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Abstract

In this paper we characterize some properties of projective 6-cover and find some new results
with &-supplemented module M. Let M be a fixed R-module. A 3-cover in M is an §-small
epimorphism from M onto P.Thes concept introduce by Zhou [14]. A 3-cover is projective d-cover(
M-projective 6-cover) in case M is projective.
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Introduction:

Throughout this paper R is an associative ring with unity and all modules are unitary
R-modules. Let M be a fixed module, a sub module L of module M is denoted by L < M.
submodule L of M is called essential (large) in M, abbreviated K <, M, if for every
submodule N of M, L N N implies N = 0. A sub module N of a module M is called small in M,
Denoted by N<«M, if for every sub module L of M, the equality N + L = M implies L =M. For each X
< M, the right Ann(X) inRis rg(X) ={r e R: xr=0 forall x in x}. The sub module Z(M) ={x e M
: rr(X) is an essential in Rg} {x} is singleton, is called singular submodule of M. The module M is
called singular module if Z(M) = M.( M is non singular if Z(M) = 0). A right R-module is called
simple if M = 0 and M has only proper submodules. A sub module N of M is called minimal in M if N
# 0 and for every submodules A of M, A cN implies A = N.

An epimorphism f:M — P is called small if kerf <<M . A small epimorphism
f :M — Pis called projective cover if M is projective with ker f << M .[Zhou] introduce the
concept of 6-small submodule as generalization of small submodules. Let K <M, K is called 6-small if
whenever M = N + K and M/N is a singular, we have M = N.( denoted by << ). The sum of all &-

small submodules is denoted by 3(M). A d-cover in M is an d-small epimorphism from M onto P. A 3-

cover is projective 3-cover( M-projective 3-cover)in case M is projective.

Definition: Let M be a fixed R- module. An R-module U is called (small) M-projective

module, if for every (small) epimorphism f : M — P and homomorphismg :U — P, there

exists a homomorphism v:U — M such that f ov =g, i.e. following diagram is commute.
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U
x/ vy
M——P >0 (Kerf <<M)
Example: Every proper sub module of the Z-modules Z,” is small in Z,” .
Remarks: i) Every M-projective module is a small M-projective cover.
ii) Every self projective module M is self small projective module and converse is true for
M is hollow.

Lemma: [Zhou] Let N be a sub module of M. The following are equivalent:

i) N «sM
ii) If M=X+N, then M =X @Y for a projective semisimple sub module Y with
Y cN.
Proof: [14]

Lemma: If each f;: N; = M; are M-projective -covers fori=1,2,3,...n, then

Di=1" fi : Di=1" N; > M; is M-projective - cover.

Proof: [12]

Lemma: If N is a direct summand of module Mand A <s M ,then AN N <5 N.

Lemma: Let K be a sub module of a M-projective module U. If U/K has a M-projective 3-cover, then

. . K
it has a M-projective d-cover of the form f :%—)% with ker f = T where L cK.

o U .
Proof: Let K be a sub module of a M-projective module U. Let f: M —>Ebe a M-projective -

U U . . . . . L .
cover OfE’ and 7:U —>E is a canonical epimorphism , U is M-projective module, there exists an

homomorphism v:U —-M st. f ov=1.
L
\2
K
\!
U

;// s

M——>——0
K
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Then M =ker g ®Imv. By lemma [Zhou] M =N @ Imv for semi simple sub module N, with N

c Kerf since ker(fI

Imv Imv

. U
)=<<sImv. So fI is also M-projective o-cover of K But

kL;Imv by isomorphism theorem. Since fov=7x and kervc K . If we consider the
erv

isomorphism v‘:kL—Hmv defined by Vv'(kerv+u)=u YueU,Imv<®U. Then we obtain
erv

ker( f

Imv?

U
V') <<y ——.1I
)= ker v
Lemma: A pair (M, f) is a M-projective 6-cover of finitely generated module U, The there exists a
finitely generated direct summand M’ of M such that {1y is a M-projective 5-cover of U.

Theorem: An R module M has a M-projective 8-cover, then for every epimorphism f :M — P, the
following are equivalent:

i) f : M — Pis a M-projective cover.

i) M is projective, for every epimorphism f':M'— P, with M'<® M , there exists a
necessarily split epimorphism h:M'— M such that f oh= f".

iii) For every small epimorphism g:M — N, there exists an epimorphism h: P — M such
that foh=g

Corollary: Let f :M — Pand f':M'— P, M'<® M, be a M-projective cover. Then there is an
isomorphism h: M — M'such that f 'ch= f . In factif h: M — M"is a homomorphism with
f'oh = f , then h is an isomorphism.

Proposition: Let f :M — P be a M-projective 3-cover. If U is M-projective and g:U — P isan
homomorphism , then there exists decomposition M = A®@ B and U = X @Y such that

i) A= X
ii) fl, : A— Pis a M-projective 5-cover.
iii) hl, : X — P is a M-projective -cover.

iv) B is a Projective semi simple with B ker f and Y — kerh

U

M——P -0

Proof: Since U is M-projective ,

Then there exists h:U —M such that foh=g .Thus we have M =Imh+ker f and
ker f <<; M, we have M =Imh+B for a semi simple module B with B — ker f, by lemma 9.

fl,: A— P is aM-projective 3-cover.
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Since direct summand of projective module is projective, so A is projective and homomorphism
h:U — Asplits, then there exists t: A—U such that hot=1,. Thus U =X @Y =Imt+kerh

this implies A=t(A)=X.  Since ker(hl,) <<5; A (M =A®B) ,we have
ker(hl,)=ker(hl,) <<;t(A)=X . gX)=(foh)(X+Y)=(foh)U)=P . Thus

hl, : X — P is a M-projective 5-cover.//

Lemma: Let U be a M-projective module and N <® M , then the following are equivalent;
i) % has a M-projective 6-cover.
ii) M =M, @M, forsome M, and M, ,with M; N and M, "N <<, M.

. . M o M o
Proof: i)=> ii) Assume that N has a M-projective d-cover. Let g:U —)W be a M-projective 6-

M . . . . . .
cover and 7 : M _)W is canonical epimorphism, then there exists an homomorphism h:U — M

L/

M——) -0

such that the diagram

is commute. Therefore M =Imh+ker:z:Imh+N . By lemma [Zhou 3.1] there exists a

decomposition M =M, @M, such that z, :M, >M is a M-projective &-cover and

M, c ker 7 =N.Thus M, N =ker(sd, ) <<, X . Since M, <® Mthen M, NN <<, M.
ii)=>1) itisclear.

Lemma: If f:U —>Mand g:M — N are 5-covers, then go f isa d-cover.

Proof: [12]

Lemma: Let M, N, P be R-modules , for some homomorphisms f :M — P, g:M — Nand
h:N — P such that ho g = f then,
i) F is a small epimorphism if and only if N =kerh+Img.
ii) A pair (M, f) is a projective d-cover if and only if g(M) is a 6-supplement of kerh in N and
kerg <<; M
Proof: i) it is clear by lemma R
(if) =>Suppose a pair ( M, f) is a 5-cover, by (i) we have N =kerh+Imgi.e. f is small

epimorphism , we get g(ker f)=kerh+Imgand ker f <<; M . By lemma [1,1 K. Al-
Thakman] g(ker f) <<, Img, hence Img is 3-supplement of kerh in N.
< Assume that the g(M) is a d-supplement of kerh in N, then N =Img+kerh and

Img M kerh <<, Img. Since f is epimorphism, consider ker f +S =M and %is singular. So

g(ker f)+g(S)=g(M) but g(ker f)=kerh(1Img, Hence g(M)=g(ker f)(1Img+g(S),
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since is singular, being a homomorphic image of singular module and

9(S)
Imgkerh<<,Img . We have g(M)=g(S) and so M =S+kerg , by assumption

ker g <<; M and %is singular, so M =S . Hence ker f <<, M.//

Theorem: If M = M, + M, then the following are equivalent:

i) M, is asmall- M, -projective.
i) For any sub module N of M such that M is a 3-supplement of N in M. There exists a sub
N, of N such thatM =M, @ N, .

Proof: [14].
Proposition: If U is a sub module of R-module M, then following are equivalent:

. M o
i) —— has a M-projective 8-cover,
1

ii) If M, <M and M =M, +M,, M,has a §-supplemented M’ = M, such that M ",
hasa M-projective 5-cover.
iii) M, has a 3- supplemented M, , which has a M-projective 3-cover.

. .. M M
Proof: (i) =(ii) Assume that IR has a M-projective 8-cover. Therefore f:U ——be a M-
1 1

projective &-cover. Since M =M;+M,,g: M, %% is an epimorphism .Given that U is M-
1

projective module, then there exists an homomorphism h:U — M,such that f = goh. By lemmaQ]
M=M,+Imh=M,+h(U) ,where hWU)=<<;M, . Since kerf <<;U ,we have
M, NhU)=h(ker f) <<;hU) and hU) is &-supplement of M in M. Since
kerh<ker f <<;U,h:U — h(U)is M-projective 5-cover.

(i)=(iii) itisclear.

(iii)=(i) Let f :U — M, 'be a M-projective 5-cover. Since M, 'is a §-supplement of M, the natural
M _M +M;" M

epimorphism g:M,'—> is  M-projective  d-cover.  Hence

M.AM, M, M,
M,' M, +M,"
f:U —>ﬂ is a M-projective 8-cover, by lemma [A], where h: L1 M1 s an
Ml Ml ﬂ Ml Ml
isomorphism. //
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