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Abstract 

  Recently, a new class of functions between topological spaces called precontinuous 

functions [7] has been introduced and studied (see also [2], [4], [6]).  In the present paper, 

author has studied the construction of these functions and explores some general criteria 

regarding the constructive aspects of these functions.  
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1. PREREQUISITIES :  

  Let G be subset of an arbitrary topological space (X,T ).  The closure and the interior 

of G will be denoted by Cl(G) and Int (G) respectively.  Throughout this paper, we denote Int 

(Cl(G)) by the Bourbaki notation  (G). 

 Let (X, T ) and (Y, 'T ) be two arbitrary topological spaces and f : XY.  Denote E = 

f 


 (G)  (pre–image of G under the mapping f )  whenever G is open in Y. 

1.1 Definition : A subset G of X is said to be regular open if G = (G) (cf. [7],[3] and [4]). 

  Every regular open set is an open set but the converse is not necessarily true.  

1.2 Definition : a subset G of X is said to be preopen [1] if G  (G) (cf [3] and [7]). 

 Every open set is preopen but the converse is not necessarily true.  A closed set can 

not be preopen.  

1.3 Definition : A function f is said to be precontinuous [7] (see also [3], [5]) if E is preopen 

in X.  

Every continuous mapping is precontinuous but the converse is not necessarily true.  

1.4 Definition : A function f is said to be almost precontinuous [7] if E is preopen in X 

whenever G is regular open in Y.  

 Every precontinuous mapping is almost precontinuous but the converse is not 

necessarily true. 
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1.5 Definition : Let X be any non-empty set and the topology T  consists of   , X, A and CA.  

Then (X, T ) is said to be a simple (or s)-topological space.  Here C stands for the complement 

of the set A in X.   

1.6 Definition : Let X be any non-empty set and   consists of   and the collection { Va }of 

subsets of X such that a Va  for fixed aX.   Then (X, T ) is said to be the point (or p)-

topological space.  

2. SOME CHARACTERISTICS PROPERTIES OF p-TOPOLOGICAL SPACE : 

 Let P(G) and Ca (G) denote the power set and the cardinality of the set G respectively.  

2.1  If  F denotes the corresponding family of closed sets in the p-topological space, then it 

may be verified easily that  

     XPXT ,~F       (2.1) 

       2 XPCC aa T F      (2.2) 

If X consists of n-elements,  then it may be verified easily that  

      12 1  n

aa FCC T      (2.3) 

2.2  It is a To space which is not T1.  

2.3  Every open set ( ,  X) of this space is preopen and the only regular open sets in this 

space are   and X.  

2.4  It is a connected space.  

3.  MAIN RESULTS  

 Let (X,T ) be the topological space and F be the corresponding family of closed sets in 

(X, T ).  This suppose that (Y, 'T ) be another arbitrary topological space.  

3.1 Theorem : A function f : XY is precontinuous if for each open set G in Y, E is not 

contained in  aF ( X) for each aF F.   

Proof.  Case 1.  If  E T for all open sets G in Y,  the f is continuous and hence it would be 

precontinuous (cf. definition 1.3).  

Case 2.  If  E T  and given E aF  ( X) for each aF   F,  it may be verified easily that 

 (E)=X.  Hence, E   (E) and  E is preopen for every open set G in Y.  Thus, we assure the 

precontinuity of f.  

Remark.  The condition of theorem 3.1 is not necessary.  

3.1 Example.  Let  X {a,b,c,d}, 
1

T = { , X,{a}}, {a,b,c}, {b,c},  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.7, 2015 

 

104 

F1 = {X,  ,{b,c,d}, {d}, {a,d}},  
2

T = { , X,{a}} Define f : (X, 
1

T )   (X, 
2

T )  such that f(x) 

= x.  It may be observed that f


{b}={b} {b,c,d}F1 and f is precontinuous mapping which 

is not continuous. 

3.2 Thoerem : Let (X, T ) be the s-topological space. Then a mapping f : XY is 

precontinuous.  

Proof. Case 1.  If  E= , X, A or CA for each open set G in Y,  then f is continuous and hence 

precontinuous.  

Case 2.  If  EX, A or CA, then  (E)=X, A or CA and we have E  (E) and hence f is 

precontinuous. 

3.3 Theorem : Let  (X, T ) be the p-topological space and f : XY.  Then  (i) If f is 

continuous then it is precontinuous.  (ii)  If f is not continuous, then it can never be 

precontinuous.  

Proof. (i) Follow directly by the definition.  

(ii) Let if possible f is not continuous but it is precontinuous.  There exists at least one open 

set G in Y such that E is preopen (not open) in X.  In view of equation (2.1), EF and since E 

is preopen, we get E Int(E) which is not true.  We therefore conclude that f is not 

precontinuous.  

3.4 Theorem : Let (X, T ) be the trivial topological space and (Y, 'T ) be any arbitrary 

topological space.  Then f : XY is always precontinuous which may or may not be 

continuous.  

Proof. Case 1.  If E=  or X for each open set G in Y then f is continuous and consequently,  

it is precontinuous.  

Case 2.  If  EX,  then obviously E   (E) = X.  and hence f is pre continuous.  

3.5 Theorem : Let (X, T ) be the Hausdorff space and  f : XY where (Y, 'T ) be any 

arbitrary topological space.  Then (i) If f is continuous, then it is precontinuous.  (ii)  If f is not 

continuous, then it can not be precontinuous  if E is either finite or compact subset of X for at 

least one open set G in Y.   

Proof. (i) holds by definition.  

(ii) Let if possible f is precontinuous but not continuous.  We therefore have that E is preopen 

(not open)  for at least one open set G in Y. 

Case 1. E is finite and X is Hausadorff (cf Theorem 6.8 of [5]), therefore E is closed.  Since E 

is preopen, we conclude that E   Int(E) which is not true. Thus f is not precontinuous is this 

case.  

Case 2.  E is compact and X is Hausdorff (cf. Theorem 5.3 of [5]), hence E is closed. As 

proceeded in case 1,  we again conclude that f is not precontinuous  

Remark. Theorem 3.5 holds even when X is not Hausdorff.  

3.2 Example.  Let X be an infinite set,  let FT  be the collection of all subsets U if X such that 

X–U is either finite or is all of X [5].  Then, it may be checked easily that FT  is a topology on 

X.  The corresponding collection F is closed sets consists of all finite sets and the set X. X is 
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not Hausdorff. If we define f : (X, T )   (X, 'T ) and if E is finite in X,  then it is closed and 

hence f is not precontinuous.  

3.6 Theorem : Let (X, 'T )  be a  p-topological space.  Then f : XY in almost precontinous.   

Proof.  The only regular open sets in Y are   and Y.  Their pre-images under, viz.   and X 

are open (preopen) in X and therefore f is almost precontinuous. (cf. [7]). 
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