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Abstract 

In this paper we characterize some properties of projective δ-cover and find some new results 

with δ-supplemented module M. Let M be a fixed R-module. A δ-cover in M is an δ-small 

epimorphism from M onto P.Thes concept introduce by Zhou [14]. A δ-cover is projective δ-cover( 

M-projective δ-cover) in case M is projective. 
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Introduction: 

 Throughout this paper R is an associative ring with unity and all modules are unitary 

R-modules. Let M be a fixed module, a sub module L of module M is denoted by L ≤ M. 

submodule L of M is called essential (large) in M, abbreviated K ≤e M, if for every 

submodule N of M, L ∩ N implies N = 0.  A sub module N of a module M is called small in M, 

Denoted by  N≪M, if for every sub module L of M, the equality N + L = M implies L =M. For each X 

 M, the right Ann(X) in R is  rR(X) = {r  R : xr = 0  for all x in x}. The sub module Z(M) = {x  M 

:  rR(x) is an essential in RR} {x} is singleton, is called singular submodule of M. The module M is 

called singular module if Z(M) = M.( M is non singular if Z(M) = 0). A right R-module is called 

simple if M  0 and M has only proper submodules. A sub module N of M is called minimal in M if N 

 0 and for every submodules A of M, A N implies A = N.  

 An epimorphism PMf : is called small if  Mf ker . A small epimorphism 

PMf : is called projective cover if M is projective with Mf ker .[Zhou] introduce the 

concept of δ-small submodule as generalization of small submodules. Let K ≤ M, K is called δ-small if 

whenever M = N + K and M/N is a singular, we have M = N.( denoted by  ). The sum of all δ-

small submodules is denoted by δ(M). A δ-cover in M is an δ-small epimorphism from M onto P. A δ-

cover is projective δ-cover( M-projective δ-cover)in case M is projective. 

 

Definition: Let M be a fixed R- module. An R-module U is called (small) M-projective 

module, if for every (small) epimorphism PMf :  and homomorphism PUg : , there 

exists a homomorphism MUv : such that gvf  , i.e. following diagram is commute. 
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Example: Every proper sub module of the Z-modules Zp
∞
 is small in Zp

∞
 . 

Remarks: i) Every M-projective module is a small M-projective cover. 

ii) Every self projective module M is self small projective module and converse is true for  

M is hollow. 

Lemma:  [Zhou] Let N be a sub module of M. The following are equivalent: 

i) 𝑁 ≪𝛿 𝑀 

ii) If M = X + N, then M = X ⊕Y for a projective semisimple sub module Y with 

Y ⊆N. 

Proof: [14] 

Lemma: If  each  𝑓𝑖: 𝑁𝑖 → 𝑀𝑖  are M-projective δ-covers for i = 1,2,3,…n, then 

⊕𝑖=1
𝑛 𝑓𝑖 ∶ ⊕𝑖=1

𝑛 𝑁𝑖 → 𝑀𝑖 is M-projective δ- cover. 

Proof: [12] 

Lemma: If N is a direct summand of module M and 𝐴 ≪𝛿 𝑀 , then 𝐴 ∩ 𝑁 ≪𝛿 𝑁. 

Lemma: Let K be a sub module of a M-projective module U. If U/K has a M-projective δ-cover, then 

it has a M-projective δ-cover of the form 
K

U

L

U
f : with  

L

K
f ker   where L ⊆K. 

Proof: Let K be a sub module of a M-projective module U. Let 
K

U
Mf : be a M-projective δ-

cover of
K

U
, and 

K

U
U : is a canonical epimorphism , U is M-projective module, there exists an 

homomorphism ...:  vftsMUv   

0







K

U
M

v

U

K

L

f


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Then  vgM Imker  . By lemma [Zhou] vNM Im  for semi simple sub module N, with N 

⊆ Kerf since  vf v Im)ker( Im  . So vf Im is also M-projective δ-cover of 
K

U
. But 

v
v

U
Im

ker
 by isomorphism  theorem. Since  vf   and Kvker . If we consider the 

isomorphism v
v

U
v Im

ker
:'   defined by .Im,)(ker' UvUuuuvv  Then we obtain 

.
ker

)',ker( Im
v

U
vf v  // 

Lemma: A pair (M, f) is a M-projective δ-cover of finitely generated module U, The there exists a  

finitely generated direct summand M’ of M such that  f IM’ is a M-projective δ-cover of U.  

Theorem:  An R module M has a M-projective δ-cover, then for every epimorphism PMf : , the 

following are equivalent:  

i) PMf : is a M-projective cover. 

ii) M is projective, for every epimorphism PMf ':' , with MM ' , there exists a 

necessarily split epimorphism MMh ': such that 'fhf  . 

iii) For every small epimorphism NMg : , there exists an epimorphism MPh : such 

that ghf   

Corollary: Let PMf : and MMPMf  ',':' , be a M-projective cover. Then there is an 

isomorphism ': MMh  such that fhf ' . In fact if ': MMh  is a homomorphism with 

fhf ' , then h is an isomorphism.  

Proposition:  Let  PMf :  be a M-projective δ-cover. If U is M-projective  and PUg :  is an 

homomorphism , then there exists decomposition BAM   and YXU  such that  

i) XA   

ii) PAf A  : is a M-projective δ-cover. 

iii) PXh X  :  is a M-projective δ-cover. 

iv) B is a Projective semi simple with fB ker and hY ker  

Proof: Since U is M-projective ,  

0



PM

gh

U

f

 

Then there exists MUh :  such that ghf  .Thus we have  fhM kerIm  and 

Mf ker , we have BhM  Im for a semi simple module B with fB ker , by lemma 9. 

PAf A  :  is a M-projective δ-cover. 
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Since direct summand of projective module is projective, so A is projective and homomorphism 

AUh : splits, then there exists UAt : such that AIth  . Thus htYXU kerIm   

this implies .)( XAtA  Since )()ker( BAMAh A   ,we have 

XAthh AX  )()ker()ker(  . PUhfYXhfXg  ))(())(()(  . Thus

PXh X  :  is a M-projective δ-cover.// 

Lemma: Let U be a  M-projective module and MN  , then the following are equivalent; 

i) 
N

M
 has a M-projective δ-cover. 

ii) 21 MMM  for some 1M  and 2M ,with MNMandNM  21 . 

Proof: i)=> ii) Assume that 
N

M
 has a M-projective δ-cover. Let 

N

M
Ug :  be a M-projective δ- 

cover and 
N

M
M : is canonical epimorphism, then there exists an homomorphism MUh :

such that the diagram  

0



N

M
M

gh

U



 

is commute. Therefore NhhM  ImkerIm  . By lemma [Zhou 3.1] there exists a 

decomposition 21 MMM  such that MMX  2: is a M-projective δ-cover and 

.ker1 NM   Thus XNM X   )ker(2  . Since .22 MNMthenMM   

ii)=> i)  it is clear. 

Lemma: If MUf : and NMg : are δ-covers, then fg   is a δ-cover. 

Proof: [12]  

Lemma: Let M, N, P  be R-modules , for some homomorphisms PMf : , NMg : and 

PNh :  such that fgh  then,  

i) F is a small epimorphism if and only if  ghN Imker  . 

ii) A pair (M, f) is a projective δ-cover if and only if g(M) is a δ-supplement of kerh in N and 

Mg ker  

Proof: i) it is clear by lemma R 

(ii)  =>Suppose a pair ( M, f) is a δ-cover, by (i) we have ghN Imker  i.e. f is small 

epimorphism , we get ghfg Imker)(ker  and Mf ker . By lemma [1,1 K. Al-

Thakman] gfg Im)(ker  , hence Img is δ-supplement of kerh in N.  

  Assume that the )(Mg is a δ-supplement of hker  in N, then hgN kerIm  and 

ghg ImkerIm  . Since f is epimorphism, consider  MSf ker and 
S

M
is singular. So 

)()()(ker MgSgfg  but ghfg Imker)(ker  , Hence )(Im)(ker)( SggfgMg   , 
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since 
)(

)(

Sg

Mg
is singular, being a homomorphic image of singular module and 

ghg ImkerIm   . We have )()( SgMg  and so gSM ker , by assumption 

Mg ker and 
S

M
is singular, so SM  . Hence .ker Mf  // 

Theorem:  If 21 MMM  then the following are equivalent: 

i) 2M is a small- 1M -projective. 

ii) For any sub module N of M such that 1M is a δ-supplement of N in M. There exists a sub 

1N of N such that 11 NMM  . 

Proof: [14]. 

Proposition: If U is a sub module of R-module M, then following are equivalent: 

i) 
1M

M
has a M-projective δ-cover, 

ii) If MM 2  and 21 MMM  ,  2M has a δ- supplemented 21' MM  such that 1'M  

has a  M-projective δ-cover. 

iii) 2M  has a δ- supplemented 1'M , which has a M-projective δ-cover. 

Proof:  (i) (ii) Assume that 
1M

M
has a M-projective δ-cover. Therefore 

1

:
M

M
Uf  be a M-

projective δ-cover. Since 
1

221 :,
M

M
MgMMM  is an epimorphism .Given that U is M-

projective module, then there exists an homomorphism 2: MUh  such that hgf  . By lemmaQ]

)(Im 11 UhMhMM  ,where 2)( MUh  . Since Uf ker ,we have

)()(ker)(1 UhfhUhM   and )(Uh  is δ-supplement of 
1

M  in M. Since 

)(:,kerker UhUhUfh   is M-projective δ-cover. 

(ii)(iii) it is clear. 

(iii)(i) Let ': 1MUf  be a M-projective δ-cover. Since '1M is a δ-supplement of M, the natural 

epimorphism 
11

11

11

1
1

'

'

'
':

M

M

M

MM

MM

M
Mg 





is M-projective δ-cover. Hence 

1

:
M

M
Uf   is a M-projective δ-cover, by lemma [A], where   

1

11

11

1 '

'

'
:

M

MM

MM

M
h





 is an 

isomorphism. // 
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