
Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.7, 2015 

 

22 

Fixed Point Results In Fuzzy Menger Space With Rational 

Expression 
 

Gourish Kumar Parashar, Anil Agrawal
*
,Manoj Shukla** 

Department of Mathematics TIT & Science Bhopal  

And Research Scholar of M.G.C.G.V.Chitrakoot  
*
Department of Mathematics, M.G.C.G.V.Chitrakoot  

*Govt. Model Science College (Autonomous), Jabalpur(M.P.) India 

Abstract: 

This paper presents some common fixed point theorems for occasionally weakly compatible mappings 

with rational expression in Fuzzy menger metric spaces. 

Keywords: Occasionally weakly compatible mappings, Fuzzy menger metric space,Weak compatible mapping, 

Semi-compatible mapping, Implicit function, common fixed point. 

Subject Classification: AMS (2000) 47H25 

 

1.   INTRODUCTION 

The study of fixed point theorems in Menger spaces is an active area of research. Now it is extended in 

the form of Fuzzy Menger space. The theory of probabilistic metric spaces was introduced by Menger [2] in 

1942 and since then the theory of probabilistic metric spaces has developed in many directions, especially in 

nonlinear analysis and applications. In 1966, Sehgal [5] initiated the study of contraction mapping theorems in 

probabilistic metric spaces. Since then several generalizations of fixed point theorems in probabilistic metric 

space have been obtained by several authors including Sehgal and Bharucha-Reid [6], Sherwood [7], and 

Istratescu and Roventa [1]. The study of fixed point theorems in probabilistic metric spaces is useful in the study 

of existence of solutions of operator equations in probabilistic metric space and probabilistic functional analysis. 

The development of fixed point theory in probabilistic metric spaces was due to Schweizer and Sklar[4]. Singh 

et al. [9] introduced the concept of weakly commuting mappings in probabilistic metric spaces. In 2005, Mihet 

[3] proved a fixed point theorem concerning probabilistic contractions satisfying an implicit relation. Shrivastav 

et al.[8] proved fixed point result in fuzzy probabilistic metric space. The purpose of the present paper is to prove 

a common fixed point theorem for four mappings via occasionally weakly compatible mappings in fuzzy menger 

metric spaces satisfying contractive type implicit relations with rational coordinate.   

 

2.PRELIMINARY NOTES 

 

Let us define and recall some definitions:  

Definition 2.1 A fuzzy probabilistic metric space (FPM space) is an ordered pair (X,Fα) consisting of a 

nonempty set X and a mapping Fα from XxX into the collections of all distribution functions FαR for all α.  

[0,1]. For x, y  X we denote the distribution function Fα (x,y) by Fα(x,y) and Fα(x,y) (u) is the value of Fα(x,y)   at u 

in R. 

The functions Fα(x,y)   for all α.  [0,1] assumed to satisfy the following conditions: 

(a)  Fα(x,y) (u) = 1  u > 0 iff x = y, 

(b)  Fα(x,y)   (0) = 0  x , y in X, 

(c)  Fα(x,y)   = Fα(y,x)    x , y in X, 

(d)   If Fα(x,y)    (u) = 1 and   Fα(y,z)   (v) = 1 then Fα(x,z) (u+v) = 1  x , y ,z in X  and  u, v  > 0. 

Definition 2.2 A  commutative,  associative  and  non-decreasing  mapping t: [0,1]  [0,1] [0,1] is a t-norm if 

and only if t(a,1)= a a[0,1] , t(0,0)=0 and t(c,d)  t(a,b) for c  a,  d  b   . 

Definition 2.3 A Fuzzy Menger space is a triplet (X,Fα,t), where (X,Fα) is a FPM-space,  t is a t-norm and the  

generalized triangle inequality 

Fα(x,z) (u+v)  t (Fα(x,z) (u), Fα(y,z) (v))    holds for all x, y, z in X u, v > 0 and α.  [0,1] 

 

The concept of neighborhoods in Fuzzy Menger space is introduced as 
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Definition 2.4 Let (X,Fα,t) be a Fuzzy Menger space. If  xX,  > 0 and  (0,1), then (,)  - neighborhood of 

x, called Ux  (,), is defined by  

Ux (,) = {yX: Fα(x,y)()>(1-)} 

An (,)-topology in X is  the topology  induced by  the family {Ux (,): x  X,  > 0, α.  [0,1]and  (0,1)} 

of neighborhood. 

Remark: If t is continuous, then Fuzzy Menger space (X,Fα,t) is a Housdroff space in (,)-topology. 

Let (X,Fα,t) be a complete Fuzzy Menger space and AX. Then A is called a bounded set if  

 

lim    inf Fα(x,y) (u) = 1 

 
u    x,yA 

Definition 2.5 Let (X,Fα,t) be a Fuzzy Menger space and a sequence {xn} in (X,Fα,t) is said to be convergent to a 

point x in X if for every >0and  >0, there exists an integer N=N(,) such that xn Ux(,) for all n  N  or 

equivalently Fα (xn, x; ) > 1- for all n  N and α[0,1]. 

Definition 2.6 Let (X,Fα,t) be a Fuzzy Menger space and a sequence {xn}  in (X,Fα, t)  is said to be  cauchy 

sequence  if for every  > 0 and   > 0, there exists an integer N=N(,) such that Fα(xn,xm; ) > 1-  n, m  N 

for all α[0,1]. 

Definition 2.7 A Fuzzy Menger space (X,Fα,t) with the continuous t-norm is said to be complete if every Cauchy 

sequence  in X converges to a point in X for all α[0,1]. 

Definition 2.8 Let (X,Fα,t) be a Fuzzy Menger space. Two mappings  f, g :XX are said to be weakly 

comptable if  they commute at coincidence point for all α[0,1]. 

Lemma 1 Let {xn}  be a sequence in a Fuzzy Menger space  (X,Fα,t), where t  is continuous and t(p,p)  p for all 

p[0,1], if there exists a constant k(0,1) such that for all p > 0 and nN  

Fα (xn,xn+1; kp)  Fα(xn-1,xn; p), 

for all α[0,1] then {xn} is cauchy sequence. 

Lemma 2 If (X,d) is a metric space, then  the  metric d  induces, a mapping Fα: XxXL defined by Fα (p, q) = 

Hα(x- d(p, q)), p, q  R for all α[0,1]. Further if  t: [0,1]  [0,1] [0,1] is defined by t(a,b) = min{a,b}, then 

(X,Fα,t) is a Fuzzy Menger space. It is complete if (X,d) is complete. Definition 2.9]: Let (X,Fα,t) be a Fuzzy 

Menger space. Two mappings f, g: X→ X are said to be compatible if and only if Fα (fgxn,gfxn)(t)→1 for all t > 0 

whenever  {xn} in X such that fxn,gxn→ z for some z 𝜖 X. 

Definition 2.10:Two self mappings f  and g of a Fuzzy Menger space (X,Fα,t) are said to be pointwise R-weakly 

commuting if given x 𝜖 X, there exists R > 0 such that   

Fα (fgx,gfx)(t) ≥ Fα (fx,gx)(t/R) for t > 0 and α[0,1]. 

Definition 2.11: Let X be a set, f, g be self maps of X. A point x in X is called a coincidence point of f and g iff 

fx = gx . We shall call w = fx = gx a point of coincidence of f and g. 

Definition 2.12: A pair of maps f and g is called weakly compatible pair if they commute at coincidence points.  

Definition 2.13: Two self maps f and g of a set X are occasionally weakly compatible (owc) iff there is a point x 

in X which is a coincidence point of f and g at which f and g commute. 

Definition2.14. A function :[0, ) [0, )     is said to be a 𝜙-function if it satisfies the 

following conditions: 

(i) 𝜙(t) = 0 if and only if t = 0, 

(ii) 𝜙(t) is strictly increasing and 𝜙(t) →∞ as t →∞,  

(iii) 𝜙 is left continuous in (0,∞) and 

(iv) 𝜙 is continuous at 0. 

Lemma 2.15: Let (X,Fα,t) be a Fuzzy Menger space and a sequence {xn}  in  (X,Fα,t) where t is continuous If 

there exists a constant h ε (0, 1) such that Fα (xn, xn+1; kt) ≥ Fα (xn-1, xn;t), n ε N,  then {xn} is a Cauchy sequence. 

Lemma 2.16: Let X be a set, f, g be owc self maps of X. If  f and g  have a unique point of coincidence, w = fx = 

gx, then w is the unique common fixed point of f and g. 

3. MAIN RESULTS: 

Theorem 3.1: Let (X, Fα,t) be a complete Fuzzy Menger space and let p, q, f  and g  be self mappings of X. Let 

pairs {p, f} and {q, g} be owc. If there exists h ε (0, 1) such that  

Fα (px,qy)(ht) ≥ φ(min { Fα (fx,gy)(t), Fα (fx,px)(t), Fα (qy,gy)(t), 
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                     [Fα (px,gy)(t)+ Fα (fx,px)(t)]/ Fα (fx,px)(t), [Fα  (qy,fx)(t)+ Fα (qy,gy)(t)]/ Fα (qy,gy)(t)}) 

                                                                                                            …… …..(3.1) 

for all x,y ∈ X ,  𝜙 ∈ Φ  for all 0< t <1, then there exists a unique point w ∈ X such that pw = fw = w and  a 

unique point z  X such that qz = gz =z .Moreover, z = w, so that there is a unique common fixed point of p, f, q 

and g.  

Proof: Let the pairs { p,f } and {q,g } be owc, so there are points x,y  X such that px =fx and qy = gy. We 

claim that px = qy. If not, by inequality (3.1)  

Fα (px,qy)(ht) ≥ φ(min { Fα (fx,gy)(t), Fα (fx,px)(t), Fα (qy,gy)(t), 

           [Fα (px,gy)(t)+ Fα (fx,px)(t)]/ Fα (fx,px)(t),[ Fα (qy,fx)(t)+ Fα (qy,gy)(t)]/ Fα (qy,gy)(t)}) 

               = φ(min { Fα (px,qy)(t), Fα (px,px)(t), Fα (qy,qy)(t), 

            [Fα (px,qy)(t)+ Fα (px,px)(t)]/ Fα (px,px)(t), [Fα (qy,px)(t)+ Fα (qy,qy)(t)]/ Fα (qy,qy)(t)}) 

              = φ(Fα (px,qy)(t)) = Fα (px,qy)(t) 

Therefore px = qy, i.e. px = fx = qy = gy. Suppose that there is an another point z such that pz = fz then 

by (1) we have pz =fz = qy = gy, so px = pz and w = px = fx is the unique point of coincidence of p and f. By 

Lemma 2.16 w is the only common fixed point of p and f. Similarly there is a unique point z  X such that z =qz 

= gz. Assume that w ≠ z. We have  

Fα (w,z)(ht) = Fα (pw,fz)(ht) 

             ≥ φ(min { Fα (fw,gz)(t), Fα (fw,pw)(t), Fα (qz,gz)(t), 

          [ Fα (pw,gz)(t)+ Fα (fw,pw)(t)]/ Fα (fw,pw)(t),[ Fα (qz,fw)(t)+ Fα (qz,gz)(t)]/ Fα (qz,gz)(t)}) 

           ≥ φ(min { Fα (w,z)(t), Fα (w,w)(t), Fα (z,z)(t), [Fα (w,z)(t)+ Fα (w,w)(t)]/ Fα (w,w)(t),  

                  [Fα (z,w)(t)+ Fα (z,z)(t)]/ Fα (z,z)(t)}) 

          = φ(Fα (w,z)(t)) = Fα (w,z)(t) 

Therefore we have z = w by lemma 2.16 and z is a common fixed point of p, f, q and g. The uniqueness of the 

fixed point holds from (3.1)  

Theorem3.2 Let (X, F,t) be a complete Fuzzy Menger space and let p, q, f  and g  be self mappings of X. Let 

pairs {p, f} and {q, g} be owc. If there exists h ε (0, 1) such that  

Fα (px,qy)(ht) ≥ 𝜙 { Fα (fx,gy)(t), Fα (fx,px)(t), Fα (qy,gy)(t),[ Fα (px,gy)(t)+ Fα (fx,px)(t)]/ Fα (fx,px)(t),  

                                                        [Fα (qy,fx)(t)+ Fα (qy,gy)(t)]/ Fα (qy,gy)(t)}………..(3.2) 

for all x,y ∈ X and 𝜙:[0, 1]
5
→[0, 1] such that 𝜙 (t,1,1,t,t )> t  for all 0< t <1, then there exists a unique common 

fixed point of p, f, q and g.  

Proof: Let the pairs { p,f } and {q,g } be owc, so there are points x,y  X such that px =fx and qy = gy. We 

claim that px = qy. By inequality (2)we have  

 Fα (px,qy)(ht) ≥ 𝜙 ({Fα (fx,gy)(t), Fα (fx,px)(t), Fα (qy,gy)(t),[ Fα (px,gy)(t)+ Fα (fx,px)(t)]/ Fα (fx,px)(t),  

                                                                          [Fα (qy,fx)(t)+ Fα (qy,gy)(t)]/ Fα (qy,gy)(t)}) 

        = 𝜙( { Fα (px,qy)(t), Fα (px,px)(t), Fα (qy,qy)(t),[ Fα (px,qy)(t)+ Fα (px,px)(t)]/ Fα (px,px)(t), 

                                                                 [ Fα (qy,px)(t)+ Fα (qy,qy)(t)]/ Fα (qy,qy)(t)}) 

              = 𝜙 ({Fα (px,qy)(t), 1, 1, Fα (px,qy)(t), Fα (px,qy)(t)}) 

              > Fα (px,qy)(t) 

This a contradiction, therefore px = qy, i.e. px = fx = qy = gy. Suppose that there is a another point z 

such that pz = fz then by (2) we have pz =fz = qy = gy, so px = pz and w = px = fx is the unique point of 

coincidence of p and f. By Lemma 2.16 w is the only common fixed point of p and f. Similarly there is a unique 

point z  X such that z =qz = gz. Thus z is a common fixed point of p, f, q and g. The uniqueness of the fixed 

point holds from (3.2). 

Corollary 3.3: Let (X, F,t) be a complete Fuzzy Menger  and let p, q, f  and g  be self mappings of X. Let pairs 

{p, f} and {q, g} be owc. If there exists h ε (0, 1) such that  

Fα (px,qy)(ht) ≥ min { Fα( fx,gy)(t), Fα( px,fx)(t), Fα( qy,gy)(t),  
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                      [ Fα (px,gy)(t)+ Fα (fx,px)(t)]/ Fα (fx,px)(t),[Fα (qy,fx)(t)+ Fα (qy,gy)(t)]/ Fα (qy,gy)(t)} 

                                                              ……………..(3.3) 

for all x,y ∈ X and t > 0, then there exists a unique common fixed point of p, f, q and g. 

Proof : Let the pairs { p,f } and {q,g } be owc, so there are points x,y  X such that px =fx and qy = gy. We 

claim that px = qy. By inequality (3.3)we have  

 Fα( px,qy)(ht) ≥ min{ Fα (fx,gy)(t), Fα( px,fx)(t), Fα (qy,gy)(t), 

        [ Fα (px,qy)(t)+ Fα (px,px)(t)]/ Fα (px,px)(t),[ Fα (qy,px)(t)+ Fα (qy,qy)(t)]/ Fα (qy,qy)(t)} 

               = min { Fα (px,qy)(t),Fα (px,px)(t), Fα( qy,qy)(t),  

       [ Fα (px,qy)(t)+ Fα (px,px)(t)]/ Fα (px,px)(t),[ Fα (qy,px)(t)+ Fα (qy,qy)(t)]/ Fα (qy,qy)(t)} 

              ≥ min{Fα (px,qy)(t), 1, 1, Fα( px,qy)(t), Fα( px,qy)(t)} 

             ≥ Fα (px,qy)(t) 

Thus we have  px = qy, i.e. px = fx = qy = gy. Suppose that there is an  another point z such that pz = fz 

then by (3) we have pz =fz = qy = gy, so px = pz and w = px = fx is the unique point of coincidence of p and f. 

By Lemma 2.16 w is the only common fixed point of p and f. Similarly there is a unique point z  X such that z 

=qz = gz. Thus w is a common fixed point of p, f, q and g. The uniqueness of the fixed point holds from (3.3). 

 

 

 

4.REFERENCES 

 

 [1]     V.I. Istr˘atescu and I. S˘acuiu, Fixed point theorem for contraction mappings on  probabilistic metric 

spaces, Rev. Roumaine Math. Pures. Appl.18 (1973), 1375–1380. 

 [2]     K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A. 28 (1942), 535–537. 

[3]    D. Mihet, A generalization of a contraction principle in probabilistic metric spaces, Part II, Int. J. Math. 

Math. Sci. 2005 (2005), 729–736. 

[4]    B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North Holland  (Amsterdam, 1983). 

 [5]     V.M. Sehgal, Some fixed point theorems in function analysis and probability,Ph.D dissertation, Wayne 

State Univ. Michigan (1966). 

[6]   V.M. Sehgal and A.T. Bharucha-Reid, Fixed points of contraction mappings on     

          probabilistic metric spaces, Math. Systems Theory 6 (1972), 97–102. 

[7]    H. Sherwood, Complete probabilistic metric spaces, Z. wahrscheinlichkeits theorie and verw. Grebiete 20 

(1971), 117–128. 

[8]    R. Shrivastav,S. Nath , V. Patel and V. Dhagat,weak and semi compatible maps in Fuzzy  

           Probabilistic metric space using implicit relation, IJMA 2(6), 2011, 958-963. 

[9]     S.L. Singh, B.D. Pant and R. Talwar, Fixed points of weakly commuting  mappings on   Menger spaces, 

Jnanabha 23 (1993), 115–122. 

 

http://www.iiste.org/


The IISTE is a pioneer in the Open-Access hosting service and academic event management.  

The aim of the firm is Accelerating Global Knowledge Sharing. 

 

More information about the firm can be found on the homepage:  

http://www.iiste.org 

 

CALL FOR JOURNAL PAPERS 

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.   

Prospective authors of journals can find the submission instruction on the following 

page: http://www.iiste.org/journals/  All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than those 

inseparable from gaining access to the internet itself.  Paper version of the journals is also 

available upon request of readers and authors.  

 

MORE RESOURCES 

Book publication information: http://www.iiste.org/book/ 

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/  

 

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek 

EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

