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ABSTRACT 

We introduce a Special Artex Space over a bi-monoid namely Distributive Artex space over a bi-monoid. We 

give some examples of Distributive Artex space over bi-monoids. We prove the Cartesian product of any two 

Distributive Artex Spaces over a bi-monoid is a Distributive Artex Space over the bi-monoid. Also we prove the 

Cartesian product of a finite number of Distributive Artex Spaces over a bi-monoid is a Distributive Artex Space 

over the bi-monoid. We prove under the Artex space homomorphism f : A → B, the homomorphic image of a 

SubArtex Space of an Artex space A over a bi-monoid is a SubArtex space of B. We prove the homomorphic 

image of a Distributive Artex Space over a bi-monoid is a Distributive Artex Space over the bi-monoid. We  

prove a SubArtex space of a Distributive Artex space over a bi-monoid  is a Distributive Artex space over the bi-

mpnoid. We solve three problems on Bounded Artex spaces over bi-monoids. 1.A SubArtex space of a Lower 

Bounded Artex space  over a bi-monoid need not be a Lower Bounded Artex space over the bi-monoid. 2. A 

SubArtex space of an Upper Bounded Artex space  over a bi-monoid need not be an Upper Bounded Artex space 

over the bi-monoid and 3. A SubArtex space of a Bounded Artex space  over a bi-monoid need not be a Bounded 

Artex space over the bi-monoid. 

Keywords :  Distributive Artex space, Bounded Artex space, Homomorphic image 

1.INTRODUCTION 

The theory of Groups is one of the richest branches of abstract algebra. Groups of transformations play an 

important role in geometry. A more general concept than that of a group is that of a semi-group. The aim of 

considering semi-groups is to provide an introduction to the theory of rings. Two binary operations are defined 

for a ring. With respect to the first operation written in the order, it is an abelian group and with respect to the 

second one, it is enough to be a semi-group. We study many examples of rings and we have so many results in 

rings. However, there are many spaces or sets which are monoids with respect to two or more operations. This 

motivated us to define a more general concept bi-monoid than that of a ring. So we can have many algebraic 

systems which are bi-monoids, but not rings. With these concepts in mind we enter into Lattices. In Discrete 

Mathematics Lattices and Boolean algebra have important applications in the theory and design of computers. 

There are many other areas such as engineering and science to which Boolean algebra is applied. Boolean 

Algebra was introduced by George Boole in 1854. A more general algebraic system is the lattice. A Boolean 

Algebra is introduced as a special lattice. The study of Lattices and Boolean algebra together with our bi-monid 
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motivated us to bring our papers titled “Artex Spaces over Bi-monoids”, “Subartex Spaces Of an Artex Space 

Over a Bi-monoid”, and “Bounded Artex Spaces Over Bi-monoids and Artex Space Homomorphisms”. As an 

another development of it now, we introduce a Special Artex Space over a bi-monoid namely Distributive Artex 

space over a bi-monoid.  These Distributive Artex spaces over bi-monoids and the Propositions, we prove here, 

are important results for further development. The examples of Distributive Artex spaces over bi-monoids are 

interesting and useful.  The main part under consideration deals with Distributive Artex spaces over bi-monoids, 

SubArtex spaces of Bounded Artx spaces over bi-monoids. The principal concepts that we consider here are 

those of homomorphism and, epimomorphism.  As a result, the theory of Artex spaces over  bi-monoids like the 

theory of  Lattices and Boolean Algebra, will, in future, play a good role in many fields especially in science and 

engineering and in computer fields.  

2.Preliminaries      

2.1.1     Definition : Distributive Lattice : A lattice (L, ^ , v ) is said to be a distributive lattice if  

for any a,b,c ϵ  L, (i)  a ^ ( b v c) = (a ^ b) v (a ^ c)     (ii) a v (b ^ c) = (a v b) ^ (a v c) 

2.1.2    Definition :  Bi-monoid : An algebraic system ( M , + , . ) is called a Bi-monoid if 

1.( M , + ) is a monoid  2. ( M , . ) is a monoid  

and 3 (i)    a.(b+c) = a.b + a.c    and (ii)   (a+b).c = a.c + b.c , for all a,b,c ϵ M. 

Note : The identity elements of ( M , + , . ) with respect to  +  and  .  are denoted by 0 and 1 respectively. 

2.1.3    Definition :   Artex Space Over a Bi-monoid :  A non-empty set A is said to be an Artex Space Over a 

Bi-monoid  (M , + , . ) if  1.(A, ^ , v )  is a lattice and 

                                    2.for each mϵM , mǂ0, and aϵA, there exists an element ma ϵ A satisfying the following           

conditions : 

  (i)     m(a ^ b) = ma ^ mb 

  (ii)    m(a v b) = ma v mb 

  (iii)    ma ^ na ≤ (m +n)a     and   ma v na ≤ (m + n)a   

  (iv)   (mn)a = m(na), for all m,nϵM, mǂ0, nǂ0, and a,bϵA 

  (v)      1.a = a ,          for all aϵA 

Here, ≤ is the partial order relation corresponding to the lattice (A, ^ , v )   

The multiplication ma is called a bi-monoid multiplication with an artex element or simply bi-monoid 

multiplication in A.  

Unless otherwise stated A remains as an Artex space with the partial ordering  ≤  which need not be “less than or 

equal to” and M as a bi-monoid with the binary operations + and . need not be the usual addition and usual 

multiplication.      

Proposition 2.1.4 : If A and B are any two Artex spaces over a bi-monoid M and if ≤1 and  ≤2 are the partial 

ordering on A and B respectively, then AXB is also an Artex Space over M, where the partial ordering  ≤ on 

AXB and the bi-monoid multiplication in AXB are defined by the following :  

  For x,y ϵ AXB, where x=(a1,b1) and y=(a2,b2) , x ≤ y means a1 ≤1 a2   and  b1 ≤2 b2 
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 For mϵM, mǂ0, and x ϵ AXB, where x=(a,b), the bi-monoid  multiplication in AXB is defined by  

 mx = m(a,b) = (ma,mb), where ma and mb are the bi-monoid multiplications in A and B respectively. 

In other words if ^1 and v1 are the cap, cup of A and ^2 and v2 are the cap, cup of B, then the cap, cup of AXB 

denoted by Ʌ and V are defined by x Ʌ y =  (a1,b1) Ʌ (a2,b2) = (a1 ^1a2 , b1 ^2b2 )  

                                                    x V y =  (a1,b1) V (a2,b2) = (a1 v1 a2 , b1 v2 b2 ). 

Corollary 2.1.5 : If A1, A2 ,A3,…..., An  are Artex spaces over a bi-monoid M, then A1 X A2  X A3 X …..X An is 

also an Artex space over M. 

2.1.6    Definition :      Complete Artex Space over a bi-monoid  : An Artex space A over a bi-monoid M is 

said to be a Complete Artex Space if as a lattice, A is a complete lattice, that is each nonempty subset of A has a 

least upper bound and a greatest lower bound. 

2.1.7    Remark : Every Complete Artex space must have a least element and a greatest element. The least and 

the greatest elements, if they exist, are called the bounds or units of the Artex space and are denoted by 0 and 1 

respectively. 

Note : The identity elements of ( M , + , . ) with respect to  +  and  .  are also denoted by 0 and 1 respectively. 

2.1.8    Definition :    Lower Bounded Artex Space over a bi-monoid : An Artex space A over a bi-monoid M 

is said to be a Lower Bounded Artex Space over  M if  as a lattice, A has the least element 0.                                                                         

2.1.9     Definition :      Upper Bounded Artex Space over a bi-monoid : An Artex space A over a bi-monoid 

M is said to be an Upper Bounded Artex Space over M if  as a lattice, A has the greatest element 1. 

2.1.10     Definition :      Artex Space Homomorphism : Let A and B be two Artex spaces over a bi-monoid  

M, where ^1 and v1 are the cap, cup of A and ^2 and v2 are the cap, cup of B. A mapping f : A → B is said to be 

an Artex space homomorphism if 

1. f(a ^1b) = f(a) ^2f(b) 

2. f(a v1b) = f(a) v2f(b) 

3. f(ma)) = mf(a) , for all m ϵ M, m ǂ 0 and a,b ϵ A .                                                               

2.1.11     Definition :      Artex Space Epimorphism : Let A and B be two Artex spaces over a bi-monoid  M.  

An Artex space homomorphism f : A → B is said to be an Artex space epimorphism if the mapping  f : A → B is 

onto. 

2.1.12     Definition :      Artex Space Monomorphism : Let A and B be two Artex Spaces over a bi-monoid  

M.  An Artex space homomorphism  f : A → B is said to be an Artex Space monomorphism if the mapping f : A 

→ B is one-one. 

2.1.13     Definition :      Artex Space Isomorphism : Let A and B be two Artex spaces over a bi-monoid  M.  

An Artex Space homomorphism f : A → B is said to be an Artex Space Isomorphism if the mapping f : A → B is 

both one-one and onto, ie,  f is bijective. 

2.1.14     Definition :      Isomorphic Artex Spaces : Two Artex spaces A and B over a bi-monoid M are said to 

be isomorphic if there exists an isomorphism from A onto B or from B onto A. 

2.1.15     Definition :    SubArtex Space : Let (A, ^ , v )  be an Artex space over a bi-monoid (M , + , . )  

Let S be a nonempty subset of A. Then S is said to be a Subartex space of A if (S, ^ , v ) itself  is an Artex space 

over M. 
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Proposition 2.1.16 : Let (A, ^ , v ) be an Artex space over a bi-monoid  (M , + , . ) 

 Then a nonempty subset S of A is a SubArtex space of A if and only if for each m,n ϵ M, mǂ0, nǂ0, and  

a, b ϵ S,ma ^ nb ϵ S and  ma v nb ϵ S 

3     Homomorphic image of a SubArtex Space of an Artex space over a bi-monoid 

Proposition 3.1.1 : Let A and B be  Artex spaces over a bi-monoid M. Let f : A → B be an Artex space 

homomorphism. Let S be a SubArtex space of A. Then f(S) is a SubArtex Space of B.   In other words, under the 

Artex space homomorphism f : A → B, the homomorphic image of a SubArtex Space of the Artex space A over 

M is a SubArtex space of B over M. 

Proof :  Let A and B be  Artex spaces over a bi-monoid M. 

Let S be a SubArtex space of A. 

Let  ≤1  and  ≤2 be the partial orderings of A and B respectively. 

Let ^1 and v1 be the cap and cup of A and let ^2 and v2 be the cap and cup of B. 

Suppose f : A → B is an Artex space homomorphism. 

To show f(S) is a SubArtex Space of B. 

Let a’, b’ ϵ  f(S) and m , n ϵ M, where m ǂ 0, and n ǂ 0. 

Then there exists a and b in A such that f(a) = a’  and   f(b) = b’ 

ma’  ^2  nb’ = mf(a)  ^2  n f(b) = f(ma)  ^2  f(nb) = f(ma ^1 nb)   ( since f is a homomorphism) 

Since S is a subArtex space of A, ma ^1 nb ϵ A 

Therefore, f(ma  ^1  nb) ϵ f(S) 

ma’  ^2  nb’ ϵ f(S) 

ma’ v2 nb’ = mf(a) v2 n f(b) = f(ma) v2 f(nb) = f(ma v1 nb). 

Since S is a subArtex space of A, ma v1 nb ϵ A 

Therefore, f(ma v1 nb) ϵ f(S) 

ma’ v2 nb’ ϵ f(S) 

Hence  by the Proposition 2.1.16, f(S) is a SubArtex space of B. 

4      Distributive Artex Space over a bi-monoid : An Artex space A over a bi-monoid M is said to be a 

Distributive Artex Space over the bi-monoid M if as a lattice, A is a distributive lattice. 

In other words, an Artex space A over a bi-monoid M is said to be a Distributive Artex Space over the bi-monoid 

M if for any a,b,c ϵ  A,  (i)  a ^ ( b v c) = (a ^ b) v (a ^ c)    (ii) a v (b ^ c) = (a v b) ^ (a v c) 

4.1.1      Example :    Let A be the set of all sequences (xn) in Z, where Z is the set of all integers 
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 and let W = {0,1,2,3,…}.  

Define ≤’ ,an order relation, on A by for (xn), (yn) in A, (xn) ≤’ (yn) means xn  ≤ yn , for each n, 

where ≤ is the usual relation “ less than or equal to “ 

Let  x ϵ A, where x = (xn)  

Clearly  xn  ≤ yn , for each n 

So, (xn) ≤’ ( xn) 

Therefore,  ≤’ is reflexive. 

Let  x,y ϵ A, where x = (xn) and y = (yn) be such that x  ≤’ y and y ≤’ x , that is, (xn) ≤’ ( yn) and  

(yn) ≤’ ( xn). 

Then  (xn) ≤’ ( yn) implies  xn  ≤ yn , for each n  

           (yn) ≤’ ( xn) implies yn  ≤  xn , for each n  

Now, xn  ≤ yn , for each n , and  yn  ≤  xn , for each n ,implies xn = yn , for each n.   

Therefore, (xn) = ( yn), that is x = y 

Therefore, ≤’ is anti-symmetric. 

 Let  x,y,z ϵ A, where x = (xn) , y = (yn) and z = (zn) be such that x  ≤’ y and y ≤’ z ,  

That is, (xn) ≤’ ( yn)  

and (yn) ≤’ ( zn). 

Then  (xn) ≤’ ( yn) implies  xn  ≤ yn , for each n  

           (yn) ≤’ ( zn) implies yn  ≤  zn , for each n  

Now, xn  ≤ yn , for each n , and  yn  ≤  zn , for each n, implies xn  ≤  zn for each n.   

Therefore, (xn) ≤’ ( zn) 

Therefore, ≤’ is transitive. 

Hence,  ≤’ is a partial order relation on A 

Now the cap ,cup operations are defined by the following : 

(xn) ^ (yn) = (un), where un =mini { xn , yn }, for each n. 

(xn) v (yn) = (vn), where vn =maxi { xn , yn }, for each n. 

Clearly ( A , ≤’ ) is a lattice. 

The bi-monoid multiplication in A is defined by the following : 

For each mϵW,mǂ0, and xϵA, where x= (xn), mx is defined by mx = m(xn)=(mxn). 

Clearly  (mxn) ϵ A 
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Let  x,y ϵ A, where x = (xn) , y = (yn)  and let m ϵ W,mǂ0 

Then, it is clear that         (i)     m(x ^ y) = mx ^ my          

           (ii)    m(x v y) = mx v my 

                         (iii)    mx ^ nx ≤ (m +n)x      and  mx v nx ≤ (m + n)x          

                                        (iv)    (mn)x = m(nx)                   

                                        (v)      1.x = x , for all m,nϵW, mǂ0, nǂ0, and x,y ϵ A                                                 

Therefore, A is an Artex space over W. 

Clearly,  (xn) ^ [ (yn) v ( zn) ] = [ (xn) ^ (yn) ] v [ (xn) ^ ( zn) ] 

and         (xn) v [ (yn) ^ ( zn) ] = [ (xn) v (yn) ] ^ [ (xn) v ( zn) ]. 

Hence, A is a Distributive Artex Space over the bi-monoid W.   

4.1.2      Example :    If B is the set of all sequences(xn) in Q, where Q is the set of all rational numbers, then as 

in Example 4.1.1, B is a Distributive Artex Space over the bi-monoid W.   

4.1.3      Example :    If D is the set of all sequences(xn) in R, where R is the set of all real numbers, then as in 

Example 4.1.1, D is a Distributive Artex Space over the bi-monoid W. 

Proposition 4.2.1: A SubArtex space S of a Distributive Artex space A over a bi-monoid M is a Distributive 

Artex space over M. 

Proof : Let A be a Distributive Artex space over a bi-monoid M. 

Let S be SubArtex space of A. 

As a SubArtex space of A, by the definition of a SubArtex space, S ǂ φ and S itself is an Artex space over M. 

Let a,b,c ϵ  S 

Since  S is a subset of A, a,b,c ϵ  A 

Since A is a Distributive Artex space over M,(i)  a ^ ( b v c) = (a ^ b) v (a ^ c)      

                                                                      and (ii) a v (b ^ c) = (a v b) ^ (a v c) 

Hence, S is a Distributive Artex space over M. 

Proposition 4.2.2 : If D and D’ are any two Distributive Artex spaces over a bi-monoid M,  then DXD’ is also a 

Distributive Artex Space over M, If  ≤1 and  ≤2 are the partial orderings on D and D’ respectively, then the partial 

ordering  ≤ on DXD’ and the bi-monoid multiplication in DXD’ are defined by the following :  

  For x,yϵ DXD’, where x=(a1,b1) and y=(a2,b2) , x ≤ y means a1 ≤1 a2    and   b1 ≤2 b2 

 For mϵM, m ǂ 0,  and x ϵ DXD’, where x=(a,b),the bi-monoid  multiplication in DXD’ is defined   by   mx = 

m(a,b) = (ma,mb), where ma and mb are the bi-monoid multiplications in D and D’ respectively. 

In other words if ^1 and v1 are the cap, cup of D and ^2 and v2 are the cap, cup of D’, then the cap, cup of DXD’ 

denoted by ^ and v are defined by x ^ y =  (a1,b1) ^ (a2,b2) = (a1 ^1 a2 , b1 ^2 b2 )  
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and  x v y =  (a1,b1) v (a2,b2) = (a1 v1 a2 , b1 v2 b2 ). 

Proof :            Let A = DXD’ 

We know that if ( D, ≤1 ) and ( D’, ≤2 ) are any two Artex spaces over a bi-monoid M, then by the Proposition 

2.1.4 DXD’ is an Artex space over the bi-monoid M . Therefore, it is enough to prove that  A = DXD’ is  

Distributive. 

Let x,y,z ϵ A = DXD’ , where x = (b,b’), y = (c,c’), z = (d,d’) 

Now, x ^ ( y v z) =  (b,b’) ^ ( (c,c’) v (d,d’)) 

                              =  (b,b’) ^ ( c v1d, c’v2d’) 

                              =  (b ^1(c v1d), b’ ^2 (c’v2d’)) 

                              =  ((b ^1 c)v1(b  ^1 d) , (b’ ^2 c’) v2 (b’ ^2 d’)) 

                              =  (b ^1 c , b’ ^2 c’) v (b ^1 d,b’ ^2 d’) 

                              =  ((b,b’) ^ (c,c’)) v ((b,b’) ^ (d,d’)) 

                              =  (x ^ y) v (x ^ z) 

To show  x v (y ^ z)  = (x v y) ^ ( x v z)   

Now, x v ( y ^  z) =  (b,b’) v ( (c,c’) ^ (d,d’)) 

                              =  (b,b’) v ( c ^1d, c’^2d’) 

                              =  (b v1(c ^1 d) , b’ v2 (c’ ^2 d’)) 

                              =  ((b v1 c) ^1(b v1 d),(b’ v2 c’) ^2 (b’ v2 d’)) 

                              =  (b v1 c , b’ v2 c’) ^ (b v1 d , b’ v2 d’) 

                              =  ((b,b’) v (c,c’)) ^ ((b,b’) v (d,d’)) 

                              =  (x v y) ^ (x v z) 

           Hence, A = DXD’ is a Distributive  Artex space over M. 

Corollary 4.2.3 :  If D1, D2 ,D3,…..., Dn  are Distributive Artex spaces over a bi-monoid M, then 

 D1 X D2  X D3 X …..X Dn is also a Distributive Artex space over M. 

Proof :  The proof is  by induction on n 

When  n=2, by the Proposition B1 X B2 is a Distributive  Artex space over M 

 Assume that B1 X B2  X B3 X …..X Bn-1 is a Distributive Artex space over M 

 Consider B1 X B2  X B3 X …..X Bn 

 Let B= B1 X B2  X B3 X …..X Bn-1 
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 Then   B1 X B2  X B3 X …..X Bn = (B1 X B2  X B3 X …..X Bn-1)X Bn  

            = B X Bn   

 By assumption  B is a Distributive Artex space over M. 

 Again by the Proposition  B X Bn is a Distributive Artex space over M 

 Hence,  B1 X B2  X B3 X …..X Bn is a Distributive Artex space over M 

Proposition 4.2.4 : Let A be a Distributive Artex space over a bi-monoid M and let B be an Artex space over M. 

Let f : A → B be an Artex space epimorphism of A onto B. Then B is a Distributive Artex Space over M. In 

other words, the homomorphic image of a Distributive Artex Space over a bi-monoid is a Distributive Artex 

space over the bimonoid. 

Proof :    Let A be a Distributive  Artex Space over a bi-monoid  M and let B be an Artex space over M.  

Let  ≤1  and  ≤2 be the partial orderings of A and B respectively. 

Let ^1 and v1 be the cap and cup of A and let ^2 and v2 be the cap and cup of B. 

Suppose f : A → B is an Artex space epimorphism of A onto B. 

To show that B = f(A) is a Distributive  Artex Space over the bi-monoid  M. 

Let x’, y’, z’ ϵ B 

To show (i)  x’ ^2 (y’ v2 z’) = (x’ ^2 y’) v2 (x’ ^2 z’)  and (ii) x’ v2 (y’ ^2 z’) = (x’ v2 y’) ^2 (x’ v2 z’). 

Since f : A → B is an Artex space epimorphism of A onto B, there exist elements x, y, z ϵ A such that  

f(x) = x’,  f(y) = y’,  and f(z) = z’. 

 To show   (i) x’ ^2 (y’ v2 z’) = (x’ ^2 y’) v2 (x’ ^2 z’) 

Now,        x’ ^2 (y’ v2 z’)  = f(x) ^2 ( f(y) v2 f(z) ) 

    = f(x) ^2 f(y v1 z)           (since f is an Artex space homomorphism) 

    = f(x ^1 (y v1 z))            (since f is an Artex space homomorphism) 

    = f((x ^1 y) v1( x ^1 z))    (since A is a Distributive Artex Space) 

    = f(x ^1 y) v2 f( x ^1 z)      (since f is an Artex space homomor.) 

    = (f(x) ^2 f( y)) v2 (f(x) ^2 f(z))  (since f is an Artex space homomor.)                                                                                  

    = ( x’ ^2 y’ ) v2 ( x’ ^2 z’ ). 

To show   (ii) x’ v2 (y’ ^2  z’) = (x’ v2 y’) ^2  (x’ v2 z’) 

Now,        x’ v2 (y’ ^2  z’)  = f(x) v2 ( f(y) ^2  f(z) ) 

    = f(x) v2 f(y ^1 z)           (since f is an Artex space homomorphism) 
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    = f(x v1 (y ^1 z))            (since f is an Artex space homomorphism) 

    = f((x v1 y) ^1 ( x v1z))    (since A is a Distributive Artex Space) 

    = f(x v1 y) Ʌ2 f(x v1 z)      (since f is an Artex space homomorphism) 

    = (f(x) v2 f( y)) ^2  (f(x) v2 f(z))  (since f is an Artex space homomor.) 

    = ( x’ v2 y’ ) ^2  ( x’ v2 z’ ). 

Hence, B is a Distributive Artex Space over M. 

SubArtex Spaces Of Bounded Artex Spaces Over Bi-monoids 

Problem 1 : A SubArtex space of a Lower Bounded Artex space  over a bi-monoid need not be a Lower 

Bounded Artex space over the bi-monoid. 

Proof :  Let A be the set of all constant  sequences (xn) in [0,∞) and let W = {0,1,2,3,…}.  

Define  ≤ ’, an order relation, on A by for (xn), (yn) in A, (xn)  ≤ ’ (yn) means xn  ≤  yn , for each  n  

Where  ≤  is the usual relation “ less than or equal to “ 

Since the sequences in A are all constant sequences,  xn  ≤  yn , for some  n  implies xn  ≤  yn , for each  n 

Therefore, xn  ≤  yn , for each  n   and  xn  ≤  yn , for  some  n  in this problem are the same. 

Let  x ϵ A, where x = (xn)  

Clearly  xn  ≤ xn , for each n 

So, (xn)  ≤’ ( xn) 

Therefore,  ≤’ is resflexive. 

Let  x,y ϵ A, where x = (xn) and y = (yn) be such that x  ≤’ y and y ≤’ x , that is, (xn) ≤’ ( yn) and (yn) ≤’ ( xn). 

Then  (xn) ≤’ ( yn) implies  xn  ≤ yn , for each n  

and     (yn) ≤’ ( xn) implies yn  ≤  xn , for each n  

Now, xn  ≤ yn , for each n , and  yn  ≤  xn , for each n ,implies xn = yn , for each n.   

Therefore, (xn) = ( yn), that is x = y 

Therefore, ≤’ is anti-symmetric. 

 Let  x,y,z ϵ A, where x = (xn) , y = (yn) and z = (zn) be such that x  ≤’ y and y ≤’ z , that is, (xn) ≤’ ( yn)  

and (yn) ≤’ ( zn). 

Then  (xn) ≤’ ( yn) implies  xn  ≤ yn , for each n  

           (yn) ≤’ ( zn) implies yn  ≤  zn , for each n  

Now, xn  ≤ yn , for each n , and  yn  ≤  zn , for each n, implies xn  ≤  zn for each n.   
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Therefore, (xn) ≤’ ( zn) 

Therefore, ≤’ is transitive. 

Hence,  ≤’ is a partial order relation on A 

Now the cap ,cup operations are defined by the following : 

(xn) ^ (yn) = (un), where un =mini { xn , yn }, for each n. 

(xn) v (yn) = (vn), where vn =maxi { xn , yn }, for each n. 

Clearly ( A , ≤’ ) is a lattice. 

The bi-monoid multiplication in A is defined by the following : 

For each m ϵ W, m ǂ 0, and x ϵ A, where x = (xn), mx is defined by mx = m(xn) = (mxn). 

Since (xn) is a constant sequence belonging to A , (mxn) is also a constant sequence belonging to A. 

Therefore  (mxn) ϵ A 

Let  x,y ϵ A, where x = (xn) , y = (yn)  and let m ϵ W,mǂ0 

Then, it is clear that     (i)     m(x ^ y) = mx ^ my          

        (ii)    m(x v y) = mx v my 

                      (iii)    mx ^ nx ≤ (m +n)x      and  mx v nx ≤ (m + n)x          

                                    (iv)    (mn)x = m(nx) , for all m,n ϵ W, m ǂ 0, n ǂ 0, and x,y ϵ A                                                 

                                    (v)      1.x = x , for all  x ϵ A                                                 

Therefore, A is an Artex space over W. 

The sequence (0n), where 0n is 0 for all n, is a constant sequence belonging to A 

Also (0n)  ≤ ’ (xn) , for all the sequences (xn) belonging to A  

Therefore, (0n) is the least element of A. 

That is, the sequence   0,0,0,……    is the least element of A   

Hence A is a Lower Bounded Artex space over W. 

Now let S be the set of all constant  sequences (xn) in (0,∞).   

Clearly S is a SubArtex Space A.  

But S has no least element. 

Therefore,  S is not a Lower Bounded Artex Space over W. 

Hence, a SubArtex space of a Lower Bounded Artex space  over a bi-monoid need not be a Lower Bounded 

Artex space over the bi-monoid. 
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Problem 2 : A SubArtex space of an Upper Bounded Artex space  over a bi-monoid need not be an Upper 

Bounded Artex space over the bi-monoid. 

Proof : Let A be the set of all constant  sequences (xn) in (-∞,0] and let W = {0,1,2,3,…}.  

Define ≤’ ,an order relation, on A by for (xn), (yn) in A, (xn) ≤’ (yn) means xn  ≤ yn , for n = 1,2,3,… 

where ≤ is the usual relation “ less than or equal to “ 

Then a in Example 3.3.1,  A is an Artex space over W. 

Now, the sequence (1n), where 1n is 0, for all n, is a constant sequence belonging to A 

Also (xn)  ≤ ’ (1n) , for all the sequences (xn) in A  

Therefore, (1n) is the greatest element of A. 

That is,  the sequence   0,0,0,…    is the greatest element of A  

Hence A is an Upper Bounded Artex Space over W. 

Now let S be the set of all constant  sequences (xn) in (-∞,0).   

Clearly S is a SubArtex Space A.  

But S has no greatest element. 

Therefore, S is not an Upper Bounded Artex Space over W. 

Hence, a SubArtex space of an Upper Bounded Artex space  over a bi-monoid need not be an 

 Upper Bounded Artex space over the bi-monoid. 

Problem 3 : A SubArtex space of a Bounded Artex space  over a bi-monoid need not be a Bounded Artex space 

over the bi-monoid. 

Proof : The proof  is clear from the Problems 1 and 2  

In other way, if A is taken as the set of all constant sequences in the extended real line and S is taken as the set of 

all sequences in the real line, then as in the Problems 1 and 2 the proof follows. Here by convention the symbols  

-∞  and  ∞ are considered to be the least and the greatest elements of the extended real line, but in the real line 

there exist no such elements. Therefore S is not a Bounded Artex space over W.    
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