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ABSTRACT 

The number of people with diabetes is increasing all over the world. A misconception that diabetes is a disease 

for urban areas while rural areas are also concerned, this is the motivation of the study. In this paper, a multiple 

logistic model is used to fit the risk factors of diabetes.  

A three year period (2011 to 2013) data from Gitwe Hospital are used. The software package that is used to 

process the data is SPSS 15.0.  

The test of independence between the dependent variable (diabetes) and the independent variables is performed. 

It is found that older age, alcohol consumption, cholesterol level, occupation status and hypertension were 

associated with the outcome of having diabetes. The predictors like gender; smoking, family history of diabetes 

had negligible association with having diabetes.  

A multiple logistic regression model containing all the predictor variables is fitted and a test of significance on 

coefficients is performed. The Wald test reveals that on one hand, the significant predictors are: older age, 

Occupation status, Alcohol consumption, Cholesterol level and Hypertension. On the other hand, the predictors 

which are not statistically significant are: Gender, smoking and family history of diabetes.  

From the odds ratio results, older age persons, patients who consume alcohol, patients with high cholesterol level 

and hypertensive persons are highly susceptible for diabetes occurrence. 

 

Finally, a multiple logistic regression with only significant parameters was fitted. Based on their respective 

Receiver Operator Characteristic (ROC) curve and their overall explanatory strength the conclusion is that the 

reduced model fits better the data than the model with all predictor variables. 

Keywords: Logistic regression, Diabetes. 

 1. Introduction 

1.1. Problem statement  
 

The number of people with diabetes is increasing due to population growth, aging, urbanization, and increasing 

prevalence of obesity and physical inactivity. Quantifying the prevalence of diabetes and the number of people 

affected by diabetes, now and in the future, is important to allow rational planning and allocation of resources. 

(SARAH Wild et Al., 2004).                 

According to Shaw JE et al. (2010), the world prevalence of diabetes in 2010 among adults aged 20-79 years 

was estimated to 6.4%, affecting 285 millions of adults. Between 2010 and 2030, there is an expected 70% 

increase in number of adults with diabetes in developing countries and a 20% increase in developed countries. 
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 Each year more than 231,000 people in the United states and more than 3,96 million people worldwide die from 

diabetes and its complications (IDF, 2009) and this number is expected to increase by more than 50 percent over 

next decade . 

 Estimated global healthcare expenditures to treat and prevent diabetes and its complications was at least 376 

billion US Dollar (USD) in 2010. By 2030, this number is projected to exceed some 490 billion USD.  

Environmental and lifestyle factors are the main causes of the dramatic increase in type 2 diabetes prevalence. 

Genetic factors probably identify those most vulnerable to these changes. (IDF, 2010) .    

Diabetes is now truly a pandemic, and its effects are particularly severe in low and middle income countries. 

The following table shows the situation of diabetes over the world in 2013 and the projected percentage of 

increase in people with diabetes in 2035: 

Table 1. 1: Number of people with diabetes by IDF regions, 2013 and projection in 2035 

Region Number of people with diabetes 

Year 2013(in  millions) 

Predicted percentage of 

increase in 2035 

NORTH AMERICA AND CARIBEAN 37 37.3 % 

SOUTH AND CENTRAL AMERICA 24 59.8 % 

EUROPE 56 22.4% 

MIDLE EAST AND NORTH AFRICA 35 96.2% 

SUB-SAHARAN AFRICA 20 109.1% 

SOUTH EAST ASIA 72 70.6% 

WESTERN PACIFIC 138 46% 

Source: IDF Atlas 2013, page 11 to page 12 

Here are some basic facts about diabetes worldwide, according to IDF (2013) : 

1. Each year the number of people with diabetes increases by 7 millions in the world. 

2. By 2035, about 592 million people will have diabetes , a number which was 382million in 2013 

3. More than 79000 children developed type 1 diabetes 

4. During 2013, diabetes killed about 5.1 million adults worldwide. 

5. Diabetes leads to complications and severe disabilities, including kidney disease, blindness, heart 

attack, stroke and neural damage leading to amputation and the need for chronic care.   

6. The trend in 2013 revealed that there are three new cases every 10 seconds. 

7.  More than 80% of spending on medical care for diabetes is in the world’s richest countries, even 

though 80% of the people with diabetes live in low and middle income countries, where 76% of the 

burden lies. 

8.  The burden of illness caused by diabetes and the reduction in life expectancy in sub-Saharan Africa 

will hinder the region’s economic growth. 

9. Diabetes caused at least 548 billion USD in health expenditure in 2013 (it means 11% of the total health 

spending on adults and this amount is predicted to be 627 USD in 2035. 

10. More than 21 million live births were affected by diabetes during pregnancy in 2013 

 

Concerning Sub-Saharan Africa, Jean-Claude Mbanya (2009) says: “Soon, four out of every five people with 

diabetes will live in developing countries. And the men and women most affected are of working age – the 

breadwinners of their families.” Diabetes was once considered as a rare disease in sub-Saharan Africa.  But in 

that part of the word, in 2010; 12.1 millions adults were estimated to have diabetes and by 2030, it is estimated 

that 23.9 million adults in sub-Saharan Africa will have diabetes. 

Data of 2010 on the condition of people with diabetes in sub-Saharan Africa and the complications of diabetes 

that they suffer is very scarce. According to Ayesha Motala et al.(2010), it was estimated that at least: 

1. 4.51 million people had eye complications. 

2. 2.23 million people needed dialysis because of kidney damage. 

3. 907,500 people had cardiovascular disease. 

4. 423,500 people were blind because of diabetes. 

5. 399,300 people had cerebrovascular disease. 

6. 169,400 people had lost a foot because of amputation.   

  

Concerning Rwanda, the number of deaths due to diabetes in 2013 was estimated to be 5464. 
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In that same year, the prevalence in adults (20-79 years) was 4.38% and the total number of people living with 

diabetes was estimated to be 234000.     (IDF, 2013) 

1.2. Research objectives and hypothesis 
 

This study has the following objectives: 

1.  To test for the association between the risk factors (older age, gender, smoking, occupation status, alcohol 

consumption, Cholesterol level, hypertension, and family history of diabetes) and diabetes.   

 2.  To fit a multiple logistic model on the incidence of diabetes given the risk factors (older age, gender, 

smoking, occupation status, alcohol consumption, Cholesterol level, hypertension, and family history of 

diabetes)  

The following hypotheses were formulated in order to achieve the above objectives: 

𝑯𝟎 :  There is no association between having diabetes and risk factors like age, gender, smoking, 

occupation status, alcohol consumption, Cholesterol level, hypertension, and family history of diabetes. 

To test those hypotheses, the chi-square test of independence is used. 

And  

𝑯𝟎: 𝛽𝑖= 0 ( it means the coefficient  𝛽𝑖  in the fitted multiple logistic regression is not statistically 

significant) 

   To test those hypotheses, the Wald test is used. 

2. METHODOLOGY 

2.1. GENERALISED LINEAR MODELS (GLMs) AND LOGISTIC REGRESION 

 

The logistic regression model is an example of a broad class of models known as Generalized Linear Models 

(GLMs). For example, GLMs also include linear regression, ANOVA, Poisson regression, etc.  

There are three components to a Generalized Linear Model: 

-Random Component: The random component of a Generalized Linear Model identifies the response variable 

𝑌 and selects a probability distribution for it. Denote the observations on 𝑌 by (𝑌1, 𝑌2,. . . , 𝑌𝑛). Standard GLMs 

treat  𝑌1, 𝑌2,. . . , 𝑌𝑛  as independent. 

-Systematic Component: The systematic component of a GLM specifies the explanatory variables. These enter 

linearly as predictors on the right-hand side of the model equation. That is, the systematic component specifies 

the variables that are the {𝑥𝑗  } in the expression: 

                                  𝛽0  +  𝛽1𝑥1  + · · · +𝛽𝑘𝑥𝑘 

This linear combination of the explanatory variables is called the linear predictor. 

-Link Function: Let us denote the expected value of Y, the mean of its probability distribution, by 𝜇 =  𝐸(𝑌). 
The third component of a GLM, the link function, specifies a function 𝑔(·) that relates 𝜇 to the linear predictor 

as: 

                                      𝑔(𝜇)  =  𝛽0  +  𝛽1𝑥1  + · · · +𝛽𝑘𝑥𝑘  
The link function 𝑔(·) connects the random and systematic components. 

2.2. LOGISTIC REGRESSION MODEL 

2.2.1. Introduction 

 

In general, the logistic regression model is used to model the outcomes of a categorical dependent variable. 

Logistic regression determines the impact of multiple independent variables presented simultaneously to predict 

membership of one or other of the two dependent variable categories. 

The logistic regression is the most popular multivariable method used in health science (Tetrault et al., 2008).  
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2.2.2. Binary Logistic Regression with single independent variable 

 

Many categorical response variables have only two categories.  Denote a binary response variable by 𝑌 and its 

two possible outcomes by 1 (“success”) and 0 (“failure”). 

The distribution of 𝑌 is specified by probabilities: 

               𝑃(𝑌 =  1) = 𝜋 of success and 𝑃(𝑌 =  0) = (1 −  𝜋) of failure. Its mean is 𝐸(𝑌) = 𝜋.  

For n independent observations, the number of successes has the binomial distribution specified by the index 𝑛 

and parameter 𝜋. Although Generalized Linear Models can have multiple explanatory variables, let us start by 

introducing only one independent variable 𝑥. 

The value of 𝜋 can vary as the value of 𝑥 changes, and 𝜋 is will be replaced by 𝜋(𝑥) to describe that dependence 

𝜋 on 𝑥. 

Relationships between π(x) and x are usually nonlinear rather than linear. In the logistic regression model, the 

random component for the (success, failure) outcomes has a binomial distribution. The link function is the logit 

function 𝑙𝑛[𝜋/(1 −  𝜋)] 𝑜𝑓 𝜋, which is defined as the log of odds of success and symbolized by “logit(π).” 

Logistic regression models are often called logit models. Whereas π is restricted to the range [0,1], the logit can 

be any real number. 

The model: 

                                              𝑙𝑛 (
𝜋(𝑥)

1− 𝜋(𝑥)
) =  𝛽0 + 𝛽1𝑋                                                                (2.1) 

 

From equation (2.1), we deduce: 

                                               
𝜋(𝑥)

1− 𝜋(𝑥)
= 𝑒𝛽0+𝛽1𝑋  

                                               𝜋(𝑥) = 𝑒𝛽0+𝛽1𝑋 −  𝜋(𝑥)𝑒𝛽0+𝛽1𝑋            

                                               𝜋(𝑥)(1 +  𝑒𝛽0+𝛽1𝑋) = 𝑒𝛽0+𝛽1𝑋  

                                               𝜋(𝑥) =
𝑒𝛽0+𝛽1𝑋

1+ 𝑒𝛽0+𝛽1𝑋                                                                          (2.2)    

2.2.3. Interpretation of regression coefficients 

 

 Consider the case in which the dependent variable may take only the values 1 (for success) and 0 (for failure) 

and a single independent variable 𝑥. 

In this case, the logistic regression equation is: 

                                    𝑙𝑛 (
𝜋(𝑥)

1− 𝜋(𝑥) 
) =  𝛽0 +  𝛽1𝑥   as given in equation  (2.1)   

Now, suppose we consider an impact of a unit increase in 𝑥. The logistic regression equation becomes:  

                                     𝑙𝑛 (
𝜋′(𝑥)

1− 𝜋′(𝑥) 
) =  𝛽0 + 𝛽1(𝑥 + 1 )                          

                                   𝑙𝑛 (
𝜋′(𝑥)

1− 𝜋′(𝑥) 
) =   𝛽0 +  𝛽1𝑥 + 𝛽1                                                           (2.3)     

Subtracting   equation (2.1) from (2.3)    we get: 

                                  𝑙𝑛 (
𝜋′(𝑥)

1− 𝜋′(𝑥) 
) −  𝑙𝑛 (

𝜋(𝑥)

1− 𝜋(𝑥) 
) =  𝛽0 +  𝛽1𝑥 +  𝛽1 − 𝛽0 −  𝛽1𝑥  

    to arrive at: 
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                                  𝛽1 = ln (
      

𝜋′(𝑥)

1− 𝜋′(𝑥)
      

𝜋(𝑥)

1− 𝜋(𝑥)

) 

                                 𝛽1 = ln (
 𝑂𝑑𝑑𝑠′ 

𝑂𝑑𝑑𝑠
)                                                                                             (2.4) 

That is,  𝛽1 is the log of the ratio of the odds at 𝑥 + 1 and 𝑥.  

Which may be also written as: 

                                                   𝑒𝛽1 =
𝑂𝑑𝑑𝑠′

𝑂𝑑𝑑𝑠
                                                                                    (2.5)                        

The regression coefficient   𝛽1  is interpreted as the log of the odds ratio comparing the odds after a one unit 

increase in 𝑥 to the original odds. 

2.2. 4. Multiple Logistic Regression 

 

2.2.4.1. The model 

 

Let us consider the general logistic regression model with multiple explanatory variables. Denote the k predictors 

for a binary response  𝑌  by 𝑋1, 𝑋2, … , 𝑋𝑘 .  

We use 𝜋(𝑥) to represent the probability that 𝑌 = 1 𝑓𝑜𝑟 𝑠𝑢𝑐𝑐𝑒𝑠𝑠, and 1 − 𝜋(𝑥) to represent the probability that 

𝑌 = 0. 

These probabilities are written in the following form: 

                                       𝜋(𝑥)  =  𝑃(𝑌 =  1/𝑋1, 𝑋2, …  , 𝑋𝑘)                                                          (2.6) 

                                      1 − 𝜋(𝑥)  =  𝑃(𝑌 = 0/𝑋1, 𝑋2, …  , 𝑋𝑘)                                                     (2.7) 

The model for the log odds is: 

      𝑙𝑜𝑔𝑖𝑡 (𝜋(𝑥)) = ln
𝑃(𝑌= 1/𝑋1,𝑋2,…  ,𝑋𝑘)

𝑃(𝑌=0/𝑋1,𝑋2,…  ,𝑋𝑘)
= 𝑙𝑛 (

𝜋(𝑥)

1− 𝜋(𝑥)
) =  𝛽0  +  𝛽1𝑋1 +  𝛽2𝑋2  + ⋯ + 𝛽𝑛𝑋𝑘 + 𝜀  

                  ∴   𝑙𝑛 (
𝜋(𝑥)

1− 𝜋(𝑥)
) =  𝛽0  +  𝛽1𝑋1 +  𝛽2𝑋2  + ⋯ +  𝛽𝑛𝑋𝑘 + 𝜀  

                  ∴  𝑙𝑛 (
𝜋(𝑥)

1− 𝜋(𝑥)
) = 𝛽0  +  ∑ 𝛽𝑗𝑋𝑗

𝑘
𝑗=1 + 𝜀                                                                          (2.8) 

Which yields to: 

         𝜋(𝑥) = 𝑃(𝑌 = 1/𝑋1, 𝑋2, …  , 𝑋𝑘) =
𝑒

𝛽0 + ∑ 𝛽𝑗𝑋𝑗+𝜀𝑘
𝑗=1

1+ 𝑒
𝛽0 + ∑ 𝛽𝑗𝑋𝑗+𝜀𝑘

𝑗=1

                                       (2.9) 

The parameter 𝛽𝑗 refers to the effect of 𝑋𝑗 on the log odds that 𝑌 = 1, controlling the other predictor variables. 

For example, 𝑒𝑥𝑝(𝛽𝑗  ) is the multiplicative effect on the odds of a one-unit increase in 𝑋𝑗  , at fixed levels of the 

other predictor variables. 

Thus we have constructed a logistic regression model that bounds the conditional mean between 0 and 1. 

 
 

2.2.4.2. The Parameters estimation 

 

The goal of logistic regression is to estimate the 𝐾 + 1 unknown parameters 𝛽 = (𝛽0,𝛽1, … 𝛽𝑘,) in equation 2.9. 

This is done with maximum likelihood estimation which entails finding the set of parameters for which the 
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probability of the observed data is greatest. The maximum likelihood equation is derived from the binomial 

distribution of the dependent variable.  

For a set of observations in the data (𝑥𝑖  ;  𝑦𝑖), the contribution to the likelihood function is 𝜋(𝑥𝑖), where 𝑦𝑖 = 1, 

and 1 − 𝜋(𝑥𝑖), where 𝑦𝑖 = 0. The following equation results for the contribution (call it 𝜑(𝑥𝑖)) to the likelihood 

function for the observation (𝑥𝑖  ;  𝑦𝑖): 

                                               𝜑(𝑥𝑖) = 𝜋(𝑥𝑖)𝑦𝑖[1 − 𝜋(𝑥𝑖)]1−𝑦𝑖                                                       (2.10) 

The equation 2.10 accounts for only one set of observations. The observations are assumed to be independent of 

each other so we can multiply their likelihood contributions to obtain the complete likelihood function. The 

result is given in 

equation (2.11): 

                         𝑙 (𝛽) =  ∏  𝜑(𝑥𝑖)
𝑘
𝑖=1 = ∏  𝜋(𝑥𝑖)

𝑦𝑖[1 − 𝜋(𝑥𝑖)]1−𝑦𝑖𝑘
𝑖=1                                      

                         ∴         𝑙 (𝛽) = 𝜋(𝑥𝑖)
∑ 𝑦𝑘

𝑖=1 𝑖[1 − 𝜋(𝑥𝑖)]𝑘−∑ 𝑦𝑘
𝑖=1 𝑖           

                         ∴         𝑙 (𝛽) =  𝜋(𝑥𝑖)∑ 𝑦𝑘
𝑖=1 𝑖[1 − 𝜋(𝑥𝑖)]𝑘[1 − 𝜋(𝑥𝑖)]− ∑ 𝑦𝑘

𝑖=1 𝑖          

                          ∴        𝑙 (𝛽) = [
𝜋(𝑥𝑖)

1− 𝜋(𝑥𝑖)
] ∑ 𝑦𝑘

𝑖=1 𝑖 [1 − 𝜋(𝑥𝑖)]𝑘                                                       (2.11) 

Note that the equation (2.8)  and  (2.9) give respectively:  

                   (
𝜋(𝑥𝑖)

1− 𝜋(𝑥𝑖)
) = 𝑒𝛽0 + ∑ 𝛽𝑗𝑋𝑗

𝑘
𝑗=1    and    𝜋(𝑥𝑖) =

𝑒
𝛽0 + ∑ 𝛽𝑗𝑋𝑗

𝑘
𝑗=1

1+ 𝑒
𝛽0 + ∑ 𝛽𝑗𝑋𝑗

𝑘
𝑗=1

 

This leads us to write equation (2.11) as: 

                      𝑙 (𝛽) = (𝑒𝛽0 + ∑ 𝛽𝑗𝑋𝑗
𝑘
𝑗=1 )

∑ 𝑦𝑘
𝑖=1 𝑖

 (1 −
𝑒

𝛽0 + ∑ 𝛽𝑗𝑋𝑗
𝑘
𝑗=1

1+ 𝑒
𝛽0 + ∑ 𝛽𝑗𝑋𝑗

𝑘
𝑗=1

)

k

    

                    ∴  𝑙 (𝛽) = (𝑒𝛽0 ∑ 𝑦𝑘
𝑖=1 𝑖

 + ∑ 𝑦𝑘
𝑖=1 𝑖

∑ 𝛽𝑗𝑋𝑗
𝑘
𝑗=1 ) (

1 + 𝑒
𝛽0 + ∑ 𝛽𝑗𝑋𝑗

𝑘
𝑗=1  

− 𝑒
𝛽0 + ∑ 𝛽𝑗𝑋𝑗

𝑘
𝑗=1

1+ 𝑒
𝛽0 + ∑ 𝛽𝑗𝑋𝑗

𝑘
𝑗=1

)

𝑘

 

                    ∴   𝑙 (𝛽) = (𝑒𝛽0 ∑ 𝑦𝑘
𝑖=1 𝑖

 + ∑ 𝑦𝑘
𝑖=1 𝑖

∑ 𝛽𝑗𝑋𝑗
𝑘
𝑗=1 ) (

1 

1+ 𝑒
𝛽0 + ∑ 𝛽𝑗𝑋𝑗

𝑘
𝑗=1

)

𝑘

 

                   ∴  𝑙 (𝛽) = (𝑒𝛽0 ∑ 𝑦𝑘
𝑖=1 𝑖

 + ∑ 𝑦𝑘
𝑖=1 𝑖

∑ 𝛽𝑗𝑋𝑗
𝑘
𝑗=1 ) (1 + 𝑒𝛽0 + ∑ 𝛽𝑗𝑋𝑗

𝑘
𝑗=1 )

−𝑘

                               (2.12) 

In the equation (2.12), 𝛽  is the collection of parameters 𝛽0,𝛽1, … 𝛽𝑘, and 𝑙 (𝛽) is the likelihood function of 𝛽. 

The Maximum likelihood estimates (MLE's) �̂�0, �̂�1, …  , �̂�𝑘  can be obtained by calculating the 𝛽  which 

maximizes 𝑙 (𝛽). However, to simplify the mathematics, let us take the logarithm of equation (2.12). As shown 

in equation (2.13), 𝐿(𝛽) denotes the log likelihood expression. 

                𝐿(𝛽) = ln(𝑙 (𝛽)) = 𝑙𝑛 [(𝑒𝛽0 ∑ 𝑦𝑘
𝑖=1 𝑖

 + ∑ 𝑦𝑘
𝑖=1 𝑖

∑ 𝛽𝑗𝑋𝑗
𝑘
𝑗=1 ) (1 +  𝑒𝛽0 + ∑ 𝛽𝑗𝑋𝑗

𝑘
𝑗=1 )

−𝑘

]  

 ∴  𝐿(𝛽) = ln(𝑙 (𝛽)) = (𝛽0 ∑ 𝑦𝑘
𝑖=1 𝑖

 +  ∑ 𝑦𝑘
𝑖=1 𝑖

∑ 𝛽𝑗𝑋𝑗
𝑘
𝑗=1 ) − 𝑘 𝑙𝑛 (1 + 𝑒𝛽0 + ∑ 𝛽𝑗𝑋𝑗

𝑘
𝑗=1 )            (2.13) 

The critical points of a function (maxima and minima) occur when the first derivative equals 0. If the second 

derivative evaluated at that point is less than zero, then the critical point is a maximum. Thus, finding the 

maximum likelihood estimates requires computing the first derivative of the log likelihood function 𝐿(𝛽).  

Thus, differentiating equation (2.13) with respect to 𝛽0, we get: 
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                                                                                                              (2.14)     

Also, differentiating equation (2.13) with respect to 𝛽𝑗, we get: 

                      

                           

                           

                                                                             (2.15) 

The maximum likelihood estimates  �̂�0 𝑎𝑛𝑑  �̂�𝑗  for 𝛽0  𝑎𝑛𝑑 𝛽𝑗 can be found by setting each of the equations 

respectively (2.14) and (2.15) equal to zero and solving for each . 

It means, solving 

                 

                                                                                                      

(2.16)

  

 

   and       

                                                                                                                (2.17)     

The solving of these likelihood equations requires special statistical software packages. 

2.3. Sample size and sampling procedure 

 

Gitwe Hospital and the three years 2011, 2012 and 2013 were purposively selected according to the objectives of 

the study.  

The target population of the study includes in total 311 patients from Gitwe Hospital (2011-2013) dispatched in 

the following six different sectors as: 

Table 2. 1: Number of patients by sector 

Sector Ruhango Kabagali Mukingo Kinihira Bweramana Busoro TOTA

L 

Number of patients 18 46 43 35 166 3 311 

Source: Researcher, March 2015. 

The sample size for patients is determined using the Yamane (1967) formula which is:  

                                 𝑛 =  
𝑁

1+𝑁(𝑒)2                                                                                                  (2.18) 

 where N is the population size and e is the precision level. 

Concerning our case study; the total number of patients’ folders (N) is 311.Then, by the equation (2.18), the 

sample size is given as  𝑛 =
311

1+311∗(0.05)2 = 174.9 ≈ 175 
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       Table 2. 2: Calculation of sample size by Sector 

PERCENTAGE  FOR EACH SECTOR SAMPLE SIZE BY SECTOR 

RUHANGO: 
18∗100

311
= 6 % 𝑛𝑅𝑢ℎ𝑎𝑛𝑔𝑜 =

175 ∗ 6

100
= 10.5 ≈ 11 

KABAGALI: 
46∗100

311
= 15% 𝑛𝐾𝑎𝑏𝑎𝑔𝑎𝑙𝑖 =

175 ∗ 15

100
= 26.25 ≈ 26 

MUKINGO: 
43∗100

311
= 14 % 𝑛𝑀𝑢𝑘𝑖𝑛𝑔𝑜 =

175 ∗ 14

100
= 24.5 ≈ 25 

KINIHIRA: 
35∗100

311
= 11 % 𝑛𝐾𝑖𝑛𝑖ℎ𝑖𝑟𝑎 =

175 ∗ 11

100
= 19.25 ≈ 19 

BWERAMANA: 
166∗100

311
= 53 % 𝑛𝐵𝑤𝑒𝑟𝑎𝑚𝑎𝑛𝑎 =

175 ∗ 53

100
= 92.75 ≈ 93 

BUSORO: 
3∗100

311
= 0.9 % 𝑛𝐵𝑢𝑠𝑜𝑟𝑜 =

175 ∗ 0.9

100
= 1.5 ≈ 1 

TOTAL  SAMPLE SIZE n=175 

     Source: Researcher, March 2015 

 

However, systematic random sampling has been used to select the patients’ folders to be included in the sample 

size of each Sector.  

3: RESULTS PRESENTATIONS 

3.1. Chi-square test of association between the dependent and independent variables. 

 

Table 3. 1:Chi-square test results 

Factor p-value Conclusion 

Older age .000 There is statistical evidence between age and the outcome of 

diabetes. 

Gender .899 No statistical evidence between gender and the outcome of 

diabetes. 

Occupation status .001 The outcome of diabetes is statistically associated with the 

occupation status. 

Smoking .679 The outcome of diabetes is not statistically associated with the 

smoking. 

Alcohol consumption .027 The outcome of diabetes is statistically associated with the alcohol 

consumption. 

Cholesterol level .001 There is statistical evidence of the association between the 

outcome of diabetes and the cholesterol level. 

Hypertension .000 The outcome of diabetes is statistically associated with the 

hypertension. 

Family history of diabetes .289 The outcome of diabetes is not statistically associated with the 

family history of diabetes. 

Source: Researcher, March 2015 

The table 3.1 reveals that the risk factors with statistically significance association to the outcome of diabetes are 

older age, Occupation status, alcohol consumption, cholesterol level and Hypertension. 

Other factors like gender, smoking and family history of diabetes have no statistical significance to the outcome 

of the disease. 
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3.2. Multiple logistic regression model fitting. 

3.2.1. The fitted model with all the predictor covariates 

 

Table 3. 2: The Estimated coefficients, their standard error, and Wald test for the full model  

 Parameter B Std.  Wald Sig. 

   Error   

Intercept -47.549 13.853 11.781 .001 

Age of patient 1.142 .259 19.459 .000 

Gender of patient .143 .408 .123 .726 

Occupation Status -1.208 .397 9.252 .002 

Smoking -.640 .678 0.891 .345 

Alcohol consumption .818 .387 4.466 .035 

Cholesterol level .991 .394 6.324 .012 

Hypertension 1.028 .391 6.914 .009 

Family history of diabetes .482 .458 1.106 .293 

Source: Researcher, March 2015 

The table 3.2 displays parameter estimates in the B column, the standard error and the Wald test.  

Thus, using the estimates of the parameters in table 3.2, we get the following model: 

𝜋 =  
(

exp (−47.549+1.142∗𝑎𝑔𝑒+0.143∗𝑔𝑒𝑛− 1.208∗𝑂𝑐𝑐.𝑆𝑡𝑎𝑡𝑢𝑠−0.640∗𝑠𝑚𝑜𝑘 
+ 0.818∗𝐴𝑙𝑐𝑜ℎ.+ 0 .991∗𝐶ℎ𝑜𝑙 + 1.028∗𝐻𝑦𝑝𝑒𝑟 +0.482∗𝐹𝑎𝑚ℎ𝑖𝑠𝑡+𝜀 )

)

1+(
exp (−47.549+1.142∗𝑎𝑔𝑒+0.143∗𝑔𝑒𝑛− 1.208∗𝑂𝑐𝑐.𝑆𝑡𝑎𝑡𝑢𝑠−0.640∗𝑠𝑚𝑜𝑘 

+ 0.818∗𝐴𝑙𝑐𝑜ℎ+ 0 .991∗𝐶ℎ𝑜𝑙 + 1.028∗𝐻𝑦𝑝𝑒𝑟 +0.482∗𝐹𝑎𝑚ℎ𝑖𝑠𝑡 +𝜀)
)

        

                                         (3.1) 

3.2.2. Testing for the significance of the individual parameters in the model. 

 

      To test the hypothesis: 

       H0 : 𝛽𝑗 = 0  (𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝛽𝑗) 

Versus 

       H1 : 𝛽𝑗 ≠ 0  (𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝛽𝑗) 

Consider Wald and Sig. column of the table 3.2. The information given by the table reveals that the significant 

predictors are: Older age (p-value = 0.000 < 0.05), Occupation status (p-value = 0.002 < 0.05), Alcohol 

consumption (p-value=0.035 < 0.05), Cholesterol level (p-value=0.012 < 0.05) and Hypertension (p-value=0.009 

< 0.05). 

On the other hand, the predictors which are not statistically significant are: 

Gender (p-value = 0.726 > 0.05), smoking (p-value = 0.345 > 0.05) and family history of diabetes (p-value = 

0.293 > 0.05). 

 

3.2.3. Signs of coefficients analysis. 

 

The sign of the coefficients of the estimated logistic function in Table 3.2 above gives an explanation of the 

explanatory variables used, as given in Table 3.3. 
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         Table 3. 3: The sign analysis 

Covariate  Codes  Sign  Explanation  

Older age  1 old  

0 young 

Positive  Older age increases the probability of having 

diabetes.  

Gender  1 Male  

0 Female  

Positive  Male increases the probability of having 

diabetes.  

Occupation status  1 Employed  

0 Unemployed  

Negative  To be employed decreases the probability of 

having diabetes.  

Smoking 1 No  

0 Yes  

Negative  Not Smoking decreases the probability of 

having diabetes.  

Alcohol consumption  1 Yes  

0 No  

Positive Consumption of alcohol increases the 

probability of having diabetes.  

Cholesterol level  1 High  

0 Law  

Positive  High cholesterol level increases the 

probability of having diabetes.  

Hypertension 1 Yes  

0 No  

Positive  Being hypertensive increases the probability 

of having diabetes.  

Have a Family History of 

diabetes  

1 Yes  

0 No  

Positive  Having a Family History of diabetes 

increases the probability of getting the 

disease. 

    Source: Researcher, March 2015 

 

3.2.4. The odds ratio results. 

 

The Exp(B) column contains the exponential of parameter estimates. These values represent odds ratios for the 

corresponding predictor variables. In the table 3.4 bellow, the 95% Wald  confidence limit shows the confidence 

interval (CI) for the odds ratio. 

 

Table 3. 4: Odds Ratios and 95% Confidence Intervals for Covariates 

Variable 
Exp(B) 

95% Confidence Interval for Exp(B) 

 
 Lower Bound Upper Bound 

Age of patient  3.133 .192 .530 

Gender  1.154 .519 2.566 

Occupation status  0.299 1.537 7.287 

Smoking 0.527 .140 1.991 

 

Alcohol consumption  2.266 1.061 4.840 

Cholesterol level  2.694 1.244 5.832 

Hypertension 2.796 1.299 6.017 

Have a Family History of 

diabetes  1.619 .660 3.976 

Source: Researcher, March 2015 

 

From Table 3.4 , it is evident that patients of older age, patients who consume alcohol, persons with high 

cholesterol level and hypertensive persons are highly susceptible for diabetes occurrence. 
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3.2.5. The full model assessment 
    

            Table 3. 5: Likelihood ratio test 

 Model Fitting Criteria Likelihood Ratio Tests 

  MODEL   -2 Log Likelihood Chi-Square df Sig. 

Intercept only 

Final 
  

204.670 

144.209 

 

60.461 

 

8 

 

.000 

 

      Source: Researcher, March 2015 

 

The table 3.5 displays the Likelihood Ratio test.  

The -2 log likelihood for the constant only model obtain by fitting the constant only model is 204.670; and the -2 

log likelihood for the overall model was 144.209.  

Thus the value of the likelihood ratio test is;  

                                                 G = 204.670 – 144.209= 60.461 

The null hypothesis is:                                                 

                                       𝐻0 ∶  𝛽1 = 𝛽2  =. . . = 𝛽8  =  0.  
                                               𝐻1: ∃ 𝛽𝑗 ≠ 0, 𝑗 = 1, 2, … ,8  

The results show that at least one of the predictors ' regressions coefficient is not equal to zero because of the 

small p-values =0.000 which is less than 0.05. This would lead us to reject 𝐻0 in favor of 𝐻1 and we conclude 

that at least one and perhaps all beta's coefficient are different from zero. 

 

Table 3. 6: Classification table for the model with all predictor variables. 

  Predicted  

Observed No Yes Percent correct 

No 43 23 65.2% 

Yes 16 93 85.3% 

Overall percentage 33.7% 66.3% 77.7% 

Source: Researcher, March 2015 

 

From table 3.6, we conclude that: 

65.2% of all patients who do not have diabetes are correctly classified and 34.8% are incorrectly classified. 

85.3% from all patients who have diabetes are correctly classified and 14.7% are incorrectly classified. 

The overall correct percentage was 77.7% which reflects the model’s overall explanatory strength. 

 

    Figure 3. 1: Receiver Operating Characteristic (ROC) curve for the full model 

                
                                          Source: Researcher, March 2015 

 

By use of the ROC curve in figure 3.1 for the classification accuracy, it is found that the area under the ROC 

curve, which ranges from 0 to 1 provides the measure of the model’s ability to discriminate between those 

subject who experience the response of interest versus those who do not. The area under the ROC curve for the 

full model is 0.825 which may be considered as reasonable discrimination. 
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Table 3. 7: Hosmer and Lemeshow Test 

Step Chi-square df Sig. 

1 
7.037 8 .533 

Source: Researcher, March 2015 

By Hosmer and Lemeshow test , the table 3.7 gives the output from SPSS 15.0 . 

Our Hosmer-Lemeshow statistic has a significance of 0.533 which means that it is not statistically significant and 

we fail to reject the null hypothesis that there is no difference between observed and model-predicted values, 

implying that the model’s estimates fit the data at an acceptable level. 

3.2.6 .The model with significant parameters only 

 

The following step is the fitting of model with statistically significant parameters only (age, occupation status, 

alcohol consumption, cholesterol level and hypertension). 

Results are summarized in Table 3.8.  

Table 3. 8: Summarized results for the reduced model 

Parameter B Std.  Wald Sig. Exp(B) 

95% Confidence 

Interval for Exp(B) 

   Error    

Lower 

Bound 

Upper 

Bound 
 

Intercept -44.679 9.170 23.742 .000       

Age of patient 1.089 .249 19.217 .000 2.971 .207 .548 

Occupation Status -1.215 .390 9.685 .002 0.297 1.568 7.241 

Alcohol consumption .825 .381 4.682 .030 2.282 1.081 4.818 

Cholesterol level .962 .386 6.223 .013 2.616 1.229 5.570 

Hypertension 1.043 .386 7.318 .007 2.838 1.333 6.041 

Source: Researcher, March 2015 

From Table 3.8,   the reduced model is written as follows: 

 

𝜋 =  
exp (−44.679+1.089∗𝑎𝑔𝑒−1.215∗𝑂𝑐𝑐.𝑆𝑡𝑎𝑡 + 0.825∗𝐴𝑙𝑐𝑜ℎ + 0.962∗𝑐ℎ𝑜𝑙 + 1.043∗𝐻𝑦𝑝𝑒𝑟 ) 

1+exp (−44.679+1.089∗𝑎𝑔𝑒−1.215∗𝑂𝑐𝑐𝑐.𝑆𝑡𝑎𝑡 + 0.825∗𝐴𝑙𝑐𝑜ℎ + 0.962∗𝑐ℎ𝑜𝑙.+ 1.043∗𝐻𝑦𝑝𝑒𝑟  ) 
              (3.2) 

 

The results above indicates that: patients with older age are more susceptible to develop  diabetes; An employed 

person is less susceptible to develop diabetes; consuming alcohol increases the susceptibility; persons with high 

cholesterol level are more susceptible than those with low cholesterol level and hypertensive patients are more 

likely to develop diabetes than those who are not hypertensive. 

The exponent (Exp (B)) in Table 3.8 is the odds ratio. Thus, for example:  

-The odds for patients who consume alcohol to those patients who do not take it to develop diabetes is 2.282. 

-The odds for patients with high cholesterol level to patients with low cholesterol level to develop the illness is 

2.616.  

-The odds for hypertensive person to that one who is not hypertensive to develop diabetes is 2.838.  
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Table 3. 9: Classification table for the reduced model  

 Predicted 

  The Patient is  diabetic 

Percentage 

Correct 

Observed No Yes No 

The Patient is  

diabetic 

No 
41 15 62.1% 

  Yes 11 98 89.9% 

Overall Percentage 29.7%  64.6%  79.4% 

Source: Researcher, March 2015 

Table 3.9 gives the classification table. The information from the same table is that observations are classified as 

follows: 

 

 62.1% of all patients who do not have diabetes are correctly classified, and 37.9% are incorrectly 

classified.  

 89.9% from all patients who have diabetes are correctly classified, 10.1% are incorrectly classified.  

 The overall correct percentage was 79.4%, which reflects the model's overall explanatory strength.  

Plotting sensitivity versus (1–specificity) over all possible cut-points is shown in the Figure 3.2 below .The area 

under the ROC curve for the full model is 0.843 this is considered reasonable discrimination. 

Figure 3. 2:Receiver Operating Characteristic (ROC) curve for the reduced model 

                    
                             Source: Researcher, March 2015 

 

Comparing the two models (model with all predictor covariates and the reduced model), area under the ROC 

curve has become a particularly important measure for evaluating models’ performance because it is the average 

sensitivity over all possible specificities. The larger the area, the better the model performs. (Bradley,1997). 

We conclude that the reduced model (which has the area under the ROC curve of 0.843 and its overall 

explanatory strength is 79.4%) fits better the data than the model with all predictor variables (which has the area 

under the ROC curve of 0.825 and its overall explanatory strength is 77.7%). 

4. CONCLUSION AND RECOMMENDATIONS 

 

Based on the findings from this study, the following recommendations were formulated in order to give our 

contribution in fighting the most disabling disease like diabetes in people:  

-The people of rural areas would be aware of the diabetes and know that it is no longer a disease for rich persons 

or for elders but it has been common for all social classes and of all ages. 

- Continue the good habit of doing physical activities that many researchers have shown that the risk of diabetes 

and associated insulin resistance can be reduced significantly by trying to lose weight, especially for those who 

are severely obese (BMI > 35 kg/m
2
). 

Physical exercises remain important in controlling of the fats in the body and in the controlling of blood 

cholesterol, diabetes type 2, and cardiovascular disease which are the most dangerous consequences of obesity 

on health. 
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- The nutrition should also play a vital positive role on health. By eating sufficient fruits and vegetables, one gets 

access to several health benefits, due to an assumed complex interaction of containing biological active 

compounds.  

The consumption of vegetables is likely to be a particular value due to their fibre content, low energy density and 

relative positive effect on blood sugar. 

- To go to healthcare centers regular tests for the occurrence of diabetes in the body. 

- To cease bad habits like smoking and alcohol consumption. 

- The data used for the study are secondary data from Gitwe Hospital in RUHANGO district, southern province. 

We therefore recommend that researchers who will want to do their research   should find primary data from 

patients, because of the disadvantages associated with secondary data.  

More follow up studies should be done to assess the benefits of different treatment modalities on control of 

cardiovascular risk factors such as blood pressure and lipids in diabetes patients to prevent serious complications 

in Rwanda. Especially, assessing the effect of the interventions based on healthy lifestyle such as increased 

physical activity, smoking cessation, weight loss and a healthy dietary pattern, and the rural area should be 

focused on. 
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