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Abstract 

 In this paper, we introduce the concept of normal fuzzy soft group. We also define the 

level subsets of a normal fuzzy soft subgroup and discussed some of its properties. 
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1. Introduction 

There are various types of uncertainties in the real world, but some classical 

mathematical tools may not be appropriate to model these uncertainties. Many complicated 

problems in economics, engineering, social sciences, medical sciences and many other fields 

involve uncertain data. These problems, which one comes face to face with in life, cannot be 

solved using classical mathematic methods. In classical mathematics, a mathematical model 

of an object is devised and the notion of the exact solution of this model is determined. 

Because of that, the mathematical model is too complex, the exact solution cannot be found. 

There are several well-known theories to describe uncertainty. For instance, fuzzy set theory 

[1], rough set theory [10] and other mathematical tools. But all of these theories have their 

inherit difficulties as pointed out by Molodtsov[5]. To overcome these difficulties, Molodtsov 

introduced the concept of a soft set as a new mathematical tool for dealing with uncertainties 

that is free from the difficulties affecting the existing methods. The theory of soft sets has rich 

potential for applications in several directions, a few of which were demonstrated by 

Molodtsov in his pioneer work [5]. Rosenfeld[11] have the new idea of fuzzy subgroups. 
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Akta.H, Çagman.N[2] an introduction to the new definition of soft groups in a soft set 

depending on inclusion relation and intersection of sets. Aslam and Qurashi [8] extended the 

concept of soft group, and discussed some of their properties. They also defined normal soft 

group, cyclic soft group, abelian soft group, product of soft group, coset of a soft subgroup of 

a soft group. 

In this paper we define a new different algebraic structure of normal fuzzy soft 

subgroups and study some of their properties. 

 

 

2. Preliminaries 

  In this section, we first recall the basic definitions related to Fuzzy Sets, Fuzzy Group, 

Soft Sets and Fuzzy Soft Group which would be used in the sequel. 

 

Definition: 2.1  Fuzzy Sets[8] 

 Let G  be any sets. A mapping  ]1,0[: G  is called fuzzy sets in .G  

Definition: 2.2  Fuzzy Subsets[1] 

 Let X  be any non empty sets. A fuzzy subset  of X is a function ].1,0[: X  

Definition: 2.3  Soft Group [12] 

 Let X be a group and  be a soft set over X  then   be a soft set over X . Then  is 

said to be a soft group over X iff .,)( AaXaF   

Definition: 2.4  Normal Fuzzy Subgroup [6] 

 Let G be a group. A fuzzy subgroup  of G is said to be normal if for all ,, Gyx   

  )()( 1 yxyx    or ).()( yxxy    

 

3. Normal Fuzzy soft Subgroups 

In this section, we define normal fuzzy soft groups and study some of their basic 

properties. 

 

Definition: 3.1  Fuzzy Soft Subgroup 

 A fuzzy set  is called a fuzzy soft subgroup of a group ,G  if  for ,, Gyx   

(i)  )(),()( yxTxy     

  (ii) )()( 1 xx   . 

Definition: 3.2  Normal Fuzzy Soft Subgroup 
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 Let G  be a group. A fuzzy soft subgroup  of G is said to be normal fuzzy soft 

subgroup, if for all Gyx , and )()( 1 yxyx    or )()( yxxy   . 

Theorem: 3.2.1 

 Let  , and   be three fuzzy soft subgroup of G .Then    is a fuzzy soft 

subgroup of G . 

Proof: 

 Let  , and   be three fuzzy soft subgroup of G . 

 (i)  )(),)(())(( 111   xyxyTxy    

              ≥ 𝑇{ 𝑇 [(𝛼 ∩ 𝛽)(𝑥), (𝛼 ∩ 𝛽)(𝑦−1)], 𝑇 [𝛾(𝑥), 𝛾(𝑦−1)] }  

              ≥ 𝑇{ 𝑇 [(𝛼 ∩ 𝛽)(𝑥), 𝛾(𝑥)], 𝑇 [(𝛼 ∩ 𝛽)(𝑦−1), 𝛾(𝑦−1)] } 

              = 𝑇 { (𝛼 ∩ 𝛽 ∩ 𝛾)(𝑥), (𝛼 ∩ 𝛽 ∩ 𝛾)(𝑦−1) }. 

 Thus (𝛼 ∩ 𝛽 ∩ 𝛾)(𝑥𝑦−1) ≥ 𝑇 { (𝛼 ∩ 𝛽 ∩ 𝛾)(𝑥), (𝛼 ∩ 𝛽 ∩ 𝛾)(𝑦−1) }. 

 (ii) (𝛼 ∩ 𝛽 ∩ 𝛾)(𝑥) = {(𝛼 ∩ 𝛽)(𝑥), 𝛾(𝑥)} 

           )}()],(),({[ xxx   

           )}()],(),({[ 111  xxx   

           )}(),)({( 11  xx   

           )})({( 1 x . 

 Hence    is a fuzzy soft subgroup of G. 

 

Theorem: 3.2.2 

 The intersection of any three normal fuzzy soft subgroups of G is also a normal fuzzy 

soft subgroup of G.  

Proof: 

 Let  ,  and be three normal fuzzy soft subgroups of G. 

By above theorem 3.2.1,    is a fuzzy soft subgroup of G. 

 Now for all yx,  in G, we have 

  )}(),)({())(( 111   yxyyxyTyxy   

            )}()],(),({[ 111  yxyyxyyxyT   

            )}()],(),({[ xxxT   

            )}(),)({( xxT    

            ))(( x  . 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.7, 2015 

 

29 

 Hence    is a normal fuzzy soft subgroup of G. 

 

Remark: 3.2.3 

 If Let  ii ,)(   are normal fuzzy soft subgroup of G, then ii )(     is a 

normal fuzzy soft subgroup of G. 

 

Theorem: 3.2.4 

 Let    is a normal fuzzy soft subgroup of G, then for any Gy , we have 

))(())(( 11   yxyxyy  . 

Proof: 

 Let    is a normal fuzzy soft subgroup of G, then for any Gy  

Now 

  ))(())(( 11 yxyxyy     

     ))(( x   

     ))(( 1xyy     

     ))(( 1 yxy . 

 Hence the theorem. 

 

Theorem: 3.2.5 

 If    is a normal fuzzy soft subgroup of G, then g(   )g
 -1

 is also a normal 

fuzzy soft subgroup of G, for all Gg . 

Proof: 

 If   is a normal fuzzy soft subgroup of G, then 1)(  gg   is a subgroup of G. 

Now 

  ))()(()( 111 gyxyggg     

             ))(( 1 yxy  

             ))(( x    

             ))(( 1 gxg   

             )()( 1 xgg   . 

 Hence the theorem. 
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Definition: 3.3  Level Subset 

 Let    be a fuzzy soft subgroup of a group G. For any ],1,0[t  we define the 

level subset of    is the set,  

    }))(/({)( txGxt   . 

 

Theorem: 3.3.1 

 Let G be a group and    be a fuzzy subset of G. Then    is a normal fuzzy 

soft subgroup of G iff the level subsets t)(   , ]1,0[t  are subgroup of G. 

Proof: 

 Let    is a normal fuzzy soft subgroup of G and the level subset 

    ]}1,0[))(/({)(  txGxt  . 

 Let tyx )(,   .Then tx  ))((  & ty  ))((  . 

 Now 

  )})((),)({())(( 11   yxTxy   

              )})((),)({( yxT    

              },{ ttT . 

 Therefore, txy   ))(( 1  

 This implies .)(1 txy    

 Thus t)(    is a subgroup of G. 

Conversely, Let us assume that t)(    be a subgroup of G. 

 Let tyx )(,   .Then tx  ))((  & ty  ))((  . 

  Also, txy   ))(( 1 , since .)(1 txy    

     },{ ttT  

     )})((),)({( yxT   . 

 Therefore, )})((),)({())(( 1 yxTxy    . 

 Hence    is a normal fuzzy soft subgroup of G. 

 

Definition: 3.5  Fuzzy soft Normalizer 

 Let G be a group and    be a normal fuzzy soft subgroup of G. 
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Let ),)(())(/({)( 1 xaxaGaN    for all }Gx .Then N(   ) is called 

the fuzzy soft Normalizer of   . 

 

Theorem: 3.5.1 

 Let G be a group and    be a fuzzy subset of G. Then    is a normal fuzzy 

soft subgroup of G iff the level subsets ],1,0[,)(  tt  are normal subgroup of G. 

Proof: 

 Let    is a normal fuzzy soft subgroup of G and the level subsets 

],1,0[,)(  tt  is a subgroup of G. 

 Let Gx and ta )(   , then .))(( ta   

  

 Now, 

taxax   ))(())(( 1   

 Since   is a normal fuzzy soft subgroup of G. 

  That is, .))(( 1 txax    

 Therefore, .)(1 txax    

 Hence t)(   is a normal subgroup of G. 

 

Theorem: 3.5.2 

 If   is a normal fuzzy soft subgroup of G, iff t)(   is an anti normal fuzzy soft 

subgroup of G. 

Proof: 

 Assume    is a normal fuzzy soft subgroup of G. Then for all ., Gyx   

  )})((),)({())(( yxTxy    

 )]}()(1[)],()(1{[)()(1 yxTxy CCC    

 )]}()(1[)],()(1{[1)()( yxTxy CCC    

 )}.()(),()max{()()( yxxy CCC    

 By definition 3.1, ))(())(( 1 xx   for all x in G. 

  )()(1)()(1 1 xx CC   

 Therefore, ).()()()( 1 xx CC   
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 Hence C)(    is an anti normal fuzzy soft subgroup of G. 

Now suppose that, 

  If   is a normal fuzzy soft subgroup of G 

  ))(())(( 1 yxyx     

     )])([(1)])([(1 1 yxyx     

     )()()()( 1 yxyx CC     

      C)(   is an anti normal fuzzy soft subgroup of G.  

 Hence   is a normal fuzzy soft subgroup of G, iff t)(   is an anti normal fuzzy 

soft subgroup of G. 
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