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Abstract: 

This Paper is Concerned with solving problems existence with  quasi projective and quasi injective objects and 

retracts respectively over problems with projective and injective objects and retracts  in the category whose 

objects are the complete quasi lattice and morphism are the complete quasi lattice homomorphism from the point 

of view .in this paper we mentioned here some necessary and sufficient  conditions for the given lattice be quasi 

projective and quasi injective  and retracts respect.  

 

1. Basic Definitions and Theorems : 

There are used following symbols: 

Categories are denoted by 2I, B, C....... Objects of categories by A, B, C......morphism by letters f, g, h, If A, B 

are the objects of category 2Ithen H (A, B) denotes the set of all morphism from A to B. Identity morphism from 

A to A is given by idA. For f  ∈ 𝐻(𝐴, 𝐵)  and g ∈ 𝐻(𝐵, 𝐶)   then there exist h such that h ∈ 𝐻(𝐴, 𝐶)  then 

composition of given monomorphism is denoted by goh or 

 gh =f. 

If X, Y are sets then f: X→Y denotes mapping of the set X into Set Y, Put 

 f(X) = {f(t) ∣ t∈ X } y∈ Y , f
-1

(y) = { x∣ x∈X f(x) = y}  

For U⊆X, f ∣ U denotes the restriction of the mapping f on the set U. If f: X→Y and f(x1)≠ f(x 2) then it is 

injective for two elements x, y∈X, x1≠x2 and surjective if f(x) = y if f is both then it is bijective.  

In Partially ordered set that is a set which is reflexive, anti-symmetric and transitive if A is an ordered set 

∅ ≠X⊆ A the least upper bound of subset X in the set A if it exist then denoted by supAX and greatest lower 

bound of X is infAX can also use as x⋁ y and x∧y instead of sup {x, y} and inf {x, y}, X-Y denotes difference of 

X and Y. 

For ordered set A, x and y ∈ A and x, y are incomparable that is neither x≤y <x, y> denotes closed interval {t∣ 
t∈ A, x≤ t≤ y} (x, y) denotes open interval {t∣ t∈ A, x<t<y} we can say y covers x. If y>x, <x, y> ={x, y} 

smallest and greatest element are 0A and 1A. 

If A, B are ordered sets then A+B denote cardinal sum and A⨁B denote direct sum or ordinal sum. AxB is their 

cardinal product [1]. If a∈A, b∈ B then [a, b] ∈ AXB and A⨂B is direct or ordinal product. 

Let 2I be a category an object A∈ 2I is called projective if for arbitrary B,C ∈ 2I for arbitrary epimorphism g ∈
 H2I (B,C) and arbitrary morphism f ∈ H2I(A,C) we have h ∈ H2I(A,B) so that gh=f. 

Let A∈2I is called projective retract if for every B ∈2I and for arbitrary epimorphism g∈ H2I (A, B) we have h∈ 

H2I (A, B) such that gh=idA. 

Let A∈2I is called injective object if for arbitrary B, C ∈2I arbitrary monomrphism g∈H2I(C, B) and arbitrary 

monomrphism f∈H2I (B, A) such that hg=f.  
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Let A∈2I is called the injective retract if for .arbitrary B∈2I and arbitrary monomorphism   g: A → B there exist 

h∈H2I (B, A),  

hg = idA. 

  

From above it is obvious that every projective object is a projective retract and every injective object is an 

injective retract. 

On the above discussion in this paper   we study generalization of distributive complete lattice and hence weakly 

distributive complete lattice over distributive and hence weakly distributive modules. By { 

[1],[5],[7],[8],distributive modules over R-module},  let L be an R module (Lattice ) and C⊆L the sub-lattice C 

is said to be distributive sub-lattice  of L if C=C∩A+C∩B for all sub-sub-lattice A,B⊆ L and  L is distributive if 

each sub-lattice  is distributive. C is a weak distributive sub-lattice of L if C= C∩A+C∩B for all sub-lattice A, 

B⊆ L such that A+B=C. A lattice L is said to be weakly distributive if every sub-lattice of L is a weak 

distributive sub-lattice of L. A ring R is weakly distributive if R is weakly distributive left R-module. Weakly 

distributive lattice is generalization of weakly distributive module of distributive module by which we obtain a 

weakly distributive lattice is distributive if and only if every sub-lattice is weakly distributive. 

In section 2 shown that homomorphic image of weakly distributive lattice is weakly distributive. We prove that   

any 𝜋 -projective and  𝜋 - injective and direct injective duo lattice is weakly distributive. Any commutative 

lattice is weak distributive. 

In section 3 we prove that the sum and intersection of two direct summands of a weakly distributive lattice is 

again a direct summand and the summand intersection property. 

 

1. Let A and B are complete lattice .the mapping f : A→B is called the complete homomorphism  if   

f (supAX)=supB{f(X)}, f(infAX) = infB{f(X)} for arbitrary subset   

∅ ≠X⊆ A 

2. Let A be a complete lattice. A subset ∅ ≠X⊆ A is called the closed sub lattice of the lattice A if  

supAY∈X , infAY∈X holds for every subset ∅ ≠Y⊆ 𝑋  it obvious that a closed sub lattice of the 

complete lattice is complete lattice 

3. Let A, B are  complete lattice f : A→B a complete homomorphism then f(A) is a closed sub lattice of  

the lattice B. 

2. Weakly Distributive Lattice:  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.7, 2015 

 

81 

It is well-known that, if f: L → T is an isomorphism, then there is a one-to-one correspondence between the sub-

module (sub-lattice) of L and the sub-module of T. Therefore, any module (lattice) isomorphic to a weakly 

distributive module (lattice), is itself weakly distributive. 

Lemma 2.1.  Let L be a weakly distributive lattice and f: L → T be a homomorphism. Then Im f is a weakly 

distributive lattice. 

Proof. Let f: L → T be a homomorphism. Then Im f ≅ L/K where K = ker f. Let 

U/K+V/K = L/K for some A, B ⊆ L and A/K ⊆ L/K. Then we have U+V = L. 

Since L is weakly distributive, A = A ∩ U + A ∩ V. Therefore, 

A/K = (A ∩ U + A ∩ V)/K = [(A/K) ∩ (U/K)] + [(A/K) ∩ (V/K)]. 

Hence Im f  ≅ L/K is weakly distributive. 

 

Examples of weak distributive sub-modules (lattice) can be found in the following lemma. Recall that an R-

module L is called π-projective if whenever L = A + B , there exists α ∈ End(L) such that α(L) ⊆ X and (1 − 

α)(L) ⊆ Y . 

 

R-module L is called π-injective if, for all sub-modules (lattice) U and V of L with U ∩ V = 0, there exists f ∈ S 

with U ⊂ Ker (f) and 

V ⊂ Ker (1 − f). A module L is called a self-generator if it generates all its sub-lattice. 

 

Lemma 2.2: Let L be a π-projective module. Every fully invariant sub-module of L is a weak distributive sub-

module of L. 

Proof. Let U be a fully invariant sub-module of L and suppose L = A+ B. Then there exists an endomorphism f ∈ 

End (M) such that f (L) ⊆ A and (1 − f) (L) ⊆ B. Since 

U is a fully invariant sub-module of L, we have  

f (U) ⊆ U ∩ A, (1 − f )(U) ⊆ U ∩ B. 

Then 

U ⊆ f (U) + (1 − f) (U) ⊆ U ∩ A + U ∩ B 

And so  U = U ∩ A + U ∩ B. That is U is a weak distributive sub-module (lattice) of L.  

Further the mapping f: A→B is called the complete homomorphism if   

supAX∈ U then f(U) = f(supAX) = supB{(f(x)} and infAX∈ U then f(infAX) = infB{f(X)} 

Theorem 2.3:  An R-module L (lattice) is projective (resp. injective) distributive if and only if L is projective and 

injective weakly distributive.  

Let L = ⨁i∈I Ti be a semi simple module (lattice) where Ti is a simple lattice for each i ∈ I. 

then L is a weakly distributive lattice  if and only if Hom(Ti, Tj ) = 0 for every i, j ∈ I such that i ≠ j .  

 

Proof:  Let i, j ∈ I and i ≠j. Then the sub module (lattice) Ti ⨁ Tj of M is a direct summand of L and hence a 

weakly distributive module. And also Ti and  

T j are not isomorphic. Clearly this implies that Hom(Ti, Tj ) = 0. For the converse let A be a sub module of M. 

First we shall prove that A is a fully invariant sub module of M. Since is semi simple A = ⨁j∈J Tj for some J ⊂ 

I. Let f ∈ End (L). Then f (Tj) ⊂ Tj for each 

j ∈ J , by hypothesis. Therefore f (A) ⊂ A. That is A is a fully invariant sub module of L. Since L is semi simple 

it is self-projective, hence L is π projective. Then Lemma 2.2 implies that A is a weak distributive sub lattice of 

L. 

Proposition 2.4: An R-module L is distributive if and only if every sub lattice of L is a weakly distributive 

lattice. 

Proof.  The necessity part is clear. For sufficiency, let A, B and C be sub lattice of L. 

Then, 

A ∩ (B + C) = [A ∩ (B + C)] ∩ (B + C) 

= [A ∩ (B + C)] ∩ B + [A ∩ (B + C)] ∩ C 

= A ∩ B + A ∩ C, 

Since B + C is weakly distributive lattice.  

3. Summand Sum Property : 

Lemma 3.1. Weakly distributive lattice satisfy the summand sum property and the summand intersection 

property. 
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Proof. Let A and B be direct summands of L. Suppose L = A ⨁ A’ 

 = B ⨁ B’ 

 Then 

A = A ∩ B ⨁ A ∩ B’ 

We get L = A⨁ A’ 

 = A ∩ B ⨁ A ∩ B’⨁ A’ 

Hence A ∩ B is a  

Direct summand of L, and so L has the summand intersection property. 

To prove that L has the summand sum property, we need to show that A+B is a direct 

Summand of L. We have 

A + B = A ∩ B + A ∩ B’+ B ∩ A + B ∩ A’ 

 

= (A ∩ B+ A’∩ B) + A ∩ B’ = B ⨁ A∩ B’ 

Now we get L = B ⨁B’ 

 = B ⨁B’ ∩A ⨁B’∩A’ 

 = (A +B)  ⨁   B’∩A’ This completes the proof. 

 

Conclusion:  From the above it has been proved that and lattice satisfy the summand sum property and the 

summand intersection property. 
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