steps away from the.
supreme number 5 .
ZETA
Z - zupreme = supreme
E - THREE (3)
T-STEPS, Tenth
A - AWW
\(\mathrm{Z}=\) supreme : because z is the last(end of all) letter of the alphabet. Z - A - begining and end = supreme ZET A is three (3) steps away from the supreme but he was the closest to the supreme.this means apart from A.O. WELLS. Riemann is the" the most intelligent mathematician that ever lived".
Z pronounced \(\mathrm{C}, \mathrm{C}=3 \mathrm{RD}\) ALPHABET, \(\mathrm{Z}=\) formed with 3 sticks, 111 .
\(\mathrm{Z}=\) means the deCimal steps of the supreme. so riemann was three decimal steps away from the supreme which is lightly called three steps - since in line with his Tenth observation.
the supreme took three steps away.
ET A - in my language - Yoruba means - three - 3
RI - E - MAN - N - I saw a man in number theory - z take three steps - Yoruba language the first proof of existence is -5 . what is not known for centuries, milleniumabout a certain problem etc must be witnessed by thesupreme number - 5. that is, eventually, it willfound to contain 5 in theend - Precedence riemann said the supreme can solve the problem of non trivial zeros but the supreme said no and yes. no : the supreme said I need to take three steps to solve it. Yes - because i indeed only can solveit.
4 is called the carrier of the supreme by WELLS or the "known" supreme

\section*{RIEMANN ERROR}

As stated above -2 story. 0.8 is also not a fixed point....story. " thesame story of 2 applies to 0.8 " also as stated above, if 0.8 is a non - trivial solution of the riemann zeta function then it must be able to prove at least one existence solution - what is already known - trivial solution. the trivial solution will serve as a fundamental law to accept the proof - non trivial 0.8. if not, then 0.8 as a matter of final conclusion is not a non - trivial solution of the riemann zeta function. so this paper must be rendered invalid. Explained above and best understood by chemist-Scientific hypothesis, Validation, fundamental law etc.there is a man who taught me Chemistry in 100L in the University of Lagos - Nigeria - called DR bassey - he is a ground in a lecture like this-DR BASSEY.MY BESTFRIEND in chemistry. if he - Dr bassey sets 1000 questions on this topic, ..(86)
hardly will you find a student that will score 5 . he recommends students should get
Air-conditioners for their underwears when they get to his questions in the Exam. Gentle joke. why do students fail. the field is very big. also, thesame question can be asked 1000 times using different grammar. students always want to pick a different answer for a different - next-question. Objects of science is the first thing scientist must know and understand - eg research w ork purposes. dishearten ing, hardly do other scientist - non chemist observe this. eg no return to fundamental law etc.

\section*{0.8 travel}

\(x\)-axis.

FIG2: GRAPH TO SHOW POLES OF THE RIEMANN ZETA FUNCTION-s=0.8
from FIG 2. there is a pole at -4 and 4 . so check the trivial zero. -4 is one of it. this called"return to the fundamental". so research work validated and correct. (88)

4 is a fundamental pole of the riemann zeta function...............89)
\(4=0.8 \times 5\)
\(4=\frac{8}{10} \times 5\) "
\(4=8 \times \frac{5}{10}\)
\(4=8 \times 0.5 ; \quad 4 \neq 1 \times 5\)
riemann' s error \(=8-1=7\);
riemanns problem is an augustus problem. it is not what ONE man can do. the writer actually was born on August-22-1986

Q1: someone commited an error and his name has 7 letters who is he?
a) riemann
b) einstein
c) euler

ANS = A = RIEMANN.
HOW?-" INVERSE 7 - error on the"LEFT" and join it to8"- you willfind letter - R number theory says this man has a name with 7 letters.
since riemann commited the error at two \((-4,+4)\) distinct points of the fundamental pole. then riemann has two KNOWN names.

Q2 : someone commited an error and has two known names?
a) einsten pager right
b) euler zenth biller packers
c) riemann zeta

ANS \(=\mathrm{C}=\) RIEMANN ZETA
Q3: a man commited a three step error at the 4THFundamental position?
A) DELTA
B) ZET A
C) FARADAY
D) HUGHES

ANS = ZETA
WHY? ANS = his name must have FOUR letters.
Z-A-Begininig to the end.
\(\mathrm{z}=26\) letter of the alphabet \(, 2+6=8,(0.8)\)
Thisshows Riemann did not know the meaning of his name. if he knew, he would have predicted correctly.

What is the application of the Riemann Zeta function?
since the two poles non trivial poles discovered are 2,0.8.they show even numbers 2 - an integer even number and 0.8 , a decimal even number. this means, the riemann zeta function is useful for the study of " the distribution of even numbers. the even-integers and fractional even integer - relationship - eg 4 and 0.00004 etc".
this mean any equivalent statement to the riemann zeta function " must" contain " two closed brackets only". this two brackest show pairness or evenness.
this shows that "Euler" in his prime product was wrong for saying " riemann zeta function helps to study "prime number distribution"
\[
\begin{aligned}
& \left.\zeta(\mathrm{s})=\prod_{\mathrm{p}}\left(1-\frac{1}{\mathrm{p}^{s}}\right)=\left(1-\frac{1}{2^{s}}\right)^{-1}\left(1-\frac{1}{3^{s}}\right)^{-1} \ldots \ldots \ldots \ldots \ldots . \text {. } 1 \mathrm{a}\right) \\
& \prod_{\mathrm{p} \leq \mathrm{N}}\left(1+\frac{1}{\mathrm{p}^{\mathrm{s}}}+\frac{1}{\mathrm{p}^{s}}+\ldots \ldots \ldots \ldots\right)=\left(1+\frac{1}{2^{s}}+\frac{1}{2^{2 s}}+\ldots \ldots \ldots \ldots . . \ldots \ldots . .\left(1+\frac{1}{\mathrm{p}^{s}}+\frac{1}{\mathrm{p}^{2 s}}+\ldots . \ldots .(91 b)\right.\right.
\end{aligned}
\]
euler' s (91a), (91b) having two brackets shows his mathematical flow is in order
\(-100 \%\) algebraic , accurate, valid forever. \(\qquad\) .(92)

As a consequence of the above, what is an accurate application of the riemann zeta function

\section*{ACCURATE: application of the riemann zeta function.. .(93)}
if any mathemathetical statement is equivalent to the riemann zeta function. then this function uses prime numbers (IF) to study the" distribution of all types of even numbers." whether-integer or non integer. - statement 1

\section*{COMMENT}

It is known that any non-trivial zero lies in theopen strip \(\{\mathrm{s}\) ? \(\mathrm{C}: 0<\operatorname{Re}(\mathrm{s})<1\}\), which is called the critical strip. thisis a \(100 \%\) valid forever statement. (0.8)

\section*{BASELPROBLEM.}
\(\xi(2)=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots=\frac{\pi^{2}}{6} \approx 1.645\)
the demonstration of this problem is known as the basel problem -
" you don't use the equality sign" unless you solve 100 steps of readable algebra. this work is invalid. the zeta of \(2=0\) in a known domain of reasoning.
\(\xi(3)=1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\frac{1}{4^{3}} \ldots \ldots \ldots \ldots \ldots \approx 1.202\)
this is an approved(i did not write correct) statement for not using the equal to sign.- Apery' s constant
\(\xi(4)=1+\frac{1}{2^{4}}+\frac{1}{3^{4}}+\frac{1}{4^{4}} \ldots \ldots \ldots \ldots=\frac{\pi^{2}}{6} \approx 1.0823\)
this appears when integrating plancks law to obtain the stefan - boltzmann law in physics. this also is an invalid and hopeless statement. you don't use the equal to sign unless you show 100 steps of readable algebra. the zeta of \(4=0\)
solutions to (68) below are listed
solutions to (68) below are listed.
1
\(2=\mathrm{z} \mathrm{S}\)
\([z, s]=[8,3],[16,4],[32,5]\) etc. this shows that " \(s\) " is all positive integer on the real number line.s \(=2,3,4,5 \ldots \infty\).
s is a paired set \(-[\mathrm{s} 1, \mathrm{~s} 2]\)
1) \(s=3, z=8\)
\[
\mathrm{s}=\frac{\mathrm{z}}{1+\mathrm{z}}=\frac{8}{1+8}=0.88 \underline{8} 9 ;[\mathrm{s} 1, \mathrm{~s} 2]=[3,0.88 \underline{8} 9]
\]
2) \(s=4, z=16\)
\[
s=\frac{z}{1+z}=\frac{16}{1+16}=0.941176 \underline{4} 7 ;[\mathrm{s} 1, \mathrm{~s} 2]=[4,0941176 \underline{4} 7 .]
\]
3) \(\mathrm{s}=5, \mathrm{z}=32\)
\[
\mathrm{s}=\frac{\mathrm{z}}{1+\mathrm{z}}=\frac{32}{1+32}=0.9 \underline{6} 9 ; \quad[\mathrm{s} 1, \mathrm{~s} 2]=[5,0941176 \underline{4} 7 .]
\]
4) \(s=6, z=64\)
\[
\mathrm{s}=\frac{\mathrm{z}}{1+\mathrm{z}}=\frac{64}{1+64}=0.9 \underline{8} 5 ; \quad[\mathrm{s} 1, \mathrm{~s} 2]=[6,0.9 \underline{8} 5 .]
\]
5) \(s=7, z=128\)
\[
\mathrm{s}=\frac{\mathrm{z}}{1+\mathrm{z}}=\frac{128}{1+128}=0.9922 \underline{4} 8 ; \quad[\mathrm{s} 1, \mathrm{~s} 2]=[7,0.9922 \underline{4} 8 .]
\]
here; \(\mathrm{s} \neq 1\)
s takes all positive integres on the real number line.
a man said he was looking for just the non trivial zeros of the riemann zeta function. wells said if a quadratic equation has two solutions. so how many solutions willan infinite series have. so there are infinite unknowns in an infinite sum.

What is the correct - final application of the riemann zeta function
ANS : Riemann zeta function is used to study "decimal boundary - even number distribution". a boundary even number : is an even number followed immediately by a number that can approximate it to an odd number. .(96)
\(\qquad\) .97)
\(-3,3\) is not known to be an " s " value. this is because humans cannot show it.i have seen a question having two different answers before. check residue theorem-complex analysis. the approach used will determine the result.inverse techniques tend to give some unbelievable results. most mathematicians are not good at "inversion techniques". not only in mathematics, in science in general. inversion is a major - core problem in exploration geophysics.-"called inverse problem"gravity field measurement, seismic interpretation, Electromagnetic field measurements etc. - it is deeper than what you think. example : if gravity field can be inverted at a certain place-humans will float. so everybody will be able to fly from one country to another without using an airplane or wearing a rocket engine or say from one point to another in a given room. - so if one is given this project .can anybody achieve it.- natural earth inversion machine check "inverse" and "left"-Riem ann above. \(\qquad\) ..(98)
inversion can be achieved by-integrals having inverse functions as shown in (2)

Each number in the paired set in the above example will return back to fundamental law as done for 0.8

\(\mathrm{s}=3 \mathrm{x}\)-axis.
FIG3: GRAPH TO SHOW POLES OF THE RIEMANN ZETA FUNCTION-S=3
so \(s=3\) picked \(-6,-12\) etc - trivial zeros.
\(-6=-3 \times 2\)
\(-12=-3 \times 2 \times 2\)
where 2 is the first fundamental value of " \(s\) "- the argument of the riemann zeta function.
\[
\mathrm{s}=0.889
\]
similarly, fig 3 can be drawn for 0.8889 .so if 0.8889 is substituted in (2) it willgive zero at infinity. thesame applies to all other non integer value of \(s\) in the pair - bracket above. this non - integer values are infinite which shows that theriemann zeta function also has an infinite non integer solutions - poles. humans restrict themselves to diophantine because they don't have the capacity to show such non - integer solutions. so whether integer or non integer both have mathematical importance.imagine, if you have two very long reoccuring numbers such that if you add them together you willget an integer. i have seen such interesting example before. (9)

If \(0.889=x\)

FIG4: GRAPH TO SHOW POLES OF THE RIEMANN ZETA FUNCTION-S \(=\mathbf{0 . 8 8 9}\)
similar graphs can be done for the other non - integer values in the pair - bracket. the infinite non integer solutions of " s ": [0.889,0.94117647,0.969,0.985,0.992248......>] all definitely are all less than 1 to infinity. this means it approaches a certain line of certainty but it will never touch it fom one infinity to another. so "that any non - trivial zero lies in the open strip \(\{\mathrm{s}\) ? \(\mathrm{C}: 0<\operatorname{Re}(\mathrm{s})<1\}\) is a validstatement forever - in this non-integer domain of reasoning. they are less than 1 because of the shift from " 1 "comparison function " \(1+\mathrm{z}\) " in (79) - Thisis also why thisriemann is the mostintelligent man thatever lived-in mathematics apart of A.O. Wells \(\qquad\) .(100)
\(\mathrm{Q}:\) a young man wondered why so many solutions to the riemann zeta function.
ANS : a cubic equations will have 3 roots. there are so many thingin infinity.

FIG5: RIEMANN ZETA FUNCTION FOR REAL \(S>1\)

\section*{what is the significan ce of FIG 5}
"s":[0.889,0.94117647,0.969,0.985,0.992248.......]............(01)
(101) is a complex space containing non integer values toinfinity. so divide the complex infinite space into two(2) equal parts. so one part gets -0.5 , the other gets 0.5 . plot one complex half space on the +4 - fundamental complex axis -x axis, plot theother complex half space on the-4-fundamental complex axis =y-axis.
the values on the x willform a parrallel line. also, the values on the y -axis will form another parallel line each travelling to infinity.
the two parrallel lines intersect at a point called the intersection
of C - which is the curve close to the origin. the intersection of C .is a combination of two C 's. one C from each half space at the origin.theintersection of C , tells you it is just "one complex space" divided into two.so the above curve is accurate and valid forever. so the
0.5 - half complex space here is "not" a value of "s" as stated by riemann. riemann tried but is not correct. (79) - (1+) is the equation of "asymptote" - (no finicity). so each parrallel line will never touch the x or y - axis. Whyis "complex space"-used, since \((2,0.8)\) are real numbers?
ANS: (\(\mathrm{z}, \mathrm{s} 1, \mathrm{~s} 2\)) are three measurements, also anything having \(4 \mathrm{eg}(+4,-4)\) are complex measurements \(\qquad\) ..(102)
what about the " \(s\) " values used to plot FIG 5? Are they correct or wrong?
WELLS: ANS : these " s " values are not correct. the " s " values and mathematics used to plot the graph "JUMPED" or was "APPROXIMATED" into "SOME OTHER CORRECT"S" VALUES" of zeta function. so the correct values of "s" which determine fig 5 is not known by the owner of FIG5 - Euler, Riemann.
Recall (43C)
can be solved in two different ways
1st method
\(s\left(3^{s}+4^{s}\right)=3^{s} 4^{s} \ldots \ldots \ldots(43 c)\)
\(s 3^{s}+s 4^{s}=(12)^{s} \ldots \ldots \ldots \ldots(103)\)
\(s 3^{s}=(12)^{S}-s 4^{s} \ldots \ldots \ldots \ldots \ldots(04)\)
\(3^{s}=\frac{(12)^{s}-s 4^{S}}{s} \ldots \ldots \ldots \ldots \ldots(105)\)
\(3^{s}=4^{S}\left[\frac{3^{s}-s}{s}\right] \ldots \ldots \ldots \ldots \ldots . .(106)\)
find the (s) root of both sides of (106). ..(107)
\[
\left(3^{s}\right)^{\frac{1}{s}}=\left(4^{S}\left[\frac{3^{s}-s}{s}\right]\right)^{\frac{1}{s}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .10
\]
\[
\begin{equation*}
\left(3^{s}\right)^{\frac{1}{s}}=\left(4^{s}\right) \frac{1}{s}\left[\frac{3^{s}-s}{s}\right]^{\frac{1}{s}} \tag{109}
\end{equation*}
\]
\(3=4\left[\frac{3^{s}-s}{s}\right]^{\frac{1}{s}}\)
\(\frac{3}{4}=\left[\frac{3^{s}-s}{s}\right]^{\frac{1}{s}}\).
let \(\mathrm{z}=\left[\frac{3^{s}-s}{s}\right]\).
substitute (112) in (111)
\(\frac{3}{4}=z^{\frac{1}{s}}\)
\(\qquad\) 113)
here also \(\mathrm{s}=[2,3,4,5 \ldots \ldots \infty]\) as above, \(z=\left[\frac{9}{16}, \frac{27}{64} \ldots \ldots \infty\right]\). \(\qquad\)
recall (112) \(\qquad\)
\(z=\frac{3^{s}-s}{s}\).
\(\mathrm{zs}=3^{s}-s\)
\(z s+s=3^{s}\).
\(s(1+z)=3^{s}\)
(119) - trivial. wells cannot solve it .(119) means two things are always equal.

2nd method
\(s\left(3^{S}+4^{S}\right)=3^{S} 4^{S}\).
\(s 3^{S}+s 4^{S}=(12)^{S}\)
\(s 4^{S}=(12)^{S}-s 3^{S}\)
\(4^{S}=\frac{(12)^{S}-s 3^{S}}{s}\).
\(4^{S}=3^{S}\left[\frac{4^{S}-s}{s}\right] \ldots\)
find the (s) root of both sides of (125) \(\qquad\)
\(\left(4^{s}\right)^{\frac{1}{s}}=\left(3^{S}\left[\frac{4^{S}-s}{s}\right]\right)^{\frac{1}{s}}\)
\(\left(4^{s}\right)^{\frac{1}{s}}=\left(3^{s}\right) \frac{1}{s}\left[\frac{4^{s}-s}{s}\right]^{\frac{1}{s}}\)
\(4=3\left[\frac{4^{s}-s}{s}\right]^{\frac{1}{s}}\)
\(\frac{4}{3}=\left[\frac{4^{s}-s}{s}\right]^{\frac{1}{s}}\).
let \(\mathrm{z}=\left[\frac{4^{s}-s}{s}\right]\).
substitute (131) in (130).
\(\frac{4}{3}=z^{\frac{1}{s}}\)
\(\frac{1}{s}\) (33)
(114), (133) are inverse - Riemann zeta function contain "inversion problems".
from (133), \(\mathrm{s}=[2,3,4,5 \ldots \ldots . \infty]\) as above, \(z=\left[\frac{16}{9}, \frac{64}{27} \ldots \ldots \infty\right] \ldots \ldots \ldots\) (134)
\(z=\frac{4^{s}-s}{s} \ldots \ldots \ldots \ldots \ldots\)
\(\mathrm{zs}=4^{s}-s\)
\(z s+s=4^{s}\)
(37)
\(s(1+z)=4^{s}\). .(38)
(138) means " two things are always equal then - they willalways be equal". two things are always equal is explaining the inversion reality of the trivial zeros or generally - poles of the riemann zeta function. one lying on the negative axis and the other lying on the positive axis. trivial here - origin of the word trivial used in " trivial zeros". (138) gives trivial solutions means unreliable solutions of \(s=\) [whether \(1,2,3,0.1,0.2\) etc not known]. why are they trivial solutions if two things are always equal and they willalways be equal, but what is the content of the LHS - power in S after raising the LHS to an expression containing \(S\) with base 4 .it is not known. wells cannot solve it. it definitely cannot be \(S\). this proves that theriemann zeta function has a solution called its " trivial solutions"
trivial - you will read google-because it was easy to solve-senseless?

\section*{Meaning of trivial}

Wells: the induction formula used to calculate the trivial zeros was not formulated
by neither euler nor riemann or the man who first proved the trivial zeros. they "tried" or used another persons induction formula - trivial. this is the reason they called it trivial. means we cannot solve it but used someone elses induction formula.
so if induction theory did not pre - exist no human will be able to calulate the trivial zeros. these trivial equations proves that riemann zeta problem is a world class difficult problem which must be solved by more than one scientist - eg in getting the trivial zeors. so not because it was easy. " application" not " ease"
Summary : a part of the riemann zeta function is trivial-extremely difficult to solve.
Q : Why didn't the writer show a real complex " s " value of the riemann zeta function?

ANS : Wells: when I was in high school, my Ghanian furthermat ics teacher taught me that - if you are asked to prove " all Ghanians are " black". you are not asked to go and pack the whole of Ghana. just pick one and say thisis the proof - (Kakra) - 2,0.8

Wells: if i willsolve all problems in the world as an undergradu ate then i will never marry a lady.i need to go and marry. this note is actually more than 250 pages in size 12 but reduced to 10 for internet reasons.

\section*{Abstraction}

If the riemann zeta function has trivial zeros at \(s=-2 n\), where \(n: 1,2,3 \ldots \infty\). then mathematical equality abstraction means it has non trivial zeros at \(s=-2(-a)=s=2 a ; n=-a\); where \(a=1,2,3 \ldots \ldots \infty\)

Q : what is the significan ce of introducing the function solute on the RHS
of (2)
ANS : this means your answer in theend will be positive.so looking
for positivesolutions
H/W
H/W 1: As a scholar solve the Riemann problem in 5 different ways and publish.
hint 1 : the funtion solute can change to reset the question then similar approach is used
1
hint 2 : find 5 different : \(\int k(s)=0\)
0
H/W 2 :
Find 5 complex valued functions \(\mathrm{z}=\mathrm{a}+\mathrm{ib}\) that obeys the below equation
1
\(2=\mathrm{z}\) S
so state 5 non trivial zeros of the complex functions obtained. s1-s5
\(1 \quad 1\)
\(h\) int \(1: z^{-}{ }^{-}=r^{s}\left(\cos \frac{\theta}{\mathrm{~s}}+i \sin \frac{\theta}{s}\right)\)
1
\(h \operatorname{int} 2: r^{-}=16 ;\left[\cos \frac{\theta}{\mathrm{s}}+i \sin \frac{\theta}{s}\right]=8\);
1
\(h\) int 3: \(r^{-}=32 ;\left[\cos \frac{\theta}{\mathrm{s}}+i \sin \frac{\theta}{s}\right]=16\)
\(h\) int 4 : where at least one of \([\theta, s]\) has a complex unit the five (5) answers you get are the complex non-tivial solutions to the riemann zeta function - if exist.
A.O. WELLS must resign in thisfield of number theory so gave you an assignment - Wellshas solved more than 5 problems in thisfield. so publish as a continuation of A.O. Wells journal.i mean solve readable algebra - don't use words like limit, delta, sigma, tend to zero, approximate, lemma, corollary something - theorem etc.don' t use " any element" of real analysis or abstract algebra. anything you write that a child in primary 4 cannot read and understand is invalid as a continuation of this journal - the \(\mathrm{H} / \mathrm{W}\) - general language - algebra

CONJECTURE: EACH OF THE BELOW EQUATIONS HAS A CONJECTUREIN IT.
1) \(\mathrm{a}^{\mathrm{X}}+b^{y}=c^{z}\); NP VS P; ANS = INVALID FOREVER
(\(\mathrm{a}, \mathrm{b}=2=\) even ring), \(\mathrm{c}=1=\) odd ring \(=\) invalid
2) \(\mathrm{a}^{\mathrm{X}}+b^{x}=c^{x}\); NP VS P; ANS = INVALID FOREVER
(\(\mathrm{a}, \mathrm{b}=2=\) even ring), \(\mathrm{c}=1=\) odd ring \(=\) invalid
3) \(\mathrm{a}^{\mathrm{X}}+b^{y}=c^{y}+d^{h}\); NP VS P; ANS = VALID FOREVER
(\(\mathrm{a}, \mathrm{b}=2=\) even ring \(),(\mathrm{c}, \mathrm{d}=2=\) even ring \()\); even - even - ring
4) \(\mathrm{a}^{\mathrm{X}}+b^{y}=c^{z}+d^{h}\); NP VS P; ANS = VALID FOREVER
(\(\mathrm{a}, \mathrm{b}=2=\) even ring), (\(\mathrm{c}, \mathrm{d}=2=\) even ring); even - even - ring
5) \(\mathrm{a}^{\mathrm{X}}+b^{x}=\mathrm{c}^{\mathrm{X}}+d^{x}\); NP VS P; ANS = VALID FOREVER
(\(\mathrm{a}, \mathrm{b}=2=\) even \(), \quad(\mathrm{c}, \mathrm{d}=2=\) even \() ;\) even - even - ring
6) \(\mathrm{a}^{\mathrm{X}}+b^{y}+c^{z}=\mathrm{d}^{\mathrm{S}}\); NP VS P; ANS = INVALID FOREVER - left and right (\(\mathrm{a}, \mathrm{b}, \mathrm{c}=3=\) odd ring \(), \quad(\mathrm{d},=1=\) odd ring \()\);
7) \(\qquad\)
8) \(\mathrm{a}^{\mathrm{X}}+b^{y}+c^{z}=\mathrm{d}^{\mathrm{S}}+e^{t}\); NP VS P; ANS = INVALID FOREVER - left (\(\mathrm{a}, \mathrm{b}, \mathrm{c}=3=\) odd ring \(), \quad(\mathrm{d}, \mathrm{e}=2=\) even ring \() ;\)
9)
10) \(\mathrm{a}^{\mathrm{X}}+b^{y}+c^{z}=\mathrm{d}^{\mathrm{S}}+e^{t}+\mathrm{v}^{\mathrm{r}}\); NP VS P; ANS = INVALID FOREVER - left and right \((\mathrm{a}, \mathrm{b}, \mathrm{c}=3=\) odd ring \(), \quad(\mathrm{d}, \mathrm{e}, \mathrm{v}=3=\) odd ring \() ;\)
11)
12) \(\mathrm{a}^{\mathrm{X}}+b^{y}+c^{z}+w^{p}=\mathrm{d}^{\mathrm{S}}\); NP VS P; ANS = INVALID FOREVER - right (\(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{w}=4=\) odd ring \(), \quad(\mathrm{d}=1=\) odd ring \()\);
13).
14) \(\mathrm{a}^{\mathrm{X}}+b^{y}+c^{z}+w^{p}=\mathrm{d}^{\mathrm{S}}+c^{z}\); NP VS P; ANS = VALID FOREVER - right \((\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{w}=4=\) even ring \(), \quad(\mathrm{d}, \mathrm{c},=2=\) even ring \()\)
15) \(\qquad\)
16) \(\mathrm{a}^{\mathrm{X}}+b^{y}+c^{z}+{ }_{w} p=\mathrm{d}^{\mathrm{S}}+c^{z}+j^{k}\) NP VS P; ANS \(=\) INVALID FOREVER - right \((\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{w}=4=\) even ring \(), \quad(\mathrm{d}, \mathrm{c}, \mathrm{j}=3=\) odd ring \()\)
17).
18) \(\mathrm{a}^{\mathrm{X}}+b^{y}+c^{z}+w^{p}=\mathrm{d}^{\mathrm{S}}+c^{z}+j^{k}+\mathrm{m} \mathrm{g}\); NP VS P; ANS = VALID FOREVER - right (\(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{w}=4=\) even ring \(), \quad(\mathrm{d}, \mathrm{c}, \mathrm{j}, \mathrm{m}=4=\) even ring \()\)
19).
20) \(\qquad\)
so there are infinite conjecture s in polynomial mathematics whether integer or non integer fields

\section*{origin of power summation - power summation pyramid}
the chart below will form a truncated triangular pyramid toinfinity so math induction and algebra can be used togenerate relationships between the various levels, and also form unbelievable power sums. studying the chart can also explain the various conditions for each summation relationship. that is expain - why numbers form power summation pairs. one of the known condition is the pythagoras -5-4-3. also, each level can be manipulated to make it form seemingly unknown numbers - this operation is called lowering the square.
\[
\begin{aligned}
& \text { origin }=a_{i i} n_{i}=a^{n+1} \quad \text { or } \sum_{i i}^{a} a^{n}=a^{n+1} \\
& 1^{1} \\
& 1^{\infty}=1^{(1+\infty)+1} \\
& 2^{1-\infty}+2^{1-\infty}=2^{(1-\infty)+1} \\
& 3^{1-\infty}+3^{1-\infty}+3^{1-\infty}=3^{(1-\infty)+1} \\
& 4^{1-\infty}+4^{1-\infty}+4^{1-\infty}+4^{1-\infty}=4^{(1-\infty)+1} \\
& 5^{1-\infty}+5^{1-\infty}+5^{1-\infty}+5^{1-\infty}+5^{1-\infty}=5^{(1-\infty)+1} \\
& 6^{1-\infty}+6^{1-\infty}+6^{1-\infty}+6^{1-\infty}+6^{1-\infty}+6^{1-\infty}=6^{(1-\infty)+1} \\
& 7^{1-\infty}+7^{1-\infty}+7^{1-\infty}+7^{1-\infty}+7^{1-\infty}+7^{1-\infty}+7^{1-\infty}=7^{(1-\infty)+1} \\
& 8^{1-\infty}+8^{1-\infty}+8^{1-\infty}+8^{1-\infty}+8^{1-\infty}+8^{1-\infty}+8^{1-\infty}+8^{1-\infty}=8^{(1-\infty)+1} \\
& \infty^{1-\infty}+\infty^{1-\infty}+\infty^{1-\infty}{ }_{+\infty}{ }^{1-\infty} \ldots \ldots . \infty^{1-\infty}=\infty^{(1-\infty)+1}
\end{aligned}
\]

FIG1-Carnox pyramid

NEXT PAGE
\(3^{2}+3^{2}+3^{2}=3^{3}-\) is called the lower pythagorean of \(3(2 n d)\).
\(4^{2}+4^{2}+4^{2}+4^{2}=4^{3}\) is called the lower pythagorean of \(4(2 \mathrm{nd})\). it
follows in this naming order. so \(5^{10} \mathrm{ii}=\mathrm{a}\) is called the lower pythagorean of 5 (10 th).
with FIG 1, you can throw your latest supercomputer in your house or conceived to be built in your thought by theend of age in the dumpsite. I travelled toinfinity before any end of age supercomputer was built.so a supercomputer is useless.
what you need is algebra and being a master of algebra.
In summary with FIG 1, all power sum equations has been solved.
\(\mathrm{a}^{\mathrm{X}}+\mathrm{b}^{\mathrm{y}}+\mathrm{c}^{\mathrm{Z}}+\mathrm{d}^{\mathrm{i}}+\mathrm{e}^{\mathrm{p}}+\mathrm{f}^{\mathrm{r}}+\mathrm{g}^{\mathrm{s}}+\ldots \ldots \ldots \ldots \ldots \ldots+\infty \mathrm{m}=\mathrm{z}^{\mathrm{t}}\)

\section*{Examples in FIG 1}

Example 1: solve this tensor : \(\infty_{\infty}{ }^{2}\)
answer \(=\infty^{2+1}=\infty^{3}\)
Example 2 : solve this tensor: \(\left(\infty_{\infty}\right)^{3}\)
answer \(=\left(\infty^{3+1}\right)^{3}=\left(\infty^{4}\right)^{3}=\infty^{12}\)
Example 3: solve this tensor : \(\infty_{\infty}-1\)
answer \(=\infty^{-1+1}=\infty^{0}=1\)

Example 4 : solve this tensor : \(\infty_{\infty}^{\infty}\)
answer \(=\infty^{\infty}+1\)
Example 5:-sum of equal \(n\)
\(3^{2}+3^{2}+3^{2}+4^{2}+4^{2}+4^{2}+4^{2}=3^{3}+4^{3}\)
Example 6-sum of unequal \(n\)
1) \(3^{100}+3^{100}+3^{100}+4^{300}+4^{300}+4^{300}+4^{300}=3^{101}+4^{301}\)
2) \(7^{17 \text { trillion }{ }_{+} 7^{17 \text { trillion }}+7^{17 \text { trillion }}{ }_{+} 17 \text { trillion }{ }_{+} 7^{17 \text { trillion }}{ }_{+} 17 \text { trillion }{ }_{+} 17 \text { trillion }+~}\)
\[
+5^{3000}+5^{3000}+5^{3000}+5^{3000}+5^{3000}=7^{17 \text { trillion }+1}+5^{3001}
\]

Example 7 -lowering the square operation
\[
\begin{aligned}
& \text { 1) } 3^{100}+3^{100}+3^{100}=3^{101} \\
& 3^{2(50)}+3^{4(25)}+3^{10(10)}=3^{101} \\
& 9^{50}+81^{25}+59049^{10}=3^{101}
\end{aligned}
\]
2) \(2^{80 \text { pentillion }}+2^{80 \text { pentillion }}=2^{80 \text { pentillion }+1}\)
\(2^{10(8 \text { pentillion })}+2^{20(4 \text { pentillion })}=2^{80 \text { pentillion }+1}\)
\({ }_{(1024)} 8\) pentillion \(+(1048576)^{4} 4\) pentillion \(=2^{80}\) pentillion +1
Example 8-addition of triplets- triplet interaction
\(3^{2}+3^{2}+3^{2}+4^{2}+4^{2}+4^{2}+4^{2}=3^{3}+4^{3}\)
\(\left(3^{2}+4^{2}\right)+\left(3^{2}+4^{2}\right)+\left(3^{2}+4^{2}\right)+4^{2}=3^{3}+4^{3}\)
\(5^{2}+5^{2}+5^{2}+4^{2}=3^{3}+4^{3}\)
so laws like \(\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta\) can be applied
\((5+5)^{2}-2(5 \times 5)+(5+4)^{2}-2(5 \times 4)=3^{3}+4^{3}\)
\(10^{2}-2(25)+(9)^{2}-2(20)=3^{3}+4^{3}\)
\(10^{2}+9^{2}=3^{3}+4^{3}+2(25)+2(20)\)
\(10^{2}+9^{2}=3^{3}+4^{3}+50+40\)
\(10^{2}+9^{2}=4^{3}+3^{3}+90(10 \times 9)\)
the above examples seems a childs play.simple. but not as simple
as one thinks.FIG11was never known for millionsof ages.
if you are given a problem on it. you willspend 100 hrs solving
and will never get it.
example-its difficulty lies here
given a number xxxxxxxxxxxx = compute the number of
squares in it and transform it into another type of perfect square.
eg 123456777895-3minutes
so it is because you have seen FIG1 and its manipulations that is
why it looks simple.
Example 9: express \(3^{199907}\) as a sum of three powers of 3 .
\(3^{199906}+3^{199906}+3^{199906}=3^{199907}\)
\(\left(3^{2}+4^{2}\right)+\left(3^{2}+4^{2}\right)+\left(3^{2}+4^{2}\right)+4^{2}=3^{3}+4^{3}\)
\(5^{2}+5^{2}+5^{2}+4^{2}=3^{3}+4^{3}\)
so laws like \(\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta\) can be applied
\((5+5)^{2}-2(5 \times 5)+(5+4)^{2}-2(5 \times 4)=3^{3}+4^{3}\)
\(10^{2}-2(25)+(9)^{2}-2(20)=3^{3}+4^{3}\)
\(10^{2}+9^{2}=3^{3}+4^{3}+2(25)+2(20)\)
\(10^{2}+9^{2}=3^{3}+4^{3}+50+40\)
\(10^{2}+9^{2}=4^{3}+3^{3}+90(10 \times 9)\)
the above examples seems a childs play.simple. but not as simple
as one thinks.FIG11was never known for millionsof ages.
if you are given a problem on it. you willspend 100hrs solving
and will never get it.
example-its difficulty lies here
given a number xxxxxxxxxxxx = compute the number of squares in it and transform it into another type of perfect square.
eg 123456777895-3minutes
so it is because you have seen FIG1 and its manipulations that is
why it looks simple.
Example 9: express \(3^{199907}\) as a sum of three powers of 3 .
\(3^{199906}+3^{199906}+3^{199906}=3^{199907}\)

Example 10
\(5^{20}+5^{20}+5^{20}+5^{20}+5^{20}=5^{21}\)
\(5^{10(2)}+5^{10(2)}+5^{10(2)}+5^{10(2)}+5^{10(2)}=5^{21}\)
so laws like \(\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta\) can be applied
\(\left(5^{10}+5^{10}\right)^{2}-2\left(5^{10} \times 5^{10}\right)+\left(5^{10}+5^{10}\right)^{2}-2\left(5^{10} \times 5^{10}\right)+5^{10(2)}=5^{21}\)
\(\left(2 \times 5^{10}\right)^{2}-4\left(5^{10} \times 5^{10}\right)+\left(2 \times 5^{10}\right)^{2}+5^{10(2)}=5^{21}\)
\(2\left(2 \times 5^{10}\right)^{2}-4\left(5^{10} \times 5^{10}\right)+5^{10(2)}=5^{21}\)
\(2 \times 2^{2}\left(5^{10}\right)^{2}-4\left(5^{10} \times 5^{10}\right)+5^{10(2)}=5^{21}\)
divide both sides by \(5{ }^{10}\)
\(8\left(5^{10}\right)-4\left(5^{10}\right)+5^{10}=5^{11}\)
divide both sides by \(5^{10}\)
\(8-4+1=5\)
Q :use \(5^{21}\left(5+2+1=8, \frac{8}{2}=4,1\right)\) to prove that \(8-4+1=5\)
Example 11
\(3^{10}+3^{10}+3^{10}=3^{11}\)
\(3^{5(2)}+3^{5(2)}+3^{10}=3^{11}\)
\(\left(3^{5}+3^{5}\right)^{2}-2\left(3^{5} \times 3^{5}\right)+3^{10}=3^{11}\)
\(\left(2 \times 3^{5}\right)^{2}-2\left(\left(3^{5}\right)^{2}\right)+3^{10}=3^{11}\)
\(\left(2 \times 3^{5}\right)^{2}-2\left(\left(3^{5}\right)^{2}\right)+3^{10}=3^{11}\)
\(\left(2^{2} \times\left(3^{5}\right)^{2}\right)-2\left(\left(3^{5}\right)^{2}\right)+\left(3^{5}\right)^{2}=3^{11}\)
divide both sides by \(\left(3^{5}\right)^{2}\)
\(\frac{\left(2^{2} \times\left(3^{5}\right)^{2}\right)}{\left(3^{5}\right)^{2}}-\frac{2\left(\left(3^{5}\right)^{2}\right)}{\left(3^{5}\right)^{2}}+\frac{\left(3^{5}\right)^{2}}{\left(3^{5}\right)^{2}}=\frac{3^{11}}{\left(3^{5}\right)^{2}}\)
\(4-2+1=3\)
Q: use \(3^{11}\left(3+1+0=4 ; \frac{4}{2}=2,1\right)\) toprove that \(4-2+1=3\)
not \(3+1+1\) because there is just one 1 on the number line. the
trend is interesting. study it tocheck for any incoherence.
so questions like use \(A{ }^{\mathrm{bc}}\) to prove that \(\mathrm{d}-\mathrm{e}+\mathrm{h}=\mathrm{k}\) if given to the
whole world for the first time. the whole world will score zero
100 million times. this proves that questions regarding power sums
are not simple.
Example 12 : origin of plato number
prove this: \(3^{3}+4^{3}+5^{3}=6^{3}\)
\(3^{2}+3^{2}+3^{2}=3^{3}\).
\(4^{2}+4^{2}+4^{2}+4^{2}=4^{3}\)
\(5^{2}+5^{2}+5^{2}+5^{2}+5^{2}=5^{3}\).
add (1) \(+(2)+(3)\)
\(3^{2}+3^{2}+3^{2}+4^{2}+4^{2}+4^{2}+4^{2}+5^{2}+5^{2}+5^{2}+5^{2}+5^{2}=3^{3}+4^{3}+5^{3}\)
use triplet interaction(3-4-5)
\(\left(3^{2}+4^{2}\right)+\left(3^{2}+4^{2}\right)+\left(3^{2}+4^{2}\right)+5^{2}+5^{2}+5^{2}+5^{2}+5^{2}+4^{2}=\) \(3^{3}+4^{3}+5^{3}\)
\(\left(5^{2}\right)+\left(5^{2}\right)+\left(5^{2}\right)+5^{2}+5^{2}+5^{2}+5^{2}+5^{2}+4^{2}=3^{3}+4^{3}+5^{3}\)
\(5^{2}+5^{2}+5^{2}+5^{2}+5^{2}+5^{2}+5^{2}+5^{2}+4^{2}=3^{3}+4^{3}+5^{3}\)
\(\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta\)
\(\left(5^{2}+5^{2}\right)+\left(5^{2}+5^{2}\right)+\left(5^{2}+5^{2}\right)+\left(5^{2}+5^{2}\right)+4^{2}=3^{3}+4^{3}+5^{3}\)
\(\left[(5+5)^{2}-(2 \times 5 \times 5)\right]_{4}+4^{2}=3^{3}+4^{3}+5^{3}\)
\(\left[(10)^{2}-(50)\right]_{4}+4^{2}=3^{3}+4^{3}+5^{3}\)
\(\left[4(10)^{2}-4(50)\right]+4^{2}=3^{3}+4^{3}+5^{3}\)
\(2^{2}(10)^{2}-200+4^{2}=3^{3}+4^{3}+5^{3}\)
\(a^{x} b^{x}=(a \times b)^{x}\)
\((2 \times 10)^{2}-200+4^{2}=3^{3}+4^{3}+5^{3}\)
\((20)^{2}-200+4^{2}=3^{3}+4^{3}+5^{3}\)
\(20^{2}+4^{2}-200=3^{3}+4^{3}+5^{3}\)
\(\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta\)
\(\left[(20+4)^{2}-2(20 \times 4)\right]-200=3^{3}+4^{3}+5^{3}\)
\((24)^{2}-2(80)-200=3^{3}+4^{3}+5^{3}\)
\((24)^{2}-160-200=3^{3}+4^{3}+5^{3}\)
\((24)^{2}-360=3^{3}+4^{3}+5^{3}\)
\([(6 \times 4)(6 \times 4)]-(6 \times 6 \times 10)=3^{3}+4^{3}+5^{3}\)
\(6 \times 6[(4 \times 4)-10]=3^{3}+4^{3}+5^{3}\)
\(6 \times 6\left[(16-10]=3^{3}+4^{3}+5^{3}\right.\)
\(6 \times 6 \times 6=3^{3}+4^{3}+5^{3}\)
\(6^{3}=3^{3}+4^{3}+5^{3}\)
\(3^{3}+4^{3}+5^{3}=6^{3}\)

Example 13-existence - for beal' s conjecture
\(\left.16_{i=16}^{850 t r i i l l i o n}=16^{850 \text { trillion }+1} \ldots \ldots \ldots .1\right)\)
\(\left.17{ }_{i=17}^{500 \text { trillion }}=17^{500 \text { trillion }+1} \ldots \ldots .2\right)\)
(1) \(+(2)\)
 \({ }_{17}^{500 \text { trillion }} \underset{i=16}{\text {) }}\)
\(16^{850}\) trillion \({ }_{+17} 500\) trillion \(=16^{850 \text { trillion }+1_{+17} 500 \text { trillion }+1_{-(16}(425 \text { triillion }) 2}{ }_{i=15}\)
\({ }_{17}(250\) trillion \(\left.) 2{ }_{i=15}\right)-17{ }^{500 \text { trillion }}\)
so the left side reduces to one power sum after using laws
like : \(\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta\) if thisis the
correct power example.
\(16^{850}\) trillion \({ }_{+17} 500\) trillion \(=16^{850 \text { trillion }+1}{ }_{+17} 500\) trillion \(+1_{-(16} 425\) triillion +
\(\left.{ }_{17}{ }^{250 \text { trillion }}\right)_{i=15^{-\left(2 \times 16^{2}\right.}}^{2} 42\) trillion \(\left._{\times 17^{250 t r i l l i o n ~}}\right)_{i=15-17} 500\) trillion

NEXT PAGE

\section*{Example-1 1}
\(1^{1}\) - means a man is standing on a truncated triangular pyramid doing one of two things which is not known - the two things are;
1) either nodding his head like a flag to the right
2) raising one of his hands up.- so theman has one hand since his second hand is not seen.
\[
\begin{gathered}
1^{1} \\
1^{2}=1^{2} \\
2^{2}+2^{2}=2^{3} \\
3^{2}+3^{2}+3^{2}=3^{3} \\
4^{2}+4^{2}+4^{2}+4^{2}=4^{3} \\
5^{2}+5^{2}+5^{2}+5^{2}+5^{2}=5^{3} \\
6^{2}+6^{2}+6^{2}+6^{2}+6^{2}+6^{2}=6^{3} \\
7^{2}+7^{2}+7^{2}+7^{2}+7^{2}+7^{2}+7^{2}=7^{3} \\
8^{2}+8^{2}+8^{2}+8^{2}+8^{2}+8^{2}+8^{2}+8^{2}=8^{3}
\end{gathered}
\]

FIG 2
\(1^{1}\) in reality represents the collatz conjecture. it means there is nothing called oneness. only a supreme being that lives

In the world beyound is one. so this means the collatz conjecture is valid from the bottom to the top of the truncated pyramid and invalid in general, since the pyramid does not converge to an apex.
the \(1^{1}\) is arbitrarily chosen. so a large group of numbers can be reduced to arbitrary one but not all numbers can be reduced to arbitrary 1 .
so in conclusion the collatz conjecture is invalid. the \(1^{1}\) is saying there is a number that looks like 7 or 9 . this number does not obey the collatz conjecture so renders it invalid. so a young boy asked "but you dont look like 7 or 9 ". so the man answered, your brain is faulty.
If I am to show you the number 7 or 9 . where do you expect me tostay?
At your back or front. so if I stay at your front. how do you expect the number to look like 7 or 9 . so there are extremely long numbers containing the digit 7 or 9 which do not obey collatz conjecture.
eg :177777777777777777, or 1999999999999999999
\(a^{2}+b^{2}=c^{2}\)
\(a^{2}\) - first eye
\(b^{2}\) - second eye
\(c^{2}\) - what he sees accurately - the result.
eg : \(3^{2}+4^{2}=5^{2}(5,3,4\) is a pythagorean triplet \()\)
so the early Egyptians sat down with their children on the ground to discover by calculation what this man can see accurately. so the real name of the pythagors theorem is ACCURATETHEOREM.
so the pythagoras theorem had been in Egypt for many thousands of years before the greeks invaded egypt which led to the birth of pythagoras in Egypt where he saw the theorem. the Egyptians who built thepyramidare the first discoverer of the power summation pyramid-Carnox pyramid.
so what is the definition of the pythagorean triplet-it is the fourth, fifth, and the sixth step from the top of an arbitrary triangular pyramid. this means the pyramid we have has no top. so one needs to define or find arbitrary tops to know where each set of the pythagorean triplets is located. \(4+5+6=15\), so one will say a multipleof \(4,5,6\) satisfy the triplet.one can also say as a fact that any number that contain the number 4,5,6is a family of the triplet.so if a number contain these numbers and it does not form a triplet one can call it a decimal triplet. take note of \(\underline{6}\) as a most important triplet member.
since it marks the end of the triplet. \(3 \times 5=15\).
so 3 is also a number that determines the triplet.since 3 and 4 form
indistinguishable meeting starting point.
if a number contains the number 3 eg 13 or a multipleof 3 .
it should be suspected to be in the triplet family.
since 6 is a most important tripet member. so
\(3^{3}+4^{3}+5^{3}=6^{3}-\) platos number - origin
\(1^{3}\) means a man has 3 eyes. thisis not possible. so it means this man has two heads. with thefirst head having two eyes which is possible and the second head having one eye - thisis not possible.
so this further means the second head with one eye must be cut off so the man can have just one head having two eyes. so if the head with one eyes is cut off. the injury of the surgery will affect the first head with twoeyes. since both heads are connected. the above means the possibleevent is a pair of eyes and the impossibleevent is one eye. the summary of thislesson is that the below mathematical expressions are not possible in the realm of knowlegde of human beings till the earth ceases to exist. This lesson is the subject and the validity of the Fermats conjecture
\(\mathrm{a}^{\mathrm{X}}+b^{x} \neq c^{x}\) where x is \(3 \ldots \ldots \infty\) and \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) are positiveintegers.
e.g
\(\mathrm{a}^{3}+b^{3} \neq c^{3}\)
\(\mathrm{a}^{4}+b^{4} \neq c^{4}\)
\(a^{5}+b^{5} \neq c^{5}\)
\(\mathrm{a}^{\infty}+b^{\infty} \neq c^{\infty}\)
power of 4
\[
\begin{gathered}
1^{4} \\
1^{4}=1^{4} \\
2^{4}+2^{4}=2^{5} \\
3^{4}+3^{4}+3^{4}=3^{5} \\
4^{4}+4^{4}+4^{4}+4^{4}=4^{5} \\
5^{4}+5^{4}+5^{4}+5^{4}+5^{4}=5^{5} \\
6^{4}+6^{4}+6^{4}+6^{4}+6^{4}+6^{4}=6^{5} \\
7^{4}+7^{4}+7^{4}+7^{4}+7^{4}+7^{4}+7^{4}=7^{5} \\
8^{4}+8^{4}+8^{4}+8^{4}+8^{4}+8^{4}+8^{4}+8^{4}=8^{5}
\end{gathered}
\]
\(1^{4}\) - means the man on the truncated pyramid has 4 eyes. this means the man must have two heads which are connected
having two eyes each. so the below exists in number theory
\(a^{4}+b^{4}=c^{4}+d^{4}\)
euler : \(59^{4}+158^{4}=133^{4}+134^{4}\)
where \(\mathrm{a}, \mathrm{b}\) are the eyes on one head and c and d are the eyes on the second head. the \(=\) is theconnection between the heads. so find this numbers. each two eyes means two holes - so try 8,3,9. also fluids
from one eye pair can flow to the other eye pair. so the below exists in
number theory
\(a^{4}+b^{4}+c^{4}=d^{4}\)
\(1^{5}\) - means a supreme being has 5 eyes. so all things are possible with thesupreme being. so all possible power summation is possible.
\(a^{5}+b^{5}+c^{5}+d^{5}=e^{5}\)
\(\mathrm{a}^{5}+b^{5}+c^{5}=d^{5}+e^{5}-\) fluid flow
WRITEANYTHING make sure it has an equality sign and use positiveintegers
so the greeks that invaded egypt studied and found these on
the pyramid in egypt.
\(1^{6}\) - means the supreme being (5) is with somebody.so all things
is possible with thesupreme being.
so the below exists in number theory
\[
\begin{aligned}
& \mathrm{a}^{6}+b^{6}=c^{6}+d^{6}=\mathrm{e}^{6}+\mathrm{f} \\
& \mathrm{a}^{6}+b^{6}+c^{6}=d^{6}=\mathrm{e}^{6}+\mathrm{f} \\
& \mathrm{a}^{6}+b^{6}+c^{6}=d^{6}+\mathrm{e}^{6}=\mathrm{f}
\end{aligned}
\]

WRITEANYTHING make sure it has an equality sign and use positive integers
so the greeks that invaded egypt studied and found these on
the pyramid in egypt.
so the greeks that invaded egypt studied and found
these on the pyramid in egypt.
\(1^{7}\) - is treated like \(1^{6}\) up to \(1^{\infty}\). so
\(\mathrm{a}^{7}+\mathrm{b}^{7}=\mathrm{c}^{7}+\mathrm{d}^{7}+\mathrm{e}^{7}+\mathrm{f}^{7}+g^{7}\)
\(a^{7}=b^{7}+c^{7}+d^{7}+e^{7}+\mathrm{f}^{7}+g^{7}\)
\(\mathrm{a}^{7}=\mathrm{c}^{7}+\mathrm{d}^{7}+\mathrm{e}^{7}+\mathrm{f}^{7}+g^{7}-\mathrm{b}^{7}\)
WRITEANYTHING make sure it has an equality sign and use positive integers
so the greeks that invaded egypt studied and found these on
the pyramid in egypt.
so all power summations are possiblestarting from the fifth power to infinty

\section*{COUNTER EXAMPLES BEAL'S CONJECTURE}
1) \((15561)^{\wedge} 3+(17290)^{\wedge} 3=1729^{\wedge} 4\)
2) \((26)^{\wedge} 4+\left(26^{\wedge} 3\right)=78^{\wedge} 3\)
3) Euler paired x-4 number to the equality power; \(\left(59^{\wedge} 4\right)+\left(158^{\wedge} 4\right)=\left(133^{\wedge} 4\right)+(134 \wedge 4)\); to power
(1) and (3) means I can be your factor in two ways. Either I am your integer factor or non- integer factor. All known equations concerning beal's conjecture denied the set of non -integer factors that is \(\mathrm{b} / \mathrm{a}=\) integer; \(\mathrm{b} / \mathrm{a}=\) non-integer

\section*{CONCLUSION:}

The research proves:
1) The beal's conjecture- invalid forever.
2) The Wells summation theorem
3) The Fermat last theorem- invalid forever
4) The Goldbach conjecture -valid forever.
5) Unification engine of all power summations
6) The existence of solitary numbers and 10 -an example- and that 10 being a solitary number is a valid statement forever . the other solitary numbers being most of the even numbers on the real number line while the rest are supreme numbers in their mixed digits.
7) The solution to the: NP vs P problem is -10
8) The Riemann Hypothesis- invalid forever
9) The research shows the derivation of the power summation pyramid to infinity: Carnox(Alexander O Wells) pyramid

\section*{Refrences}

Google-Riemann, Euler equations
ALEXANDERS VECTOR ANALYST- PROFILE
NAME-ALEXANDER .OLUGBENGA. ODULANA (INFORMAL)
NAME- ALEXANDER OLUGBENGA. WELLS (FORMAL)
INSTITUTION: UNIVERSITY OF LAGOS AKOKA YABA NIGERIA
DEPARTMENT: APPLIED PHYSICS (GEOPHYSICS)
MATRIC : 060808060

LEVEL-FINAL YEAR 400L (\(2^{\text {ND }}\) SEMESTER)-undergraduate
Email- alexanderowells@yahoo.com
PHONE NO: +2347087816278

\section*{PRIMARY SCHOOL PROFILE}

PRY 1 -OJUWOYE PUBLIC SCHOOL DAMINGORO MUSHIN LAGOS NIGERIA
PRY 1-4- GLADYS NURSERY AND PRIMARY SCHOOL DEMURIN KETU LAGOS NIGERIA (private)

PRIMARY SCHOOL AWARD
Best student in the Federal Common Entrance 1996 (Gladys)- 419/600 in pry 4.

\section*{SECONDARY SCHOOL PROFILE}

JSS1-JSS 3- LAGOS BAPTIST ACADEMY OBANIKORO LAGOS NIGERIA
SS1-SS3- MAYFLOWER SCHOOL IKENNE - NIGERIA
STUDENT NUMBER -14574

PREFECT POSITIONS IN MAYFLOWER
1) SANITARY PREFECT BOY 2003 SET
2) JUNIOR -ENGINEERS- TECHNICIANS AND SCIENTISTS PREFECT -2003 SET

MAYFLOWER SCHOOL AWARD
BEST FURTHERMATHEMATICS STUDENT (WASSCE) MAYLOWER SCHOOL IKENNE, NIGERIA 2003 SET.

\section*{TITLE OF THE WRITER-ALEXANDER .O .WELLS}
1) PRINCE OF CAESAR - ALEXANDER GREEK
2) PRINCE OF KUSH-PHAROAH of EGYPT
3) DESCENDANT OF THE JEWS
4) DESCENDANT OF THE ARABS
5) CARNOX OF EGYPT```

