
Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

176 

 

Modified  Artificial  Neural  Networks  For  Solving  Fuzzy 

Differential  Equations 

  𝐸𝑚𝑎𝑛 𝐴. 𝐻𝑢𝑠𝑠𝑖𝑎𝑛1     𝑀𝑎𝑧𝑖𝑛 𝐻. 𝑆𝑢ℎℎ𝑖𝑒𝑚2∗   

                1. Dep. of Mathematics, College of Sciences, AL-Mustansiriyah University, Baghdad,Iraq. 

2. Dep. of statistics, College of Adm. and Econ., University of sumar, Alrefiey,Iraq.               

Abstract 

In this paper, we introduce a novel approach based on modified  neural networks  to solve fuzzy differential 

equations. Using modified  neural network makes that training points should be selected over an open interval  

without training the network in the range of first and end points. Therefore, the calculating volume involving 

computational error is reduced. In fact, the training points depending on the distance selected for training neural 

network are converted to similar points in the open interval  by using a new approach, then the network is trained 

in these similar areas. In comparison with existing similar neural networks proposed model provides solutions 

with high accuracy. The proposed method is illustrated by three numerical examples.  

Keywords: Fuzzy  differential  equation, Modified  neural  network, 

Feed-forward  neural  network, BFGS Teqnique, Hyperbolic tangent   function. 

 

1.Introduction 

 Nowadays, Fuzzy differential equations is a popular topic studied by many researchers since it is utilized widely 

for the purpose of modeling problems in science and engineering. Most of the practical problems require the 

solution of a fuzzy differential equation (FDE) which satisfies fuzzy initial conditions(FIC) or fuzzy boundary 

conditions(FBC). 

The theory of the fuzzy differential equations was first formulated by Kaleva(1987) and Seikkala(1987). Kaleva 

had formulated FDEs in terms of Hukuhara derivative (H-derivative). Buckley and feuring (2000) have given a 

very general formulation of a first-order fuzzy initial value problem. They first find crisp solution, make it fuzzy  

then check if it satisfies the FDE . 

In the following, we have mentioned some Numerical solutions which have proposed by other scientists. 

Abbasbandy and Allahviranloo have solved fuzzy differential equations by Runge-Kutta and Taylor methods 

(Abbasbandy & Allahviranloo 2002). Also, Allahviranloo and Ahmady solved fuzzy differential equations by 

using predictor-corrector and transformation methods (Allahviranloo,Ahmady  &  Ahmady 2007 , 

Allahviranloo,Ahmady  &  Ahmady 2008). Ghazanfari and Shakerami developed Runge-Kutta like formula of 

order 4 for solving fuzzy differential equations(Ghazanfari &   Shakerami 2011), and other researchers (Ahmadi 

& Kiani 2011  , Corveleyn & Vandewalle 2011, Duraisamy & Usha 2010, Guo,Shang&Lu 2013, 

Jayakumar,Maheskumar& Kanagarajan 2012, Orouji,Parandin,Abasabadi & Hosseinpour 2014, 

Parimala,Rajarajeswari  & Nirmala2014,Rostami,Kianpour & Bashardoust 2011, Saikia 2011, Tapaswini   & 

Chakraverty 2014, Tapaswini & Chakraverty 2014). Effati and pakdaman (2010) used artificial neural network 

for solving fuzzy differential equations, they used for the first time the usual artificial neural network (UANN) to 

approximate fuzzy initial value problems. Mosleh and Otadi (2012) used UANN for solving fuzzy Fredholm  

integro-differential equations. Ezadi, parandin and Ghomashi (2013) used UANN based on semi-Taylor to solve  

first order FDEs.  

In this paper, we will use modified artificial neural network (MANN) method to find an approximated solution 

of FDEs. This method can result in improved numerical methods for solving fuzzy initial/boundary conditions. 

We will illustrate this method by solving three  examples. 

2. Artificial Neural Network 

    An Artificial neural network (ANN) is a simplified mathematical model of the human brain, it can be 

implemented by both electric elements and computer software. It is a parallel distributed processor with large 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

177 

 

numbers of connections, it is an information processing system that has certain performance characters in 

common with biological neural networks. ANN have been developed as generalizations of mathematical models 

of human cognition or neural biology, based on the assumptions:  

1. lnformation processing occurs at many simple elements called neurons that is fundamental the operation of 

ANN's. 

2. Signals are passed between neurons over connection links.  

3. Each connection link has an associated weight which, in a typical neural net, multiplies the signal transmitted.  

4. Each neuron applies an activation function (usually nonlinear) to its net input (sum of weighted input signals) 

to determine its output signal. 

There are two main connection formulas (types):feedback(recurrent) and feed-forward connections.Feedback is 

one type of connection where the output of one layer routes back to the input of a previous layer , or to the same 

layer.Feed-forward neural network(FFNN) does not have a connection back from the output to the input 

neurons(Fig.1).There are many different training algorithms, but the most often used training algorithm is the 

back propagation(BP)rule.ANN is trained to map a set of input data by iterative adjusment of the 

weights.Information from inputs is feedforward through the network to optimize the wieghts between neurons. 

Optimization of the wieghts is  made by backward propagation of the error during training phase.The ANN reads 

the input and output values in the training data set and changes the value of the wieghted links to reduce the 

difference between the predicted and target(observed)values.The error in prediction is minimized across many 

training cycles(iteration or epoch) until network reaches specified level of accuracy.A complete round of forward 

backward passes and wieght adjusments using all input output pairs in the data set is called an epoch or iteration. 

In order to perform a supervised training we need a way of evaluating the ANN output error between the actual 

and the expected outputs .A popular  measure is the mean squared error (MSE) or root mean squared 

error(RMSE) (Tawfiq 2004, Tawfiq  & Al-Abrahemee 2014).In this paper we will use BFGS Quasi-Newton to 

update the weights and biases(Ezadi,Parandin  & Ghomashi 2013). 

3. Illustration of The Method  

 3.1. First Order Fuzzy Differential Equation  

    A fuzzy differential equation of the first order is in the form: 

yˊ(x) = f (x , y (x))   , with   x ∈ [a , b]                                                          (1) 

and the fuzzy initial condition y(a) = y0 , where y is a fuzzy function of x , f (x , y (x)) is a fuzzy function of the 

crisp variable x and the fuzzy variable y , yˊ is the fuzzy derivative of y and y0 is a fuzzy number. It is clear that 

the fuzzy function f (x , y) is the mapping f  : R × E1 ⟶ E1. 

Now it is possible to replace (1) by the following equivalent system(Effati & Pakdaman 2010): 

    yˊ(x) = f (x , y)  =  F (x , y, y)  , y(a) =  y0                                                                                                        

    yˊ(x) = f (x , y)  =  G (x , y, y)  , y(a) =  y
0
                                                 (2) 

    F (x , y, y) = Min {f (x , u) ∶ u ∈  [y, y]}                                                                                               

    G (x , y, y) = Max {f (x , u) ∶ u ∈  [y, y]}                                                   (3) 

The parametric form of system (2) is given by:  

    yˊ(x , r) = F [x , y(x , r), y(x , r)]  , y(a , r) =  y0(r)                                                                                                          

    yˊ(x , r) = G [x , y(x , r), y(x , r)]  , y(a , r) =  y
0
(r)                                  (4) 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

178 

 

Where x ∈ [a , b] and r ∈ [0 ,1]. Now with a discretization of the interval [a , b] , a set of points xi , i =
1,2,3, … g  are obtained. Thus for an arbitrary  xi ∈ [a , b], the system (4) can be rewritten as: 

       yˊ(xi , r) - F [xi , y(xi , r), y(xi , r)] = 0                                                                                                     

       yˊ(xi , r) - G [xi , y(xi , r), y(xi , r)] = 0                                                   (5) 

With the initial conditions: 

    y(a ,r) =  y0(r) , y(a ,r) =  y
0
(r)  , r ∈ [0 ,1]. 

In this subsection (and then in this paper), the function approximation capabilities of feed-forward neural 

networks is used by expressing the trial solutions for the system (4) as the sum of two terms (see eq. 7). The first 

term satisfies the initial conditions (boundary conditions) and contains no adjustable parameters. The second 

term involves a feed-forward neural network to be trained so as to satisfy the differential equations. Since it is 

known that a multilayer perceptron with one hidden layer can approximate any function to arbitrary accuracy[9], 

the multilayer perceptron is used as the type of the network architecture. 

If y
t
(x , r, p) is a trial solution for the first equation in system (4) and y

t
(x , r, p) is a trial solution for the second 

equation in system (4) where p and p are adjustable parameters.  

Indeed, y
t
(x , r, p) and y

t
(x , r, p) are approximation of y(x ,r) and y(x ,r) respectively, then a discretized version 

of the system (4) can be converted to the following optimization problem (Effati & Pakdaman 

2010,Ezadi,Parandin& Ghomashi 2013, Mosleh & Otadi 2012): 

min
p⃗ 

∑ (
(yˊt(xi , r, p) − F [xi , yt(xi ,r, p) , y

t
(xi , r , p)])

2

 

+ (yˊt(xi , r, p) -G [xi ,y
t
 (xi ,r, p) ,y

t
(xi , r , p)])

2)
g
i=1                   (6) 

(Here p⃗ = (p, p)contains all  adjustable parameters) subject to the initial conditions: y
t
(a , r, p) = y0(r)  ,  

y
t
(a , r, p) = y

0
(r).  

Each trial solution y
t
(x , r, p) and y

t
(x , r, p) employs one feed-forward neural network (see Fig.1) for which the 

corresponding networks are denoted by  N(x , r, p) and N(x , r, p) with adjustable parameters p and p 

respectively. The trial solutions y
t
 and y

t
 should satisfy the initial conditions, and the networks must be trained 

to satisfy the  differential equations. Thus y
t
 and y

t
 can be chosen as follows: 

    y
t
(x , r, p) = y(a , r) + (x - a) N(x , r, p) 

    y
t
(x , r, p) = y(a , r) + (x - a) N(x , r, p)                                                    (7) 

Where N(x , r, p) and N(x , r, p) are single-output feed-forward neural network with adjustable parameters p and 

p respectively. Here x and r are the network inputs (Fig.1). It is easy to see that in (7), y
t
 and y

t
 satisfy the 

initial conditions. Thus the error function that must be minimized over all adjustable neural network parameters 

will be: 

    E = ∑ (
[
𝜕 y

t
(xi , r, p)

𝜕x
− F (xi , yt(xi , r, p))]

2

+ 

[
𝜕 yt(xi , r, p)

𝜕x
− G(xi , yt

(xi , r, p))]
2

)i                                        (8) 

Where xi ś are points in [a , b] . 

3.2. Second Order Fuzzy Differential Equation  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

179 

 

    Now, we consider the second order fuzzy differential equation: 

    y´́(x) = f (x , y(x) , y´(x) )  ,   x ∈ [a , b]                                                 (9) 

  with the fuzzy conditions: y(a) = A1 , y´(a) = A2 , such that the functions:   y : R ⟶ E1   and    f : R × E1 × E1 

⟶ E1 

where y is a function with fuzzy derivative y ,́ also A1 and A2 are fuzzy numbers in E1 with r-level sets: [A1]r = 

[A1 , A1] and [A2]r = [A2 , A2]. 

The same procedure in the subsection (3.1) can be applied on  (9) , thus the trial  solutions  yt and y
t
 can be 

chosen as follows: 

yt (x , r, p) = A1 + A2 (x - a) + (x - a)2 N(x , r, p)                                                                                                      

y
t
 (x , r, p) = A1 + A2 (x - a) + (x - a)2 N(x , r, p)                                       (10) 

For the two point fuzzy boundary conditions: 

y(a) = A and y(b) = B , where A and B are fuzzy numbers in E1 with       r-level sets:       [A]r = [A , A] and [B]r 

= [B , B] . 

The trial solutions yt and y
t
 can be chosen as follows: 

    yt (x , r, p) = A  
b - x

b - a
  + B  

x - a

b - a
  + (x - a) (x - b) N(x , r, p)                                                                                                 

    y
t
 (x , r, p) = A  

b - x

b - a
  + B  

x - a

b - a
  + (x - a) (x - b) N(x , r, p)                     (11) 

In the above two cases of the second-order fuzzy differential equation, the corresponding error function that must 

be minimized over all adjustable neural network parameters (weights and biases) will be: 

E = ∑ (
[
𝜕2 y

t
(xi , r, p)

𝜕x2 − F(xi , yt(xi , r, p) ,
𝜕 y

t
(xi , r, p)

𝜕x
)]

2

+ 

[
𝜕2 yt(xi , r,p)

𝜕x2 − G(xi , yt
(xi , r, p) ,

𝜕 yt(xi , r, p)

𝜕x
)]

2
)    i                 (12) 

Where xi ś are points in [a , b] . 

● For the higher (third and more) order fuzzy differential equation we apply the same procedure in the 

subsections (3.1) and (3.2) to find the trial solutions yt and y
t
 and the error function E that must be minimized. 

For solving fuzzy differential equations which described in the subsections (3.1) and (3.2), we will use two  

artificial neural networks, each network is of dimension 2 × m × 1: two input units x and r, one hidden layer with 

m units and one linear output unit. 

For every entries x and r the input neurons makes no changes in its input, so the inputs to the hidden neurons are: 

    net𝑗 = x w𝑗1 + w𝑗2 r + b𝑗 , net𝑗 = x w𝑗1 + w𝑗2 r +  b𝑗 ,j=1,2,…,m        (13)                                                                                                                                                                                                                                                               

 w𝑗1 and  w𝑗2 are the weight parameters from the input layer to the 𝑗th unit in the hidden layer in the first 

network in the Fig. (1) , w𝑗1 and  w𝑗2 are the weight parameters from the input layer to the 𝑗th unit in the hidden 

layer in the second network in the Fig. (1) , b𝑗 and b𝑗 are the 𝑗th weight biases for the 𝑗th units in the hidden 

layers in the first and second network in Fig (1) respectively. The outputs in the hidden neurons are: 

    z𝑗 = s (net𝑗) = s (x w𝑗1 + r w𝑗2 + b𝑗)                                                                                                   

    z𝑗 =  s (net𝑗) = s (x w𝑗1 + r w𝑗2 + b𝑗)                                                                   (14) 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

180 

 

The output neurons makes no changes in its inputs, so the inputs to the output neurons are equal to outputs: 

    N(x , r, p) = ∑ v𝑗  z𝑗
m
𝑗=1  = ∑ v𝑗  s (x w𝑗1 + r w𝑗2+ b𝑗  )

m
𝑗=1                                                                                                   

    N(x , r, p) =  ∑ v𝑗 z𝑗
m
𝑗=1  = ∑ v𝑗  s (x w𝑗1  + r w𝑗2 + b𝑗)

m
i=1                                    (15) 

Where v𝑗 and v𝑗 are the weight parameters from the 𝑗th units in the hidden layers to the output layer in first and 

second network in Fig. (1). 

3.3. Fuzzy Partial Differential Equation   

    We treat here two-dimensional problems only. However, it is straightforward to extend the method to more 

dimensions. For example, consider the two-dimensional fuzzy Poisson equation: 

    
𝜕2 U

𝜕 x2   + 
𝜕2 U

𝜕 y2  = f (x , y) , x , y ∈ [a , b]                                                                      (16) 

With the Dirichlet fuzzy boundary conditions (for  x , y ∈ [0,1]): 

  U(0, y) = f0( y) , U(1, y) = f1( y) , U(x , 0) = g0(x) and U(x , 1) = g1(x). 

Where: f (x , y) , f0( y) , f1( y) , g0(x) and g1(x) are fuzzy numbers or fuzzy functions with r-level sets 

(parametric form) : 

     [f0( y)]r = [f0( y) , f0( y)] , [f1( y)]r = [f1( y) , f1( y)] 

    [g0(x)]r = [g0(x) , g
0
(x)] , [g1(x)]r = [g1(x) , g

1
(x)] 

In this subsection , we apply the same procedure in the subsections (3.1) and (3.2) to find the trial  solutions Ut 

and Ut and the error functions. Thus the trial solutions can be chosen as follows: 

    Ut(x , y, r, p) = A(x , y) +  x  y (1 − x) (1 − y) N(x , y, r, p )                                                                                                  

    Ut(x , y, r, p) = A(x , y) +  x  y (1 −  x) (1 −  y) N(x , y, r, p)                             (17) 

Where A(x , y) and A(x , y) are chosen so as to satisfy the boundary conditions, namely:  

A(x , y) = (1 - x) f0(y) + x f1( y) + (1 -  y) 

[g0(x) − [(1 − x) g0(0) + x g0(1)]]+ y [g1(x) − [(1 − x) g1(0) + x g1(1)]] 

A(x , y) = (1 - x) f0(y) + x f1( y) + (1 -  y) 

[g
0
(x) − [(1 − x) g

0
(0) + x g

0
(1)]]+ y [g

1
(x) − [(1 − x) g

1
(0) + x g

1
(1)]]        (18)                                       

The corresponding error function that must be minimized over all adjustable neural network parameters will be: 

E = ∑

(

 
[
𝜕2 Ut(xi , yi, r, p)

𝜕x2 +
𝜕2 Ut(xi , yi, r, p)

𝜕y2 − F(xi , yi
)]

2

+ 

[
𝜕2Ut(xi , yi, r, p)

𝜕x2 +
𝜕2Ut(xi , yi, r, p)

𝜕y2 − G(xi , yi
)]

2

)

       i                (19) 

Where (xi , yi
) are points in the domain [0 ,1] × [0 ,1].  

For solving fuzzy partial differential equations which described in this subsection, we will use two  artificial 

neural network, each network is of dimension 3 × m × 1: three input units, one hidden layer with m units and 

one linear output unit. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

181 

 

For every entries x , y and r the input neurons makes no changes in its inputs, so the inputs to the hidden neurons 

are: 

    net𝑗 = x w𝑗1 + y w𝑗2 + r w𝑗3 + b𝑗                                                                                               

  net𝑗  = x w𝑗1 + y w𝑗2 + r w𝑗3 + b𝑗                                                               (20)                                                          

Where 𝑗 = 1,2, … …… m , w𝑗1 , w𝑗2 and w𝑗3 are the weight parameters from the input layer to the 𝑗th unit in the 

hidden layer in the first network in the Fig. (2) , w𝑗1, w𝑗2 and w𝑗3 are the weight parameters from the input layer 

to the 𝑗th unit in the hidden layer in the second network in the Fig. (2) , b𝑗 and b𝑗 are the 𝑗th weight biases for the 

𝑗th units in the hidden layers in the first and second network in Fig (2) respectively. The outputs in the hidden 

neurons are: 

    z𝑗 = s (net𝑗) = s (x w𝑗1 + y w𝑗2 + r w𝑗3 + b𝑗)                                                                                                 

    z𝑗 =  s (net𝑗) = s (x w𝑗1 + y w𝑗2 + r w𝑗3 + b𝑗)                                       (21) 

The output neurons makes no changes in its inputs, so the inputs to the output neurons are equal to outputs: 

    N(x , y, r, p) = ∑ v𝑗  z𝑗
m
𝑗=1  = ∑ v𝑗  s (x w𝑗1+ y w𝑗2+ r w𝑗3+ b𝑗)

m
𝑗=1                                                                                                     

    N(x , y, r, p) =  ∑ v𝑗  z𝑗
m
𝑗=1  = ∑ v𝑗  s (x w𝑗1 + y w𝑗2+ r w𝑗3 + b𝑗)

m
𝑗=1     (22) 

Where v𝑗 and v𝑗 are the weight parameters from the 𝑗th unit in the hidden layer to the output layer in the first and 

second network in Fig.(2)     

𝟒. Proposed  Method  

    In this section we will introduce a novel method to modify the artificial neural network ANN . This new 

method based on replaced every x in the input vector (training set) x⃗  = (x1 , x2 , … … , xn) , x𝑗 ∈ [a, b] by a 

polynomial of degree one.  Ezadi and parandin(2013) used the function:                                      Q(x) = 𝜖 (x + 1)  

with  𝜖 ∈ (0,1)                                         

Then the input vector will be: (Q(x1) , Q(x2) , ……  Q(xn)), Q(x𝑗) ∈ (a , b) In this paper, we named this 

proposed method modified artificial neural network (MANN). Using modified artificial neural network makes 

that training points should be selected over the open interval (a , b) without training the neural network in the 

range of first and end points. Therefore, the calculating volume involving computational error is reduced. In fact, 

the training points depending on the distance [a , b] selected for training neural network are converted to similar 

points in the open interval (a , b) by using a new approach, then the network is trained in these similar areas. 

5. Numerical Examples  

    In this section we report on the solution of a number of model problems. In all cases we used a multilayer 

perceptron having one hidden layer with ten hidden units and one linear output unit. The activation function of 

each hidden unit is hyperbolic tangent  function   s(x) = 
ex − e−x

ex + e−x . For each test problem, the exact analytical 

solutions        ya (x , r) and   y
a
 (x , r) were known in advance. Therefore, we test the accuracy of the obtained 

solutions by computing the deviation: 

e (x , r) = |y
a
 (x , r) − y

t
 (x , r)| , e (x , r)= |ya (x , r) − yt (x , r)|        (23) 

Example (1): Consider the following fuzzy initial value problem: 

   y  ́= - y + x + 1 , with x ∈ [0 , 1]  

y(0) = [0.96 +  0.04r , 1.01 –  0.01r] , where r ∈ [0 , 1]. 

The analytical solutions for this problem are: 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

182 

 

    ya (x , r) = x + (0.96 + 0.04r) e−x,   y
a
 (x , r) = x + (1.01 + 0.01r) e−x                                                                                                      

By using (7), the trial solutions for this problem are:  

 yt (x , r) =  (0.96 + 0.04r) + x N(x , r, p) , y
t
 (x , r) =  (1.01 + 0.01r) + x N(x , r, p).                                                                                                   

The ANN trained using a grid of ten equidistant points in [0 , 1]. The error function that must be minimized for 

this problem is in the form:                                                                                                                                                                                                                              

E= ∑

(

 
 
 

[
xi ∑ v𝑗  w𝑗1s´

10
𝑗=1 (xi w𝑗1 + r w𝑗2 + b𝑗)+ (1 + xi)

∑ v𝑗  s
10
𝑗=1 (xi w𝑗1 + r w𝑗2 + b𝑗)– xi + 0.04r – 0.04

]

2

+ [
xi ∑ v𝑗 w𝑗1s´

10
𝑗=1 (xi w𝑗1 + r w𝑗2 + b𝑗) + (1 + xi) 

∑ v𝑗 s
10
𝑗=1 (xi w𝑗1 + r w𝑗2 + b𝑗)– xi – 0.01r + 0.01

]

2

)

 
 
 

11
i=1       (24)                                                                                                 

Then one can use (24) to update the weights and biases with respect to usual artificial neural network (UANN). 

● For modified artificial neural network (MANN), we can get: 

E= ∑

(

 
 
 

[
xi ∑ v𝑗  w𝑗1s´

10
𝑗=1 (Q(xi) w𝑗1 + r w𝑗2 + b𝑗)+ (1 + xi)

∑ v𝑗  s
10
𝑗=1 (Q(xi) w𝑗1 + r w𝑗2 + b𝑗)– xi + 0.04r – 0.04

]

2

+ [
xi ∑ v𝑗 w𝑗1s´

10
𝑗=1 (Q(xi) w𝑗1 + r w𝑗2 + b𝑗) + (1 + xi) 

∑ v𝑗 s
10
𝑗=1 (Q(xi) w𝑗1 + r w𝑗2 + b𝑗)– xi – 0.01r + 0.01

]

2

)

 
 
 

  11
i=1 (25)                                                                                                 

Then we use (25) to update the weights and biases with respect to modified artificial neural network. Note that 

for this eqample, Since x ∈ [0 , 1] then Q(x) ∈ (0 , 1) and since Q(x) = ϵ (x + 1) with 𝜖 ∈ (0 , 1), then we must 

choose  𝜖 < 0.5. For 𝜖 = 0.3, the training set will be: 

       x : 0     0.1    0.2    0.3     0.4    0.5    0.6    0.7     0.8    0.9    1 

 Q(x): 0.3  0.33  0.36  0.39  0.42  0.45  0.48  0.51  0.54  0.57  0.60 

Analytical and trial  solutions for this problem can be found in table (1) and Fig. (3). 

Example (2) : Consider the non-linear problem: 

    y´´ (x) = - (y´(x))
2
 . with  x ∈ [0 , 2] 

       y(0) = [ r , 2 − r ] , y(2) = [1 + r , 3 − r] and  r ∈ [0 , 1].The analytical solutions for this problem are:  

    ya (x , r) = ln (x + 
2 

e−1
) + r − ln  

2 

e−1
  

    y
a
(x , r) = ln (x + 

2 

e−1
) + 2 − r  − ln  

2 

e−1
 .  

The trial solutions are: 

    yt (x , r) = r 
2−x 

2
  + (1 + r)  

x

2
 + x (x − 2 ) N(x , r, p) 

    y
t
(x , r) = (2 −  r) 

2−x 

2
 + (3 − r ) 

x

2
 + x (x − 2 ) N(x , r, p). 

The ANN trained using a grid of ten equidistant points in [0,2].The error function that must be minimized is in 

the form: E = E1 + E2 ,          where:                                                    

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

183 

 

E1= ∑

[
 
 
 
 
 
 
 

(xi
2 − 2xi)∑ v𝑗   w𝑗1

2 s´´10
𝑗=1 (Q(xi) w𝑗1 + r w𝑗2 + b𝑗) 

+(2xi − 2) ∑ v𝑗w𝑗1 s´
10
𝑗=1 (Q(xi) w𝑗1 + r w𝑗2 + b𝑗)+ 

2 ∑ v𝑗  s
10
𝑗=1 (Q(xi) w𝑗1 + r w𝑗2 + b𝑗) +

(
0.5 + (xi

2 − 2xi) ∑ v𝑗w𝑗1 s´
10
𝑗=1 (Q(xi) w𝑗1 + r w𝑗2 + b𝑗)

+(2xi − 2) ∑ v𝑗  s
10
𝑗=1 (Q(xi) w𝑗1 + r w𝑗2 + b𝑗)

)

2

 
 ]

 
 
 
 
 
 
 
2

11
i=1                                                                                  

E2= ∑

[
 
 
 
 
 
 
 
 (xi

2 − 2xi) ∑ v𝑗  w𝑗1
2
s´´10

𝑗=1 (Q(xi) w𝑗1 + r w𝑗2 + b𝑗)+ 

(2xi − 2)∑ v𝑗w𝑗1 s´
10
𝑗=1 (Q(xi) w𝑗1 + r w𝑗2 + b𝑗)+ 

2 ∑ v𝑗  s
10
𝑗=1 (Q(xi) w𝑗1 + r w𝑗2 + b𝑗)

(
0.5 + (xi

2 − 2xi) ∑ v𝑗w𝑗1 s´
10
𝑗=1 (Q(xi) w𝑗1 + r w𝑗2 + b𝑗)

+(2xi − 2) ∑ v𝑗  s
10
𝑗=1 (Q(xi) w𝑗1 + r w𝑗2 + b𝑗)

)

2

 
 ]

 
 
 
 
 
 
 
 
2

11
i=1                                                                                                 

For 𝜖 = 0.6,analytical and trial  solution for this problem can be found in table (2) and Fig.(4). 

Example (3) : Consider the fuzzy Poisson equation:  

∂2 Ũ

∂ x2   (x , y) + 
∂2 Ũ

∂ y2   (x , y) = K̃ x ey , with x , y ∈ [0,1]  

Where K̃ [r] = [K (r), K (r)] = [0.75 + 0.25r , 1.25 - 0.25r] , with the fuzzy boundary conditions: 

Ũ (0, y) = 0 , Ũ (1, y) = K̃ ey , Ũ (x , 0) = K̃ x  and   Ũ (x , 1) = e K̃ x.  

The analytical solutions for this problem are: 

U𝑎 (x , y , r) = (0.75 + 0.25r) x ey , U𝑎 (x , y , r) = (1.25 − 0.25r) x ey. 

The trial solutions are : 

Ut (x , y, r, p) = (0.75 + 0.25r) x ey + x y (1 − x) (1 − y) N(x , y, r, p) 

Ut (x , y, r, p) = (1.25 − 0.25r) x ey + x y (1 − x) (1 − y) N(x , y, r, p). 

 The error function that must be minimized is : E = E1 + E2 ,where:   

                                                                       

E1=∑

[
 
 
 
 
 
 
 
 
 
 
(yi − yi

2) (

(xi − xi
2) ∑ v𝑗  w𝑗1

2 s´´10
𝑗=1 (Q(xi) w𝑗1+ Q(yi) w𝑗2+ r w𝑗3+ b𝑗)

+(2 − 4xi) ∑ v𝑗w𝑗1 s´
10
𝑗=1 (Q(xi) w𝑗1+ Q(yi) w𝑗2+ r w𝑗3+ b𝑗)

− 2∑ v𝑗  s
10
𝑗=1 (Q(xi) w𝑗1+ Q(yi) w𝑗2+ r w𝑗3+ b𝑗)

) 

 
 + 

(xi − xi
2) (

(yi − yi
2) ∑ v𝑗  w𝑗1

2 s´´10
𝑗=1 (Q(xi) w𝑗1+ Q(yi) w𝑗2+ r w𝑗3+ b𝑗)

+(2 − 4yi)∑ v𝑗w𝑗2 s´
10
𝑗=1 (Q(xi) w𝑗1+ Q(yi) w𝑗2+ r w𝑗3+ b𝑗)

− 2∑ v𝑗 s
10
𝑗=1 (Q(xi) w𝑗1+ Q(yi) w𝑗2+ r w𝑗3+ b𝑗)

)

.
 ]

 
 
 
 
 
 
 
 
 
 
2

11
i=1    

     

   𝐸2=                                                                                        

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

184 

 

∑

[
 
 
 
 
 
 
 
 
 
 
 
(yi − yi

2)(

(xi − xi
2) ∑ v𝑗  w𝑗1

2
 s´´10

𝑗=1 (Q(xi) w𝑗1+ Q(yi) w𝑗2+ r w𝑗3+ b𝑗)

+(2 − 4xi)∑ v𝑗  w𝑗1 s´
10
𝑗=1 (Q(xi) w𝑗1+ Q(yi) w𝑗2+ r w𝑗3+ b𝑗)

− 2∑ v𝑗 s
10
𝑗=1 (Q(xi) w𝑗1+ Q(yi) w𝑗2+ r w𝑗3+ b𝑗)

) 

 
 + 

(xi − xi
2) (

(yi − yi
2) ∑ v𝑗  w𝑗1

2
 s´´10

𝑗=1 (Q(xi) w𝑗1+ Q(yi) w𝑗2+ r w𝑗3+ b𝑗)

+(2 − 4yi) ∑ v𝑗  w𝑗2 s´
10
𝑗=1 (Q(xi) w𝑗1+ Q(yi) w𝑗2+ r w𝑗3+ b𝑗)

− 2∑ v𝑗  s
10
𝑗=1 (Q(xi) w𝑗1+ Q(yi) w𝑗2+ r w𝑗3+ b𝑗)

)

.
 ]

 
 
 
 
 
 
 
 
 
 
 
2

11
i=1                                                                                                         

For 𝜖 = 0.2, analytical and trial solutions for this problem can be found in table (3), Fig. (5) and Fig. (6).  

𝟔. Conclusion  

    In this paper, we presented a hybrid approach based on modified artificial neural networks for solving fuzzy 

differential equations. We demonstrate, for the first time, the ability of modified artificial neural networks to 

approximate the solutions of FDEs . From the numerical examples in this work , it is clear that the modified 

artificial neural network gives best results and better accuracy in comparison with usual artificial neural network 

. We can conclude that the method we propused can handle effectively all types of the fuzzy differential 

equations and provide   accurate approximate solution throughout the whole domain and not only at the training 

set. Therefore, one can use the interpolation techniques (such as curve fitting method) to find the approximate 

solution at points between the training points or at points outside the training set. The main reason for using 

modified artificial neural networks was their applicability in function approximation. Further research is in 

progress to apply and extend this method to solve three-dimensional fuzzy partial differential equations FPDEs  

and  fuzzy integral equations . 

References 

 Abbasbandy, S.  & Allahviranloo,T.(2002), "Numerical Solution of Fuzzy Differential Equations by Runge-

Kutta Method", J. Sci. Teacher Training University, 1(3). 

Abbasbandy, S. & Allahviranloo,T.(2002) , "Numerical Solution of Fuzzy Differential Equations by Taylor 

Method", Journal of Computational Methods in Applied Mathematics, 2, 113-124. 

Ahmadi,M.B. & Kiani,N.A. (2011)  ,  "Solving  Fuzzy  Partial  Differential Equation by Differential 

Transformation Method" ,  Journal of Applied Mathematics,27,1-16. 

Allahviranloo,T. , Ahmady,N. &  Ahmady,E.(2007), "Numerical Solution of Fuzzy Differential Equations by 

predictor- corrector Method", Information Sciences, 177 , 1633-1647. 

Allahviranloo,T. , Ahmady,T.E. & Ahmady,N. (2008),"Nth- Order  Fuzzy Linear Differential Equations" , 

Information Sciences, 178, 1309-1324. 

Buckley,J.J. & Feuring ,T. (2000),"Fuzzy Differential Equations", Fuzzy Sets and Systems, 110 , 69 - 77.                                                                         

Corveleyn,S. & Vandewalle,S.(2011) , "Numerical  Solution  of  Fuzzy  Elliptic Partial Differential Equations by 

a Polynomial Galerkin Approximation",Katholieke Universiteit Leuven,Department of Computer Science,Report 

TW 585,1-22. 

Duraisamy,C.  & Usha ,B.(2010), "Another  Approach  to  Solution  of  Fuzzy Differential Equations", Applied 

Mathematics  Sciences,4(16),777-790. 

Effati,S. & Pakdaman,M.(2010), "Articial Neural Network Approach for Solving Fuzzy Differential Equations", 

Information Sciences , 180, 1434 -1457.  

Ezadi,S. & Parandin,N.(2013),"An Application of Neural Networks to Solve Ordinary Differential 

Equations",International Journal of Mathematical Modelling & Computations,3(3),245-252. 

Ezadi,S. , Parandin,N. & Ghomashi,A.(2013), "Numerical Solution of Fuzzy Differential Equations Based on 

Semi-Taylor by Using Neural Network", Journal of Basic and Applied Scientific Research , 477 - 482.  

Ghazanfari,B. & Shakerami,A.(2011), "Numerical Solution of Fuzzy Differential Equations Extended Runge – 

Kutta- Like Formulae of Order 4", Fuzzy Sets and Systems, 189, 74 – 91. 

Guo,X. , Shang,D.  & Lu,X.(2013), "Fuzzy Approximate Solutions of Second Order Fuzzy Linear Boundary 

Value Problems,Springer Open Journal,212,1-17. 

Jayakumar,T. ,Maheskumar,D. & Kanagarajan,K.(2012), "Numerical Solution of Fuzzy Differential Equation by 

Runge-Kutta Method of Order Five",Applied Mathematical Sciences,6(60),2989-3002. 

Kaleva,O.(1987),"Fuzzy Differential Equations", Fuzzy Sets and Sydtems, 24 , 301 – 317. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

185 

 

Mosleh,M. & Otadi,M.(2012)," Fuzzy Fredholm Integro-Differential Equations with Artificial  Neural 

Network",International Scientific Publications and Consulting Services,20(12),1-13. 

Orouji,B.,Parandin,N. ,Abasabadi,L. & Hosseinpour,A.(2014)," An Implicit Method  For Solving  Fuzzy  Partial  

Differential  Equation  with  Nonlocal Boundary Conditions " , American Journal of Engineering 

Research(AJER),3(6),15-19. 

Parimala,V.,Rajarajeswari,P. & Nirmala,V.(2014)," A Second Order Runge-Kutta Method to  Solve  Fuzzy  

Differential  Equations with Fuzzy Initial Condition",International Journal of Sciences and Research,3(3),428-

431. 

Rostami,M.Kianpour,M. & Bashardoust,E.(2011), "A Numerical Algorithm for Solving Nonlinear Fuzzy 

Differential Equations",The Journal of Mathematics and Computer Science,2(4),667-671. 

Seikkala,S.(1987)," On The Fuzzy Initial Value Problem", Fuzzy Sets and Systems, 24,  319 - 330.  

Saikia ,R.K.(2011)," Fuzzy Numerical Solution of Poisson Equation Using Fuzzy Data",International Journal of 

Engineerring and Technology(IJEST),3(12),8450-8456. 

Tawfiq,L.N.M.(2004),"On Design and Training of Artificial Neural Networks for Solving Differential 

Equations",PH.D Thesis,52-65. 

Tawfiq,L.N.M. &Al-Abrahemee,K.M.M.(2014),"Design Neural Network to Solve  Singular  Perturbation  

Problems", Applied  &  Computational Mathematics,3. 

Tapaswini,S. & Chakraverty,S.(2014)," New Midpoint-Based Approach for the Solution of N-th Order Interval 

Differential Equations",Department of Mathematics",National Institute of Technology Rourkela,Odisha-769 

008,India,25-43. 

Tapaswini,S. &Chakraverty,S.(2014),"New Analytical Method for Solving N-th Order Fuzzy Differential 

Equations",Annals of Fuzzy Mathematics and Informatics,8(2),231-244. 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

186 

 

 

 Figure 1.  (2 x m x 1) Feed-forword  neural  networks. 

 

 

 

 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

187 

 

 

Figure 2.  (3 x m x 1) Feed-forward  neural  networks.  

 

 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

188 

 

 

Figure 3. Trial  solutions for example (1) , for  r = 0.5. 

 

  

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

189 

 

 

 

Figure 4.  Trial  solutions  for  example (2),  for  r = 0.4. 

 

 

 

 

 

 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

190 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Trial solutions for example (3),r = 0.5, x =1.5 and y ∈ [1.1,1.9]. 

 

 

  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

191 

 

 

 

Figure 6. Trial solutions for example (3),r = 0.5, y =1.5 and x ∈ [1.1,1.9]. 

 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.6, 2015 

 

192 

 

Table 1.  Analytical and trial  solutions for example (1) , for  r = 0.5. 

 

Table 2.  Analytical and trial  solutions for example (2) , for  r = 0.4. 

 

Table 3. Analytical and trial solutions for example(3),for  r=0.5. 

x y Ua (x , y, r) Ut (x , y, r) e (x , y, r) Ua (x , y, r) Ut (x , y, r) e (x , y, r) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0.000000000 

0.096702455 

0.213745482 

0.354337937 

0.522138644 

0.721315555 

0.956612370 

1.233423533 

1.557878650 

1.936937450 

2.378496600 

0.000000000 

0.096706465 

0.213749391 

0.354341016 

0.522136568 

0.721314482 

0.956611317 

1.33422518 

1.557879607 

1.936938355 

2.378496600 

0.000000000 

0.000004010 

0.000003909 

0.000003079 

0.000002076 

0.000001073 

0.000001053 

0.000001015 

0.000000957 

0.000000905 

0.000000000 

0.000000000 

0.124331728 

0.274815620 

0.455577347 

0.671321113 

0.927405714 

1.229930190 

1.585830257 

2.002986836 

2.490348150 

3.058067057 

0.000000000 

0.124332900 

0.274816765 

0.455576229 

0.671320022 

0.927406777 

1.229931226 

1.585831239 

2.002987791 

2.490347223 

3.058067057 

0.000000000 

0.000001172 

0.000001145 

0.000001118 

0.000001091 

0.000001063 

0.000001036 

0.000000982 

0.000000955 

0.000000927 

0.000000000 

 

  x  ya (x , r) yt (x , r) e (x , r) y
a
 (x , r) y

t
 (x , r) e (x , r) 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0.980000000 

0.986740669 

1.002356138 

1.026001856 

1.056913645 

1.094400047 

1.137835403 

1.186653598 

1.240342385 

1.298438267 

1.360521852 

0.980000000 

0.986741141 

1.002356525 

1.026002061 

1.056913016 

1.094399412 

1.137835497 

1.186653646 

1.240342311 

1.298438992 

1.360521344 

0.000000000 

0.000000472 

0.000000387 

0.000000205 

0.000000629 

0.000000635 

0.000000094 

0.000000048 

0.000000074 

0.000000725 

0.000000508 

1.005000000 

1.009361605 

1.022824407 

1.044522312 

1.073671646 

1.109563313 

1.151555694 

1.199068230 

1.251575609 

1.308602508 

1.369718838 

1.005000000 

1.009362248 

1.022824322 

1.044523023 

1.073671240 

1.109563409 

1.151555790 

1.199068592 

1.251574896 

1.308603048 

1.369719666 

0.000000000 

0.000000643 

0.000000085 

0.000000711 

0.000000406 

0.000000096 

0.000000114 

0.000000362 

0.000000713 

0.000000054 

0.000000828 

  x ya (x , r) yt (x , r) e (x , r) y
a
 (x , r) y

t
 (x , r) e (x , r) 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

2 

0.400000000 

0.558565078 

0.695394529 

0.815735221 

0.923137163 

1.020114507 

1.108513067 

1.189728044 

1.264839725 

1.334701664 

1.400000000 

0.400000000 

0.558565701 

0.695395179 

0.815734544 

0.923137093 

1.020114434 

1.108512992 

1.189728122 

1.264839733 

1.334701750 

1.400000000 

0.000000000 

0.000000623 

0.000000650 

0.000000677 

0.000000070 

0.000000073 

0.000000075 

0.000000078 

0.000000008 

0.000000086 

0.000000000 

1.600000000 

1.758565078 

1.895394529 

2.015735222 

2.123137164 

2.220114514 

2.308513067 

2.389728044 

2.464839725 

2.534701664 

2.600000000 

1.600000000 

1.758565803 

1.895395153 

2.015735745 

2.123136742 

2.220114514 

2.308513062 

2.389728059 

2.464839842 

2.534701778 

2.600000000 

0.000000000 

0.000000725 

0.000000624 

0.000000523 

0.000000422 

0.000000007 

0.000000005 

0.000000015 

0.000000117 

0.000000114 

0.000000000 

http://www.iiste.org/


The IISTE is a pioneer in the Open-Access hosting service and academic event management.  

The aim of the firm is Accelerating Global Knowledge Sharing. 

 

More information about the firm can be found on the homepage:  

http://www.iiste.org 

 

CALL FOR JOURNAL PAPERS 

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.   

Prospective authors of journals can find the submission instruction on the following 

page: http://www.iiste.org/journals/  All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than those 

inseparable from gaining access to the internet itself.  Paper version of the journals is also 

available upon request of readers and authors.  

 

MORE RESOURCES 

Book publication information: http://www.iiste.org/book/ 

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/  

 

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek 

EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

