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Abstract: 

Fixed point theory has fascinated hundreds of researchers since 1922 with the celebrated Banach’s fixed point 

theorem. There exists a vast literature on the topic and this is a very active field of research at present. The main 

purpose of this paper is to prove some generalized common fixed point theorem in intuitionistic fuzzy metric 

spaces. 
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INTRODUCTION 

The concept of fuzzy set was first introduced by Zadeh [18] in 1965. Many authors have introduced the concept 

of fuzzy metric space in different ways ([7], [8]). George and Veeramani [5] modified the notion of fuzzy metric 

space introduced by Kramosil and Michalek [10]. In 1986, Atanassov [3] introduced and studied the concept of 

intuitionistic fuzzy sets as a generalization of fuzzy sets [18].Park [13] ,in 2004 introduced the concept of 

intuitionistic fuzzy metric space with the help of continuous  t-norms and continuous t-conorms. In 2006,using 

the notion of intuitionistic fuzzy sets, Alaca defined the concept of intuitionistic fuzzy metric space with the help 

of continuous  t-norms and continuous t-conorms as a generalization of fuzzy metric space which is introduced 

by Kramosil and Michalek [10]. Turkogulu et.al [17] generalized Jungck’s [7] common fixed point theorem in  

intuitionistic fuzzy metric space.They first introduced the concept of weakly commuting and R weakly 

commuting mappings in intuitionistic fuzzy metric space. The concept of weakly compatible mapping is most 

general as each pair of compatible mapping is weakly compatible but the converse is not true.  

 

PRELIMINARIES  

Definition 2.1. A continuous t-norm is a binary operation ∗ on  [0, 1] satisfying the following conditions: 

(i)  ∗ is commutative and associative; 

(ii) ∗ is continuous; 

(iii) 𝑎 ∗  1 =  𝑎 for all 𝑎 ∊  [0, 1]; 

(iv) 𝑎 ∗  𝑏 ≤  𝑐 ∗  𝑑 Whenever 𝑎 ≤  𝑐 and 𝑏 ≤  𝑑 for all 𝑎, 𝑏, 𝑐, 𝑑 ∊  [0, 1]. 

Definition 2.2. A continuous t-conorm is a binary operation ◊ on [0, 1] satisfying the following conditions: 

(i) ◊ is commutative and associative; 

(ii) ◊ is continuous;   

(iii) 𝑎 ◊  0 =  𝑎 for all 𝑎 ∊  [0, 1]; 

(iv) 𝑎 ◊  𝑏 ≤  𝑐 ◊  𝑑 Whenever 𝑎 ≤  𝑐 and 𝑏 ≤  𝑑 for all 𝑎, 𝑏, 𝑐, 𝑑 ∊  [0, 1]. 

Definition 2.3.An intuitionistic fuzzy metric space is a 5-tuple (𝑋, 𝑀, 𝑁,∗,◊) where  X is a nonempty set, ∗ is a 

continuous t-norm, ◊ is a continuous t-conorm and 𝑀, 𝑁 are fuzzy sets on 𝑋2 ×  (0,∞) satisfying the following 

conditions: 

(i) 𝑀(𝑥, 𝑦, 𝑡)  >  0 for all 𝑥, 𝑦 ∊  𝑋; 
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(ii) 𝑀(𝑥, 𝑦, 𝑡)  =  1 for all 𝑥, 𝑦 ∊  𝑋 and 𝑡 >  0 iff  𝑥 =  𝑦; 

(iii) 𝑀(𝑥, 𝑦, 𝑡)  =  𝑀(𝑦, 𝑥, 𝑡) for all 𝑥, 𝑦 ∊  𝑋 and 𝑡 >  0; 

(iv) 𝑀(𝑥, 𝑦, 𝑡)  ∗  𝑀(𝑦, 𝑧, 𝑠)  ≤  𝑀(𝑥, 𝑧, 𝑡 + 𝑠) for all 𝑥, 𝑦, 𝑧 ∊  𝑋 and 𝑠, 𝑡 >  0; 

(v) 𝑀(𝑥, 𝑦, . ): [0,∞) → [0, 1] is continuous for all 𝑥, 𝑦 ∊  𝑋; 

 (vi) 𝑁(𝑥, 𝑦, 𝑡)  ≥ 0 for all 𝑥, 𝑦 ∊  𝑋; 

(vii) 𝑁(𝑥, 𝑦, 𝑡)  =  0 for all 𝑥, 𝑦 ∊  𝑋 and 𝑡 >  0 iff 𝑥 =  𝑦; 

(vii) 𝑁(𝑥, 𝑦, 𝑡)  =  𝑁(𝑦, 𝑥, 𝑡) for all 𝑥, 𝑦 ∊  𝑋 and 𝑡 >  0; 

(ix) 𝑁(𝑥, 𝑦, 𝑡)  ◊  𝑁(𝑦, 𝑧, 𝑠)  ≥  𝑁(𝑥, 𝑧, 𝑡 +  𝑠) for all 𝑥, 𝑦, 𝑧 ∊  𝑋 and 𝑠, 𝑡 >  0; 

(x) 𝑁(𝑥, 𝑦, . ) ∶  [0,∞) → [0, 1] is continuous for all 𝑥, 𝑦 ∊  𝑋; 

Then (𝑀, 𝑁) is called an intuitionistic fuzzy metric on 𝑋 . The functions 𝑀(𝑥, 𝑦, 𝑡) and 𝑁(𝑥, 𝑦, 𝑡) denote the 

degree of nearness and the degree of non-nearness between x and y with respect to 𝑡, respectively. 

Definition 2.4. An intuitionistic fuzzy metric (𝑋, 𝑀, 𝑁,∗,◊) on X is said to be stationary if M and N does not 

depend on 𝑡, i.e. the function 𝑀𝑥,𝑦(𝑡)  = 𝑀(𝑥, 𝑦, 𝑡) and 𝑁𝑥,𝑦(𝑡)  = 𝑁(𝑥, 𝑦, 𝑡)  is constant. 

Definition 2.5. In an intuitionistic fuzzy metric space (𝑋, 𝑀, 𝑁,∗,⋄).  

(a) a sequence {𝑥𝑛 } in 𝑋 is said to be Cauchy sequence if   

 lim𝑛→∞ 𝑀( 𝑥𝑛+𝑝 ,𝑥𝑛, 𝑡) = 1 ,  lim𝑛→∞ 𝑁( 𝑥𝑛+𝑝 ,𝑥𝑛 , 𝑡) = 0 ,for all 𝑡 > 0 and 𝑝 > 0 

(b) A sequence {𝑥𝑛 } in 𝑋 is said to be convergent to a point 𝑥 𝜖 𝑋.if lim𝑛→∞ 𝑀( 𝑥𝑛 , 𝑥, 𝑡) = 1 ,  

lim𝑛→∞ 𝑁( 𝑥𝑛 , 𝑥, 𝑡) = 0 ,for all 𝑡 > 0, 

Definition 2.6. An Intuitionistic  fuzzy metric space is called complete iff every Cauchy sequence in X is 

convergent .                                                                                                                                              Definition 

2.7.The 𝐹 mappings  and 𝑔 are called compatible where 𝐹: 𝑋 × 𝑋 → 𝑋 and 𝑔: 𝑋 → 𝑋 if 

        lim𝑛→∞ 𝑑(𝑔(𝐹(𝑥𝑛 𝑦𝑛 )), 𝐹(𝑔(𝑥𝑛), 𝑔(𝑦𝑛)) = 0 and                  

lim𝑛→∞ 𝑑(𝑔(𝐹(𝑦𝑛,𝑥𝑛)), 𝐹(𝑔(𝑦𝑛), 𝑔(𝑥𝑛)) = 0  

  Whenever {𝑥𝑛} and {𝑦𝑛} are sequences in 𝑋,such that  lim𝑛→∞ 𝐹(𝑥𝑛 , 𝑦𝑛 ) =lim𝑛→∞ 𝑔(𝑥𝑛) = 𝑥 and 

  lim𝑛→∞ 𝐹(𝑦𝑛,𝑥𝑛) = lim𝑛→∞ 𝑔(𝑦𝑛) = 𝑦 for all 𝑥, 𝑦 ∈  𝑋are satisfied. 

Definition 2.8.The mappings 𝐹  and 𝑔 where𝐹: 𝑋 × 𝑋 → 𝑋  and 𝑔: 𝑋 → 𝑋  has 𝑔 mixed monotone property of  

intuitionistic fuzzy metric space  (𝑋, 𝑀, 𝑁,∗,◊) if F is monotone g nondecreasing in first argument and g is 

monotone 𝑔-nonincreasing in second argument. 

Definition 2.9. The mappings F and  𝑔  on intuitionistic fuzzy metric space  (𝑋, 𝑀, 𝑁,∗,◊)   are said to be 

compatible where 𝐹: 𝑋 ×  𝑋 → 𝑋 𝑎𝑛𝑑 𝑔: 𝑋 → 𝑋 if  

lim
𝑛→∞

𝑀(𝑔(𝐹(𝑥𝑛,𝑦𝑛)), 𝐹(𝑔(𝑥𝑛), 𝑔(𝑦𝑛)) , 𝑡) = 1 

lim
𝑛→∞

𝑀(𝑔(𝐹(𝑦𝑛,𝑥𝑛)), 𝐹(𝑔(𝑦𝑛), 𝑔(𝑥𝑛)) , 𝑡) = 1 

lim
𝑛→∞

𝑁(𝑔(𝐹(𝑥𝑛,𝑦𝑛)), 𝐹(𝑔(𝑥𝑛), 𝑔(𝑦𝑛)) , 𝑡) = 0 

lim
𝑛→∞

𝑁(𝑔(𝐹(𝑦𝑛,𝑥𝑛)), 𝐹(𝑔(𝑦𝑛), 𝑔(𝑥𝑛)) , 𝑡) = 0 

Whenever {𝑥𝑛}  and {𝑦𝑛}  are sequences in 𝑋,  such that  lim𝑛→∞ 𝐹(𝑥𝑛 , 𝑦𝑛 ) = lim𝑛→∞ 𝑔(𝑥𝑛) = 𝑥  and 

lim𝑛→∞ 𝐹(𝑦𝑛,𝑥𝑛) = lim𝑛→∞ 𝑔(𝑦𝑛) = 𝑦 for all 𝑥, 𝑦 ∈  𝑋 are satisfied. 
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Definition 2.10. The mappings 𝐹: 𝑋 × 𝑋 → 𝑋 and 𝑔: 𝑋 → 𝑋 on intuitionistic fuzzy metric space (𝑋, 𝑀, 𝑁,∗,◊) 

are said to be weakly compatible if they commute at three coincidence points i.e. 

 𝐹(𝑥, 𝑦)  = 𝑔(𝑥) for some 𝑥 ∈ 𝑋 then 𝐹(𝑔(𝑥), 𝑔(𝑦)) = 𝑔(𝐹(𝑥, 𝑦)) and 

 𝐹(𝑦, 𝑥)  = 𝑔(𝑦) for some 𝑦 ∈ 𝑋 then 𝐹(𝑔(𝑦), 𝑔(𝑥)) = 𝑔(𝐹(𝑦, 𝑥)). 

Definition 2.11. The mappings 𝐹 and 𝑔 of Intuitionistic fuzzy metric space where 𝐹: 𝑋 ×  𝑋 → 𝑋 and 𝑔: 𝑋 → 𝑋 

satisfy E.A. property if there exist sequences {𝑥𝑛} and {𝑦𝑛} are sequences in 𝑋,such that  lim𝑛→∞ 𝐹(𝑥𝑛 , 𝑦𝑛 ) =  

lim𝑛→∞ 𝑔(𝑥𝑛) = 𝑔(𝑢) and lim𝑛→∞ 𝐹(𝑦𝑛,𝑥𝑛) = lim𝑛→∞ 𝑔(𝑦𝑛) = 𝑔(𝑣) for all 𝑢, 𝑣 ∈  𝑋 and 𝑡 > 0. 

MAIN RESULT                                                                                                           Theorem 3.1.Let 𝑆 and 𝑇 be 

two continuous self mappings of an  intuitionistic fuzzy metric space (𝑋, 𝑀, 𝑁,∗,◊) .Let 𝐴 be a self mapping of 𝑋 

satisfying {𝐴, 𝑆} and {𝐴, 𝑇} are 𝑅-weakly commuting and 

𝐴(𝑋) ⊆  𝑆(𝑋) ∩ 𝑇(𝑋)                                                                                                                                (1) 

and 𝑀(𝐴𝑥, 𝐴𝑦, 𝑡) ≥  𝑟[𝑚𝑖𝑛{𝑀(𝑆𝑥, 𝑇𝑦, 𝑡), 𝑀(𝑆𝑥, 𝐴𝑥, 𝑡), 𝑀(𝑆𝑥, 𝐴𝑦, 𝑡), 𝑀(𝑇𝑦, 𝐴𝑦, 𝑡)}]                          (2.1) 

and 𝑁(𝐴𝑥, 𝐴𝑦, 𝑡) ≤  𝑟′[𝑚𝑎𝑥{𝑁(𝑆𝑥, 𝑇𝑦, 𝑡), 𝑁(𝑆𝑥, 𝐴𝑥, 𝑡), 𝑁(𝑆𝑥, 𝐴𝑦, 𝑡), 𝑁(𝑇𝑦, 𝐴𝑦, 𝑡)}]                           (2.2) 

for all 𝑥, 𝑦 ∈ 𝑋 , 

where 𝑟: [0,1] → [0,1] and 𝑟’: [0,1] → [0,1]   is a continuous function such that 𝑟(𝑡) > 𝑡 and 𝑟’(𝑡) <  𝑡 for each 

𝑡 < 1, 𝑟(𝑡) = 1 and 𝑟’(𝑡) = 0 𝑓𝑜𝑟 𝑡 = 1  .                                                                                       (3)  

The sequences {𝑥𝑛} and {𝑦𝑛} in X are such that 𝑥𝑛 → 𝑥, 𝑦𝑛 → 𝑦, 𝑡 > 0 implies 𝑀(𝑥𝑛,𝑦𝑛 , 𝑡) → 𝑀(𝑥, 𝑦, 𝑡) and 

𝑁(𝑥𝑛,𝑦𝑛 , 𝑡) → 𝑁(𝑥, 𝑦, 𝑡) .Then 𝐴, 𝑆, 𝑇 have a unique common fixed point in 𝑋. 

Proof.  Let 𝑥0 ∈ 𝑋 be any arbitrary point. Since 𝐴(𝑋) ⊆  𝑆(𝑋) there is a point 𝑥1 ∈ 𝑋 such that 𝐴𝑥0 = 𝑆𝑥1. Also 

since  𝐴(𝑋) ⊆  𝑇(𝑋)there is another point 𝑥2 ∈ 𝑋 such that 𝐴𝑥1 = 𝑇𝑥2.In general we get points 𝑥2𝑛−1and 

𝑥2𝑛+2in X such that 𝑆𝑥2𝑛+1 =  𝐴𝑥2𝑛;  𝑇𝑥2𝑛+2 = 𝐴𝑥2𝑛+1𝑓𝑜𝑟 𝑛 = 0,1,2 … … .. 

Let 𝑀2𝑛 = 𝑀(𝐴𝑥2𝑛+1,𝐴𝑥2𝑛,𝑡) 

≥ 𝑟[min {𝑀(𝑆𝑥2𝑛+1, 𝑇𝑥2𝑛 , 𝑡), 𝑀(𝑆𝑥2𝑛+1, 𝐴𝑥2𝑛+1, 𝑡), 𝑀(𝑆𝑥2𝑛+1, 𝐴𝑥2𝑛, 𝑡), 𝑀(𝑇𝑥2𝑛, 𝐴𝑥2𝑛 , 𝑡)}]  

=  𝑟[min {𝑀(𝑆𝑥2𝑛+1, 𝐴𝑥2𝑛−1, 𝑡), 𝑀(𝐴𝑥2𝑛, 𝐴𝑥2𝑛+1, 𝑡), 𝑀(𝐴𝑥2𝑛 , 𝐴𝑥2𝑛, 𝑡), 𝑀(𝐴𝑥2𝑛−1, 𝐴𝑥2𝑛 , 𝑡)}] 

=  𝑟[min{𝑀2𝑛−1𝑀2𝑛, 1, 𝑀2𝑛−1}].                                                                                                           (4.1) 

  𝑁2𝑛 = 𝑁(𝐴𝑥2𝑛+1,𝐴𝑥2𝑛,𝑡) 

≤ 𝑟′[max {𝑁(𝑆𝑥2𝑛+1, 𝑇𝑥2𝑛, 𝑡), 𝑁(𝑆𝑥2𝑛+1, 𝐴𝑥2𝑛+1, 𝑡), 𝑁(𝑆𝑥2𝑛+1, 𝐴𝑥2𝑛, 𝑡), 𝑁(𝑇𝑥2𝑛, 𝐴𝑥2𝑛 , 𝑡)}] 

=  𝑟’[max {𝑁(𝑆𝑥2𝑛+1, 𝐴𝑥2𝑛−1, 𝑡), 𝑁(𝐴𝑥2𝑛 , 𝐴𝑥2𝑛+1, 𝑡), 𝑁(𝐴𝑥2𝑛 , 𝐴𝑥2𝑛 , 𝑡), 𝑁(𝐴𝑥2𝑛−1, 𝐴𝑥2𝑛, 𝑡)}] 

=  𝑟’[max{𝑁2𝑛−1𝑁2𝑛, 1, 𝑁2𝑛−1}].                                                                                                              (4.2) 

If 𝑀2𝑛−1 > 𝑀2𝑛 then 𝑀2𝑛 ≥ 𝑟(𝑀2𝑛) > 𝑀2𝑛 and If 𝑁2𝑛−1 < 𝑁2𝑛 then 𝑁2𝑛 ≤ 𝑟′(𝑁2𝑛) < 𝑁2𝑛 a contradiction, 

therefore,     𝑀2𝑛−1 ≤ 𝑀2𝑛and 𝑁2𝑛−1 ≥ 𝑁2𝑛. From (4.1) and From (4.2)   we get  

𝑀2𝑛 ≥ 𝑟(𝑀2𝑛−1) > 𝑀2𝑛−1                                                                                                                       (5.1) 

𝑁2𝑛 ≤ 𝑟′(𝑁2𝑛−1) < 𝑁2𝑛−1                                                                                                                        (5.2) 

Thus {𝑀2𝑛, 𝑛 ≥ 0} is an increasing sequence of positive real numbers in [0,1] and therefore tends to a limit 

𝐿 ≤ 1 and  {𝑁2𝑛, 𝑛 ≥ 0} is an decreasing sequence of positive real numbers in [0,1] and therefore tends to a limit 

𝐿 ≥1.  We claim that 𝐿 = 1.If 𝐿 < 1,on taking 𝑛 → ∞ in (5.1) we get 𝐿 ≤ 𝑟(𝐿) > 𝐿, a contradiction . Hence 

𝐿 = 1 and if  𝐿 > 1, on taking 𝑛 → ∞ in (5.2) we get 𝐿 ≥ 𝑟′(𝐿) < 𝐿, a contradiction. Hence 𝐿 = 1. 

  Now , for any integer 𝑝, 
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 𝑀(𝐴𝑥𝑛 , 𝐴𝑥𝑛+𝑝, 𝑡) ≥ 𝑀(𝐴𝑥𝑛 , 𝐴𝑥𝑛+1, 𝑡) ∗ … … … . .∗ 𝑀(𝐴𝑥𝑛+𝑝−1, 𝐴𝑥𝑛+𝑝, 𝑡/𝑝) 

                               ≥ 𝑀(𝐴𝑥𝑛, 𝐴𝑥𝑛+1, 𝑡/𝑝) ∗ … … … . .∗ 𝑀(𝐴𝑥𝑛 , 𝐴𝑥𝑛+1, 𝑡/𝑝) 

 𝑁(𝐴𝑥𝑛 , 𝐴𝑥𝑛+𝑝, 𝑡) ≤ 𝑁(𝐴𝑥𝑛 , 𝐴𝑥𝑛+1, 𝑡) ◊ … … … . .◊ 𝑁(𝐴𝑥𝑛+𝑝−1, 𝐴𝑥𝑛+𝑝, 𝑡/𝑝) 

                               ≤ 𝑁(𝐴𝑥𝑛 , 𝐴𝑥𝑛+1, 𝑡/𝑝) ◊ … … … . .◊ 𝑁(𝐴𝑥𝑛 , 𝐴𝑥𝑛+1, 𝑡/𝑝) 

Since lim𝑛→∞ 𝑀(𝐴𝑥𝑛 , 𝐴𝑥𝑛+1, 𝑡) = 1 and  lim𝑛→∞ 𝑁(𝐴𝑥𝑛 , 𝐴𝑥𝑛+1, 𝑡) = 0 , for 𝑡 > 0,it follows that 

lim𝑛→∞ 𝑀(𝐴𝑥𝑛 , 𝐴𝑥𝑛+𝑝, 𝑡) ≥ 1 ∗ 1 ∗ … … … .∗ 1 = 1 and  lim𝑛→∞ 𝑁(𝐴𝑥𝑛 , 𝐴𝑥𝑛+𝑝, 𝑡) ≤ 0 ◊ 0 ◊ … … .◊ 0 = 0 

Thus  {𝐴𝑥𝑛} is a Cauchy sequence and by the completeness of  𝑋,  {𝐴𝑥𝑛}  converges to a point 𝑧𝜖𝑋.Clearly the 

subsequences  {𝑆𝑥2𝑛+1} and {𝑇𝑥2𝑛} of  { 𝐴𝑥𝑛},also converge to the same limit .Thus 𝑆𝑥2𝑛+1 → 𝑧 and  𝑇𝑥2𝑛 → 𝑧 

. Since A is 𝑅-weakly commuting with 𝑆, we get 

𝑀(𝐴𝑆𝑥2𝑛+1, 𝑆𝐴𝑥2𝑛+1, 𝑡) ≥ 𝑀(𝐴𝑥2𝑛+1, 𝑆𝑥2𝑛+1, 𝑡/𝑅) and 

𝑁(𝐴𝑆𝑥2𝑛+1, 𝑆𝐴𝑥2𝑛+1, 𝑡) ≤ 𝑁(𝐴𝑥2𝑛+1, 𝑆𝑥2𝑛+1, 𝑡/𝑅). 

Which by continuity of 𝑆 giveslim𝑛→∞ 𝐴𝑆𝑥2𝑛+1 = lim𝑛→∞ 𝑆𝐴𝑥2𝑛+1 = 𝑆𝑧. 

Now we prove that 𝑆𝑧 = 𝑧. Suppose 𝑆𝑧 ≠ 𝑧 then there exists 𝑡 > 0 such that  

𝑀(𝑆𝑧, 𝑧, 𝑡) < 1  and 𝑁(𝑆𝑧, 𝑧, 𝑡) > 0.Using (2.1) and (2.2) we have 

 

 𝑀(𝐴𝑆𝑥2𝑛+1, 𝐴𝑥2𝑛 , 𝑡) 

≥  𝑟[𝑚𝑖𝑛 𝑀(𝑆2𝑥2𝑛+1, 𝑇𝑥2𝑛, 𝑡), 𝑀(𝑆2𝑥2𝑛+1, 𝐴𝑆𝑥2𝑛+1, 𝑡)𝑀(𝑆2𝑥2𝑛+1, 𝐴𝑥2𝑛 , 𝑡), 𝑀(𝐴𝑥2𝑛 , 𝑇𝑥2𝑛 , 𝑡)}]. 

 𝑁(𝐴𝑆𝑥2𝑛+1, 𝐴𝑥2𝑛 , 𝑡) 

≤  𝑟′[𝑚𝑎𝑥 𝑁(𝑆2𝑥2𝑛+1, 𝑇𝑥2𝑛 , 𝑡), 𝑁(𝑆2𝑥2𝑛+1, 𝐴𝑆𝑥2𝑛+1, 𝑡), 𝑁(𝑆2𝑥2𝑛+1, 𝐴𝑥2𝑛, 𝑡), 𝑁(𝐴𝑥2𝑛 , 𝑇𝑥2𝑛 , 𝑡)}]. 

 In the limiting case we get, 

𝑀(𝑆𝑧, 𝑧, 𝑡) ≥  𝑟[𝑚𝑖𝑛{ 𝑀(𝑆𝑧, 𝑧, 𝑡),𝑀(𝑆𝑧, 𝑆𝑧, 𝑡),𝑀(𝑆𝑧, 𝑧, 𝑡),𝑀(𝑧, 𝑧, 𝑡) }] 

                   =  𝑟[𝑀(𝑆𝑧, 𝑧, 𝑡)] > 𝑀(𝑆𝑧, 𝑧, 𝑡)  

and 𝑁(𝑆𝑧, 𝑧, 𝑡) ≤  𝑟’[𝑚𝑎𝑥{ 𝑁(𝑆𝑧, 𝑧, 𝑡),𝑁(𝑆𝑧, 𝑆𝑧, 𝑡),𝑁(𝑆𝑧, 𝑧, 𝑡),𝑁(𝑧, 𝑧, 𝑡) }] 

                      =  𝑟[𝑁(𝑆𝑧, 𝑧, 𝑡)] < 𝑁(𝑆𝑧, 𝑧, 𝑡) . 

Which is a contradiction .Thus 𝑧 is a fixed point of  𝑆 .Similarly we can show that 𝑧 is a fixed point of 𝐴. Now 

we claim that 𝑧 is also a fixed point of  𝑇.Suppose it is not so. Then for any 𝑡 > 0, 𝑀(𝑧, 𝑆𝑧, 𝑡) < 1and  

𝑁(𝑧, 𝑆𝑧, 𝑡) > 0 and 

 𝑀(𝐴𝑧, 𝐴 𝑇𝑥2𝑛,𝑡) ≥ 𝑟[min { 𝑀(𝑆𝑧, 𝑇2𝑥2𝑛,𝑡), 𝑀(𝑆𝑧, 𝐴𝑧, 𝑡), 𝑀(𝑆𝑧, 𝐴𝑇𝑥2𝑛 , 𝑡) 

                                   𝑀(𝑇2𝑥2𝑛 , 𝐴𝑇𝑥2𝑛, 𝑡)}]. 

 𝑁(𝐴𝑧, 𝐴 𝑇𝑥2𝑛,𝑡) ≤ 𝑟′[max { 𝑁(𝑆𝑧, 𝑇2𝑥2𝑛,𝑡), 𝑁(𝑆𝑧, 𝐴𝑧, 𝑡), 𝑁(𝑆𝑧, 𝐴𝑇𝑥2𝑛, 𝑡) 

                                 𝑁(𝑇2𝑥2𝑛 , 𝐴𝑇𝑥2𝑛 , 𝑡)}]. 

On taking limit 𝑛 → ∞ it gives  
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𝑀(𝑧, 𝑇𝑧, 𝑡)  ≥ 𝑟[min{ 𝑀(𝑧, 𝑇𝑧, 𝑡), 𝑀(𝑧, 𝑧, 𝑡), 𝑀(𝑧, 𝑇𝑧, 𝑡), 𝑀(𝑇𝑧, 𝑇𝑧, 𝑡)}], 

i.e, 𝑀(z,Tz,t) ≥ 𝑟[𝑀(𝑧, 𝑇𝑧, 𝑡)] 

𝑁(𝑧, 𝑇𝑧, 𝑡)  ≤ 𝑟[max { 𝑁(𝑧, 𝑇𝑧, 𝑡), 𝑁(𝑧, 𝑧, 𝑡), 𝑁(𝑧, 𝑇𝑧, 𝑡), 𝑁(𝑇𝑧, 𝑇𝑧, 𝑡)}], 

i.e, 𝑁(𝑧, 𝑇𝑧, 𝑡)  ≤ 𝑟[𝑁(𝑧, 𝑇𝑧, 𝑡)] 

which contradicts (3) . So 𝑀(𝑧, 𝑇𝑧, 𝑡) = 1and 𝑁(𝑧, 𝑇𝑧, 𝑡) = 0 implying 𝑧 is also fixed point of  𝑇. 

 Using (2.1) and (2.2) the uniqueness of the fixed point can be shown easily. Thus 𝑧 is the unique common 

fixed point of 𝐴, 𝑆 and 𝑇 and this completes the proof. 

Taking 𝑇 =  𝑆 in the above theorem we get the following corollary unifying vasuki’s theorem which in turn also 

generalizes the result of pant [12]. 

Corollary 3.2. Let (𝑋, 𝑀, 𝑁,∗,◊)  be an intuitionistic fuzzy metric space and 𝑆 be a continuous self mapping of 

𝑋. Let 𝐴 be another self mapping of 𝑋 satisfying the pair {𝐴, 𝑆} is 𝑅-weakly commuting with 𝐴(𝑋) ⊆ 𝑆(𝑋) and  

 𝑀(𝐴𝑥, 𝐴𝑦, 𝑡) ≥ 𝑟 [𝑚𝑖𝑛{ 𝑀(𝑆𝑥, 𝑆𝑦, 𝑡), 𝑀(𝑆𝑥, 𝐴𝑥, 𝑡), 𝑀(𝑆𝑥, 𝐴𝑦, 𝑡), 𝑀(𝑆𝑦, 𝐴𝑦, 𝑡) }] 

 𝑁(𝐴𝑥, 𝐴𝑦, 𝑡) ≤ 𝑟′[𝑚𝑎𝑥 {𝑁(𝑆𝑥, 𝑆𝑦, 𝑡), 𝑁(𝑆𝑥, 𝐴𝑥, 𝑡), 𝑁(𝑆𝑥, 𝐴𝑦, 𝑡), 𝑁(𝑆𝑦, 𝐴𝑦, 𝑡) }] 

 

 For all 𝑥, 𝑦 ∈ 𝑋, where 𝑟: [0,1] → [0,1]𝑎𝑛𝑑 𝑟′: [0,1] → [0,1]  is a continuous function such that 𝑟(𝑡) > 𝑡 and 

𝑟′(𝑡) < 𝑡. 

For each 0 ≤ 𝑡 < 1 and 𝑟(𝑡) = 1 𝑎𝑛𝑑 𝑟′(𝑡) = 0 for 𝑡 = 1. The sequences {𝑥𝑛} and { 𝑦𝑛} in 𝑋 are such that 

𝑥𝑛 → 𝑥, 𝑦𝑛 → 𝑦,𝑡 > 0 implies 𝑀(𝑥𝑛 , 𝑦𝑛, 𝑡) → 𝑀(𝑥, 𝑦, 𝑡)𝑎𝑛𝑑 𝑁(𝑥𝑛 , 𝑦𝑛 , 𝑡) → 𝑁(𝑥, 𝑦, 𝑡)  .Then 𝐴, 𝑆 have a unique 

common fixed point in 𝑋. 
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