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1. Abstract:

The purpose of this work is to extend and generalize some common random fixed point
theorems for Expansive type mappings in complete cone metric spaces. We are attempting to
generalize the several well- known recent results.

Key wards: common fixed point, cone metric space, random variable

2. Introduction and Preliminaries

Recently, non-convex analysis has found some applications in optimization theory, and
so there have been some investigations about non-convex analysis, especially ordered normed
spaces, normal cones and Topical functions (for example[1,2,3]). In these efforts an order is
introduced by using vector space cones. Huang and Zhang used this approach in [1]; they
defined cone metric spaces by substituting an ordered normed space for the real numbers. In
this paper, we shall show that there are no normal cones with normal constant M < 1, and for
each k > 1 there are cones with normal constant M > k. Also, by providing non-normal cones
and omitting the assumption of normality in some results of [1] . Huang and Zhang [1]
introduced the concept of cone metric space by replacing the set of real numbers by an
ordered Banach space. They prove some fixed point Theorems for contractive mappings using
normality of the cone. The results in [1] were generalized by Sh. Rezapour and Hamlbarani
[4] omitted the assumption of normality on the cone, which is a milestone in cone metric
space. In this manuscript, the known results [5] are extended to cone metric spaces where the
existence of common fixed points for expansive type mappings on cone metric spaces is
investigated.

Definition 2.1. Let E be a real Banach space and let P be a subset of E .then P is called
Cone if and only if

i. P is closed and P = {0};

ii. a,ﬂeR,a,ﬂZO,f(t),g(t)eP:af(t)+ﬁg(t)eP;
iii. f(t)eP,—f(t)eP:f(t)zO.
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Definition 2.2. Let X be non empty setand d: X x X xQQ— E a mapping such that

(pD) 0<d(f (1), g(t).V (1), 9()eX,d(f(),9(1)=0< f(t)=9()
(p2) p(f (1), g(t)) = p(g(®), F(1)); v T (1), g(t) € X
(p3) p(f (1), g(1) < p(f (1), h(®))+ p(h(t), g(®));V f (1), g(t).h(t)e X, vt eQ

then d is called a cone metric on X and( X, d)is called cone metric space on X

Example 2.3. Let E=R2,P={(f(t),g(t))eE,f(t),g(t)zo} and X =Y ,defined by

d(f(t), g(t))z(a‘f (t)-a(t).B|f (t)-a(t).7|f (t)—g(t)‘) wherea, 5,7 >0is  constant
then( X, d ) is cone metric space.

Definition 2.4. Let (X,d)be a cone metric space f (t) e X and {fn (t)} be a sequence in X .
Then
i. {f,(t)}  convergesto f(t) whenevertoevery ceE with 0 « cthereisa
natural number N such that f (t)<<c foralln>N.
ii. {f,(t)}  issaid to be a Cauchy sequence if for everyc e E with 0<<c there isa
natural number N such that d ( f, (t), f,,(t))=c foralln,m>N.
iii. (X,d) is called a complete cone metric space if every Cauchy sequence in X

IS convergent in X.

Definition 2.5. Let(X , d) be a cone metric space,P be a cone in real Banach
space E|if

i aeP and a<<cforsome k €[0,1], then a =0.

i u<v,v<w , then u<w.

Definition 2.6. Let (X ,d ) be a cone metric space and P be a cone metric space in real

Banach space E and o, a,, 05, c,,a 20.

Iff (t)—> f(t),9,(t)>g(t)h,({t)—>h(t).p,{t)—>p inXand
ad (f, (1), f(t))+ad(g,(t).g(t))+azd (h,(t),h(t))+ea,d(p,(t),p). thena =0

3. Main Result:

Theorem 3.1. Let (X,d)be a complete cone metric space with respect to a cone P containing
in a real Banach spaceE. LetT,S be any two surjective self mappings of X satisfy

d(T((1).1),8((9(t)t))zad(f(t),T(F(t),t))+5d(g(t).S(a(t).t))+
yd(f (t),g(t))+k[d (f(t).S(g(t).t))+d(g(t),T(f (t),t))} ——-311
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foreach f(t),g(t)e X, f(t)=g(t) wherea By, k>0,0+p+y>1+2k,
B +vy>kandy>2k. Then T and S have a uniqgue common random fixed point.

Prof. Let f(t)be arbitrary point in X.since T, S are subjective mapping, there exit a point
f,(t)eT™(f,@).t)and f,(t)eS™(f,(t).t)thatis T(f,(t),t)=f,(t)andS(f,(t),t)=f,(t).
In this way, we define the sequence { f, (t)j with f, ., (t)eT™*(f,(t)t) and

foniz (1) €S7H( £, (1), 1) that means

T(f2n+1( ) )_ f, ( ) and

S(fanp (t).t)= foy (t) forn=012,3... ———312
Note that if f, (t)=f,,,(t)forsome n>0then f, (t) isfixed pointof T,S
Now putting f (t)= f,,,(t)and g(t)=f,,,,(t)in 3.1.1we have

)=
d(T(f2n+1( ) ) S(f2n+2( ) )) ad(f2n+l( ) T(f2n+l(t)’t))
+ﬁd( 2n+2( ) T(f2n+2 (t)vt))
+yd ( f2n+l( )’ foni2 (t))
k{d(fmﬂ(t),s(wt),t) }
)

0 ( fonen (1), S (Fopa (1)1

= d(f, (1), fop (1)) 2 ad (£, (1), f,0 (1))
+ 8 (o2 (1), Fona (1))
+7d ( Fanea (1)) Tansz (t))
+k [d (Fana (1), Top (1)) + (£, (1), Ty, (t))]

= d(f, (1), fop (1)) 2 ad (£, (1), 0 (1))
+,Bd(f2n+2(t) f2n+1(t))
+7d( 2n+l(t) f2n+2( ))
[ ( 2n+2 (t) 2n+l( )) (f2n+1(t)’ f2n (t))]
= d(f, (1), fopis (1)) 2 [@+K]d(fos (1), T (1)) +[B+7 +K]d (Fp (1), T (1))
= d(fy0. (1), Fone (1)) < %d (fr(t), Fopa(t))  ————mm—— 313
Where h=%<l asf+y+k=>1+2k
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In general d ( f,, (t), f,., (t))<hd(f,,,(t), f,0 (1))

= d( (1), T (1) <1 (0 (1), £ (1)

So for every positive integer p we have

= d (0 (1), Fopp (1)) <A (F (1), Fopg (1)) +d (s (1), Fopin (1))

Frrreennt O (Fpp g (1), T (1))

<(h" 402" L2 (F (1), (1))
=h*"(1+h+h+..+h*)d(f (1), f, (1))
Mahw) e 3.14

Therefore { fon (t)} is Cauchy sequence ,which is complete space in X there exist
f”(t) e X such that{ f,, ()} — f"(t) sinceT is surjective map. There exists point
g(t)e X suchthatg(t)=T"*(f"(t),t)that means T (g(t),t)=f"(t) ---3.15

Now consider
d(f,, (1), F7 (1)) =d(T (.0 (1).1),9(1))
> ad (£ (8),T (Fonus (t),1))+8d (9 (1), T (9 (1))
f

:>02[a+7+k]d(f*(t),g(t))
=d(f(t).g(t)=0as a+y+k=0
= f (t)=g(t). -—-3.16

Here f°(t)is random fixed point of TasT (g(t).t)=f"(t)=g((t)
Uniqueness: Let h(t)be any random fixed point of T that means

then
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=d(f"(t),h(t))=0as y>2k as proposition 2.5(i)

Corollary 3.2 Let (x, d) be a complete cone metric space with respect to a cone P containing
in a real Banach space E. Let T and S be any two surjective self mappings of X satisfying

d(T(f(t).t),S(g(t).t))=ad(f(t),T(f(t).t))+Bd(a(t).S(g(t).t))+rd(f(t).g(t))
foreach f(t),g(t)e X, f(t)=g(t) wherea,B,y,k>0,0+B+y>1ThenTand S have a
unique common random fixed point

Proof: The proof of the corollary immediately follows by putting k = 0 in the previous
theorem.

Corollary 3.3.Let (X,d ) be a complete cone metric space with respect to a cone P containing
in a real Banach spaceE. LetT,S be any two surjective self mappings of X satisfy

d(T(f(t).t),8(g(t)t)=k[d(F().S(a(t)t))+d(g(t).T(f (t).t))] foreach
f(t),g(t)e X, f(t)=g(t) where a,p,y, k>0 then T and S have a unique common
random fixed point

Proof: The proof of the corollary immediately follows by putting =0, =0 and y=0 in the
previous theorem.
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