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Abstract 

In this paper, we proved a common fixed point theorem ψ-weakly commuting maps in L-Fuzzy Metric Spaces 

for integral type inequality. 
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1. Introduction 

In 1922, Let (X, d) be a complete metric space, c∈ (0, 1) and : X→X be a mapping such that for each x, y ∈ X, 

d ( ) ≤ c d(x, y) Then f has a unique fixed point a ∈ X, such that for each x ∈ X,  by 

S. Banach [23].As a generalization of fuzzy sets introduced by L.A.Zadeh [14], K. Atanassov [13] introduced the 

idea of intuitionistic fuzzy set. Fixed point and common fixed point properties for mappings defined on fuzzy 

metric spaces by [5], [6], [8], [15], [16], Intuitionistic fuzzy metric spaces by [7], [21]. A. George and 

P.Veeramani [2] modified the concept of fuzzy metric space introduced by I. Kramosil and J. Michalek [10] and 

defined a Hausdorff topology on this fuzzy metric space by [12]. Most of the properties which provide the 

existence of fixed points and common fixed points are of linear contractive type conditions. L-fuzzy metric 

spaces have been studied by many authors [11], [24]. H. Adibi et al.[9] introduced the concept of compatible 

mappings and proved common fixed point theorems for four mappings satisfying some conditions in L-fuzzy 

metric spaces. In the sequel, we shall adopt the usual terminology, notation and conventions of L-fuzzy metric 

spaces introduced by R. Saadati et al. [19] which are a generalization of fuzzy metric spaces and intuitionistic 

fuzzy metric spaces [20]. R. Saadati, S.Sedghi and H. Zhou [22] by a common fixed point theorem ψ-weakly 

commuting maps in L-Fuzzy Metric Spaces 

2. Preliminaries 

Definition 2.1 [1]: Let (X, d) be a complete metric space, c∈ (0, 1) and f: X→X be a mapping such that for each 

x, y ∈ X, 

 
where : [0,+∞) →[0,+∞) is a Lebesgue integrable mapping which is summable on each compact subset of 

[0,+∞) , non negative, and such that for each  > o, then f has a unique fixed point  such 

that for each , . 

B.E.Rhoades [4], extending the result of Branciari by replacing the above condition by the following  

 
 

Definition 2.2[11] Let L = (L, ) be a complete lattice, and U a nonempty set called a universe.  

An L-fuzzy set A on U is defined as a mapping A : U → L. For each u in U, A(u) represents the degree (in L) to 

which u satisfies A. 

Lemma 2.1[8]. Consider the set  and the operation  defined by: 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.7, 2015 

 

107 

  = {( , ) : ( , ) ∈  and  +  ≤ 1}, ( , )  ( , )   ≤  and  ≥ , for 

every  

( , ), ( , ) ∈ . Then ( , ) is a complete lattice. 

Classically, a triangular norm T on ([0, 1], ) is defined as an increasing, commutative, associative mapping T: 

satisfying T(1, x) = x, for all x  [0, 1]. These definitions can be straightforwardly extended 

to any lattice L = (L, ) Define first  = inf L and  = sup L. 

Definition 2.3[19]. A triangular norm (t-norm) on L is a mapping T:  → L satisfying the following conditions: 

(i) ( x  L)(T (x, ) = x); (boundary condition) 

(ii) ( (x, y)  )(T (x, y) = T (y, x)); (commutativity) 

(iii) ( (x, y, z)  )(T (x, T (y, z)) = T (T (x, y), z)); (associativity) 

(iv) ( (x, , y, )  )(x  _ and y  T(x, y)  T ( , ));(monotonicity) 

A t-norm   on  is said to be continuous if for any x, y  X and any sequences  which converge 

to x and y we have 

 
Definition 2.4 [7].A t-norm   on  is called t-represent able if and only if there exist a t-norm T and a t-co 

norm S on [0, 1] such that, for all ( , ), ( , ) ∈ .  

Definition 2.5[19]. A negation on L is any decreasing mapping N: L → L satisfying N ( ) =  and N ( ) = 

 If N (N(x)) = x, for all x  L, then N is called an involutive negation. 

 

Definition 2.6[19]. The 3-tuple (X, M, ) is said to be an L-fuzzy metric space if X is an arbitrary (non-empty) 

set,  is a continuous t–norm on L and M is an L-fuzzy set on  satisfying the following conditions 

for every x, y, z in X and t, s in : 

(a) M(x, y, t)  ; 

(b) M(x, y, t) =  for all t > 0 if and only if x = y; 

(c) M(x, y, t) = M(y, x, t); 

(d) (M(x, y, t), M(y, z, s))   M(x, z, t + s); 

(e) M(x, y, ·) : → L is continuous. 

Let (X, M, ) be an L-fuzzy metric space. For t  , we define the open ball B(x, r, t) with center x  X 

and radius r  L  { , }, as B(x, r, t) = {y ∈ X :M(x, y, t)  N(r)}. A subset A ⊆ X is called open if for 

each x  A, there exist t > 0 and r  L { , } such that B(x, r, t) ⊆ A. Let  denote the family of all open 

subsets of X. Then  is called the topology induced by the L-fuzzy metric M. 

Example 2.1 [21]. Let (X, d) be a metric space. Denote (a, b) = ( , min (   , 1)) for all  

a = ( , ) and b = ( , ) in  and let M and N be fuzzy sets on  ×(0,∞) be defined as follows: 

(x, y, t) = (M(x, y, t), N(x, y, t)) = Then (X, , ) is an 

intuitionistic fuzzy metric space. 

Example 2.2 [19]. Let X = N. Define (a, b) = (max (0, −1), ) for all a = ( , ) 

and b = ( , ) in , and let M (x, y, t) on  (0,∞) be defined as follows: 

 
for all x, y  X and t  0. Then (X, M, ) is an L-fuzzy metric space. 

Let (X, M, ) be an L-fuzzy metric space. For t  , we define the open ball B(x, r, t) with center x  X 

and radius r  L  { , }, as B(x, r, t) = {y ∈ X :M(x, y, t)  N(r)}. A subset A ⊆ X is called open if for 
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each x  A, there exist t > 0 and r  L  { , } such that B(x, r, t) ⊆ A. Let  denote the family of all open 

subsets of X. Then  is called the topology induced by the L-fuzzy metric M. 

Lemma 2.2 [9]. Let (X, M, ) be an L-fuzzy metric space. Then M(x, y, t) is non decreasing with respect to t, 

for all x, y in X. 

Definition 2.7[19]. A sequence in an L-fuzzy metric space (X, M, ) is called a Cauchy sequence, if 

for each ε ∈  L  { } and t  0, there exists   N such that for all m  n   (n  m ), 

 M ( , , t)  N(ε). The sequence  is said to be convergent to x  X in the L-fuzzy metric space 

(X, M, ) if  whenever  for every t  0. A L-fuzzy metric space is 

said to be complete if and only if every Cauchy sequence is convergent. 

Definition 2.8 [22] Let (X, M, ) be an L-fuzzy metric space. M is said to be continuous on (0, ) if 

 
whenever a sequence { } in (0 , ) converges to a point (x, y, t) (0 , ) i.e., 

 
Lemma 2.3 [22] Let (X, M, ) be an L-fuzzy metric space. Then M is continuous function on (0, ). 

Definition 2.9[22] Let  be maps from an L-fuzzy metric space (X, M, ) into itself. The maps 

 are said to be weakly commuting if  for each  in X & 

 

Definition 2.10[22].Let  be maps from an L-fuzzy metric space (X, M, ) into itself. The maps 

 are said to be ψ-weakly commuting if there exists a positive real function  

such that  for each  in X and  

Example 2.3[22]. Let X = R. Let (a, b) = ( , min (   , 1)) for all a = ( , ) and b = ( , ) in 

 and let M and N be fuzzy sets on  ×(0,∞) be defined as follows: 

(x, y, t) = , for all  Then (X, , ) is an intuitionistic fuzzy metric 

space. Define   
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 . Therefore, for 

  weakly commuting. But  not weakly commuting since the 

exponential function is strictly increasing. 

3. Main Results 

 

Theorem 3.1. Let (X, M, ) be a left L-fuzzy metric space and let  and  be  weakly commuting self-

mappings of X satisfying the following conditions: 

(3.1.1)  

(3.1.2) either  or  is continuous;  

(3.1.3) 
 

 
where  is a continuous function such that   for each  for every x, y 

in X .Then  and  have a unique common fixed point in X. 

Proof. Let  be an arbitrary point in X. By (3.1.1), there exists  such that  In 

general choose  such that  Then for t > 0,  

 

 

 

 
Thus, is an  increasing sequence in L and therefore, tends to a limit 

 we claim that  For if   when  in the above inequality we get 

 a contradiction. Hence  i.e. 

 
If we define (2.9)    then  Now, we prove that  is a 

Cauchy sequence in  suppose that  is not a Cauchy sequence in  For convenience, Let 

 for n =1,2,3……Then there is an   such that for each integer k, there exists 

integers  with  such that  

(2.10)                      for k = 1, 2, 3….. 

We may assume that 

Example.2.3                       

by choosing  to be the smallest number exceeding  for which (2.10) holds. Using (2.9), we have 

(3.1) 
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Hence,  for every  as  

We know that   

  

                                     

   

   

Thus, as  in the above inequality we have  which is a contradiction. 

Thus,  is a Cauchy and by the completeness of X,  converges to z in X. Also  

converges to z in X. Let us suppose that the mapping A is continuous. Then and 

Further we have since  and  be  weakly commuting  

 
On letting  in the above inequality we get  by lemma (2.3). We now prove that 

 Suppose   then  By (3.1.3)  

 
Letting  in the above inequality we get 

 
a contradiction. Therefore,  Since  we can find  in X such that . 

Now, 

 
Letting  in the above inequality we get 

 
Since  this implies that  also for any  

 which again implies that 

 thus  is a common fixed point of A and B. Now, to prove uniqueness suppose is 

another common fixed point of A and B. Then there exists  such that  and  

 

 

 
Which is contradiction. Therefore, . i.e,  is a unique common fixed point A and B. 
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Example 2.4[22].Consider example 2.1 in which   

Define  and   on X. It is evident that  A is 

continuous  

 

and B is discontinuous. Define   by  ), then  

)  for  and 

 for all  in X,  and  be  weakly commuting. Thus all the 

conditions of last theorem are satisfied and 1 is a common fixed point of A and B. 
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