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Abstract 

Pseudo Projectivity and M- Pseudo Projectivity is a generalization of Projevtevity.  

[2], [8] studied M-Pseudo Projective module and small M-Pseudo Projective module. In this paper we consider 

some generalization of small M-Pseudo Projective module, that is δ-small M-Pseudo Projective module with the 

help of δ-small and δ- cover.  

Key words:  Singular module, S.F. small M-Pseudo Projective module, δ-small and projective   

δ- cover. 

 

Introduction:  

Throughout this paper R is an associative ring with unity module and all modules are unitary left R-

modules. A sub module K of a module M. K ≤ M. Let M be a module, K ≤ M is said to be small in M if for 

every L ≤ M, the equality  K + L = M implies  L = M, ( denoted by 𝐾 ≪ 𝑀 ). The concept of δ-small sub 

modules was introduced by Zhon [10]. A sub module K of M is said to be δ-small sub module of M (denoted by 

𝐾 ≪𝛿 𝑀 ) if whenever M = K+ L, with M/K is singular, then M = L. The sum of all δ-small sub module of M is 

denoted by δ(M). δ(M) is the reject in M of class of all singular simple modules. 𝛿(𝑀) =  𝑅𝑒𝑗𝑀(℘) =∩

{𝑁 ≤ 𝑀:
𝑀

𝑁
∈ ℘},   where ℘ be the class of all singular modules. (𝑅𝑒𝑗𝑀(ℚ) is the intersection of all K ≤ M, with 

M/K torsion free). An R-module M is said to be hollow (δ-hollow) if all proper sub modules of M are small (δ-

small) in M. An R-module M is S.F. if zero is only small sub module in M.  

 G. Azumay introduced projective cover. W.xue [12] generalized projective cover. A module 

epimorphism MPf :  is a cover in case ),(ker PRadf   𝐾𝑒𝑟𝑓 ≪ 𝑀. A cover MPf : is called 

a protective cover in case P is projective module. An epimorphism MPf : is called a δ-projective cover of 

module M in case 𝐾𝑒𝑟𝑓 ≪𝛿 𝛿(𝑃) and P is projective. A δ-cover MPf : of a module M, is said to be a self 

projective δ-cover in case p is self projective module. Projective cover is denoted by P(M), if there is an 

epimorphism MMPfM )(: with P(M) is projective and 𝑘𝑒𝑟𝑓𝑀 ≪ 𝑃(𝑀).
 

 In last section we introducing a new characterization of small M-pseudo projective module. We prove 

that N is hollow, then N is δ-small M-pseudo projective module if and only if N is M-pseudo projective module, 

and let M be a δ-small pseudo projective module then M is S.F. if and only if M/A is isomorphic to direct 

summand of M, A ≤ M. 

1.δ-Small  

Definition:1.1. The sub module   })(:{)( RinessentialisxrMxMZ R is called singular sub module of 

M. The module M is Called a singular module if Z(M) = M. The module M is Called a non- singular module if 

Z(M) = 0. 

Definition:1.2. An R-module N is called small M- pseudo projective module if for every sub module A of M, 

any epimorphism 
A

M
Nf :  with 𝐾𝑒𝑟𝑓 ≪  𝑁, Can be lifted to a homomorphism  MNh :  

0

0







A

M
M

fh

N

g
   

     i.e. fhg  . 
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Definition:1.3 An R-module N is called δ-small M- pseudo projective module if for every sub module A of M, 

any small epimorphism 
A

M
Nf :  with 𝐾𝑒𝑟𝑓 ≪𝛿 𝑁, Can be lifted to a homomorphism  MNh :  

 

0

0
.



 



A

M
M

Ninkrfwithepicfh

N

epicsmallg
  

i.e. fhg  . 

Examples:1 

      i) Every small sub module of M is δ-small in M. 

     ii) Every non singular semisimple sub module of M is δ-small in M. 

     iii)  Every simple module M is hollow. 

     iv)  Z6 as Z-module is not δ-small. 

Example:2. Consider the Z-modules Z4 and Z2 . An epimorphism 24: ZZf   define by   

0)2()0(1)3()1(  ffandff Then f  is small epimorphism . 

 Every small sub module of M is δ-small in M. 

Example:3. Let 6ZMR  . Then two non-trivial sub modules of M, 

     4,2,03,0 21  MandM  are δ-small in M, but neither 1M and 2M  is small in M, 

  Moreover 𝑀 ≪𝛿 𝑀 

Proposition:1.1  Let M, L and N be R-Modules. If NM :  and  LN :  are two epimorphisms. 

Then    is small if and only if both  α, β are small.  

Proof:   [8] 

Lemma:1.1. Let N be a submodule of M. The following are equivalent: 

i) 𝑁 ≪𝛿 𝑀 

ii) If  X + N = M, then M = X  Y for a projective semi simple sub module Y with Y  N. 

iii) If  X + N = M, with M/X Goldie torsion, then X = M. 

Proof: [10]. 

Lemma:1.2. Let M be a module, then 

         i) For sub module N, K, L with K ≤ N, We have  

            a)    𝑁 ≪𝛿 𝑀 if and only if  𝐾 ≪𝛿 𝑀  and  𝑁/𝐾 ≪𝛿 𝑀/𝐾 

            b)    𝑁 + 𝐿 ≪𝛿 𝑀 if and only if 𝑁 ≪𝛿 𝑀 and  𝐿 ≪𝛿 𝑀. 

        ii) If 𝐾 ≪𝛿 𝑀 and NMf :  is an homomorphism, then 𝑓(𝐾) ≪𝛿 𝑁,  

               In particular, if 𝐾 ≪𝛿 𝑀 ≤ 𝑁 and 𝐾 ≪𝛿 𝑁. 

         iii) Let   MMKMMK  2211 , and  21 MMM  ,  

                   then     𝐾1 ⊕ 𝐾2 ≪𝛿 𝑀1 ⊕ 𝑀1 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝐾1 ≪𝛿 𝑀1 𝑎𝑛𝑑  𝐾2 ≪𝛿 𝑀2.  

Proof: [4]. 

Lemma:1.3.  Let M be a module. Then  

        i)   𝛿(𝑀) =  ∑{𝐿 ≤ 𝑀: 𝐿 ≪𝛿 𝑀} =∩ {𝐾 ≤ 𝑀 ∶
𝑀

𝐾
 𝑖𝑠 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑜𝑑𝑢𝑙𝑒} .  

        ii)   If f: M→N is an R-homomorphism, then  𝑓(𝛿(𝑀))  ≤  𝛿(𝑁). Therefore δ(M) is fully    

                    invariant sub module of M. In particular if K ≤ M, then   δ(K) ≤ δ(M). 

iii)   𝐼𝑓 𝑀 =⊕𝑖∈𝐼 (𝑀𝑖), 𝑡ℎ𝑒𝑛   𝛿(𝑀) ≤⊕𝑖∈𝐼 𝛿(𝑀𝑖). 
       iv) If every proper sub module of M is contained in a maximal sub module of m, then δ(M)   

     is the unique largest δ-small sub module of M. In particular if M is finitely generated,  

     then  δ(M) is δ- small in M.  

Proof: [4] 

Lemma:1.4.  If  K ≤ N ≤ M, 𝐾 ≪𝛿 𝑀 and N is a direct summand of M, Then 𝐾 ≪𝛿 𝑁. 
Proof:  [10] 

Proposition: Given a module M, each of the following sets is equal δ(M). 

i) 𝛿(𝑀)  =  ∑{𝐴: 𝐴 ≪ 𝛿 𝑀}. 
ii) 𝛿(𝑀)  = ∩ {𝐵: 𝐵 ≤  𝑀 𝑤𝑖𝑡ℎ 𝑀/𝐵 𝑖𝑠 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟}. 
iii) 𝛿(𝑀)  = ∩ {𝑘𝑒𝑟𝛷 ∶  𝛷 ∈  𝐻𝑜𝑚(𝑀, 𝑁) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑁 𝑖𝑠 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑠𝑖𝑚𝑝𝑙𝑒} 
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iv) 𝛿(𝑀)  = ∩ {𝑘𝑒𝑟𝛷 ∶  𝛷 ∈  𝐻𝑜𝑚( 𝑀, 𝑁) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑁 𝑖𝑠 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑠𝑒𝑚𝑖 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟} 
Proposition:1.2. If  f: M→N is an epimorphism with 𝑘𝑒𝑟𝑓 ≤  𝛿(𝑀), 𝑡ℎ𝑒𝑛 𝛿(𝑁)  =  𝑓(𝛿(𝑀)). 
Proof: [4].  

Lemma:1.5. Let P be a small projective module, then  𝛿(𝑀) ≪𝛿 P. 
Proof:  Let P be a small-projective module and 𝑃 =  𝛿(𝑃) + 𝑌, where P/Y is singular, by hypothesis P= A ⊕ B 

such that   

 

0



A

M
M

P

f

  
A ≤ Y and B∩Y ≤  δ(P), Then Y = A ⊕ (B∩Y) and so P = δ(P) ⊕A. since A is summand of P, there exists a sub 

module X ≤ δ(P) such that P = = X ⊕ A. Since  𝛿(𝑋)   = 𝑋 ∩  𝛿(𝑃)   = 𝑋,  

X is semi simple projective and P/Y is epimorphic image of 𝑃/𝐴 ≅  𝑋 =>  𝑃/𝑌 is projective and singular, we 

have P = Y. Hence δ(P) ≪δ  P.      

Proposition:1.3. Let M and N be any R-modules. Then Following are equivalent: 

i)  𝑁 ≪𝛿 𝑀. 

ii) If  X + N =M, then M = X⊕Y for projective semi simple sub module Y, with Y ≤ N. 

Proof: [4] 

Proposition:1.4. For Hollow module N the following conditions are equivalent: 

i) N is δ-small M-pseudo projective module. 

ii) N is M-pseudo projective module. 

Proof: (i) => (ii) is obvious. 

(ii)=> (i)  Let R-module N be a M- pseudo projective module. A ≤ M, any small epimorphism 

A

M
Nf :  and natural epimorphism  

A

M
M : . For a sub module A of M,  𝐴 ≪𝛿 𝑀, then A 

is direct summand of M, there exists a decomposition BAM  such that 

FNBandFNA  ≪𝛿 𝑀, there exists a homomorphism MNh : such that the 

diagram  

  

 

0



A

M
M

fh

N



 
fhgei ... . Hence N is M-pseudo projective module.// 

Proposition:1.5.  Let M be a δ-small M-Pseudo projective module, then following conditions are equivalent:  

(i) 

  i)   M is S.F. If M/A is isomorphic to direct summand of M, A ≤ M.

 

               ii) M is direct sum of sub modules of A, B with  𝐴 ≤ 𝐴 ∩ 𝐹 𝑎𝑛𝑑 𝐵 ∩ 𝑁 ∩ 𝐹 ≪𝛿 𝑀.  

Proof: (i) => (ii)  by S1 

 (ii)=> (i)  Since M = A  B, i.e. M = A + B and A  B = 0. Now M = A + B, for some B ≤ M and 
B

M
 

is singular, then )( BSAS  . Suppose  that  ABA  , then  
BA

M



)(
 is finitely cogenerated by A. 

But  












BA

M
Soc

BA

BSA

A

S



)()( 
. Hence 

A

S
 is f.g. this is contradiction. Thus BBAA   . We 

have B.BAM  So  𝐴 ≪𝛿 𝑀. // 

2. δ-Cover  

Definition;2.1. Let P and M be modules. δ-small f: P →M is a called a δ-cover of M in  

case kerf ≪δ P. 

Definition 2.2. A δ-cover f: P →M is called a projective δ-cover in case P is a projective module.  
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 Some module may not have projective δ-cover and some module have projective δ-cover but not 

projective cover. 

Definition:2.3. A module M is called a semi perfect module if any homomorphic image of M has a projective δ-

cover. 

Lemma:2.1 If f: P→M and  g: M→N are δ-covers then g○f : P→N is a δ-cover. 

M= Kerf.g + L, with P/L is singular. Then M = kerg + f(L). Since P/f(L) is singular, M = F(L).This implies that 

P = L, P/L is singular and kerf ≪δ P as desired.  

Lemma:2.2 If  𝑓𝑖: 𝑃𝑖 → 𝑀𝑖 is a δ-cover for i = 1,2,3,…n, then ⊕𝑖=1
𝑛 𝑓𝑖 ∶ ⊕𝑖=1

𝑛 𝑃𝑖 → 𝑀𝑖 is δ- cover. 

Lemma:2.3.  If N is a direct summand of M and 𝐴 ≪𝛿 𝑀, then  𝐴 ∩ 𝑁 ≪𝛿 𝑁.  

Lemma:2.4.  Let K be a sub module of a projective module M. if M/K has a δ-cover, then, it has a δ-cover of the 

form 
K

M

L

M
f : , with Kerf = K/L, where L≤ K. 

Proof: Let small epimorphism 𝑓: 𝑃 → 𝑀/𝐾 be a δ-cover of M/K and 𝜋: 𝑀 → 𝑀/𝐾 is a natural epimorphism. 

Since M is projective module, there exists ℎ: 𝑀 → 𝑃 such that following diagram commute.  

0



K

M
P

h

M

f



 
i.e. hf . . Then hfP Imker  by lemma 1. hYP Im for a semi simple Y with fY ker also 

by lemma 2. )ker( Im hfI  ≪𝛿 𝐼𝑚ℎ. So f│Imh is also δ- cover of M/K. But  h
h

M
Im

ker


 

(by Isomorphic the.) and Khhf  ker,.  .If we consider the isomorphism  ,Im
ker

:' h
h

M
h 

 

then we obtain )'I fker( Imhh ≪𝛿 M/Imh by lemma 2.// 
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