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Abstract. In this paper, we have studied some properties of spe-
cial geodesic mappings on Riemannian manifolds. We have shown
that if f : (Mn, g) → (M̄n, ḡ) is a special geodesic mapping of
a flat Riemannian manifold (Mn, g) onto a Riemannian manifold
(M̄n, ḡ), then M̄n is of constant curvature.

1. Introduction

During last 20 years the theory of geodesic mapping of affine -
connected, Riemannian and Kahlerian spaces has been attractive field
of investigation and many new and interesting results have appeared.
The geodesic problems was first posed by E. Beltrami [2, 3]. Sig-
nificant contributions to the investigation of the general laws of this
theory were made by T. Levi- Civita [6], T. Y. Thomas[16], A. S.
Solodovnikov[14, 15] G. I. Kruchkovich[5], N. S. Sinyukov[13], L. P.
Einsenhart[4], A. Z. Petrov[12], A. P. Norden[11] and others.

2. Preliminaries

Let Mn and M̄n be a n-dimensional Riemannian manifold with met-
ric g and ḡ and Levi-Civita connections ∇ and ∇̄ respectively. A
diffeomorphism f : Mn → M̄n is called a geodesic mapping of Mn and
M̄n if f maps any geodesic in Mn onto a geodesic in M̄n. It is known
that [7, 8] a manifold Mn admits a geodesic mapping onto M̄n if and
only if the Levi-Civita equations

∇̄XY = ∇XY + π(Y )X + π(X)Y (2.1)

holds for any tangent vectors X, Y and π is a differential 1-form. In
local form, we may write (2.1) as

Γ̄h
ij = Γh

ij + πjδ
h
i + πiδ

h
j , (2.2)
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where Γ̄h
ij and Γh

ij are the Christoffel symbols of M̄n and Mn, πi are

components of π and δhi is the Kronecker delta.
The condition (2.2) is equivalent to the following Levi-Civita equation
[7]

gjk,i = 2πi gjk + πj gik + πk gij, (2.3)

where “,”denotes the covariant differentiation in Mn and πi is some
gradient like vector i.e., πi = π,i. It is known that[7]

πi = ∂iπ, πi =
1

2n+ 1
.
∂

∂xi
log |det ḡ

det g
|, ∂i =

∂

∂xi
.

If πi 6= 0 holds, then the mapping is called non-trivial geodesic map-
ping; otherwise trivial of affine.

The Curvature tensor of a Riemannian manifold Mn is given by [10]

Rh
ijk =

∂

∂xi
Γh
jk −

∂

∂xj
Γh
ik − Γh

imΓm
jk − Γh

jmΓm
ik. (2.4)

If a mapping f : Mn −→ M̄n is geodesic then from (2.2) and (2.4), we
obtain the following relation:

R̄h
ijk = Rh

ijk − ψjkδ
h
i + ψikδ

h
j , (2.5)

where Rh
ijk and R̄h

ijk are the Riemannian curvature tensors of the man-

ifold Mn and M̄n respectively and ψij is given by

ψij = πi,j − πiπj. (2.6)

In index free notation (2.5) and (2.6) can be written as

R̄(X, Y, Z) = R(X, Y, Z)− ψ(Y, Z)X + ψ(X,Z)Y (2.7)

and

ψ(Y, Z) = (∇Y π)Z − π(Y )π(Z). (2.8)

Contracting X in the equation (2.7), we get the following relation be-
tween Ricci tensors R̄ic(Y, Z) and Ric(Y, Z) of manifolds M̄n and Mn

respectively

R̄ic(Y, Z) = Ric(Y, Z)− (n− 1)ψ(Y, Z). (2.9)

3. A Special Geodesic Mapping f : Mn → M̄n

In this section, we consider a geodesic mapping f : Mn → M̄n whose
associated 1− form π satisfies

(∇̄Xπ)(Y ) = π(X)π(Y ), (3.1)
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i.e., π is recurrent with respect to Levi-Civita connection ∇̄. We call
such a geodesic mapping as special geodesic mapping. Now, we have

(∇̄Xπ)(Y ) = X(π(Y ))− π(∇̄XY ).

Using (2.1) in above, we get

(∇̄Xπ)(Y ) = (∇Xπ)(Y )− 2π(X)π(Y ), (3.2)

which, on using (3.1), gives as

(∇Xπ)(Y ) = 3π(X)π(Y ). (3.3)

Again, in view of equation of (2.8), we get from above

ψ(X, Y ) = 2π(X)π(Y ). (3.4)

Due to above equation, expressions for curvature tensor, Ricci tensor
and scalar curvature tensor given by equations (2.7) and 2.9), takes the
following forms,

R̄(X, Y, Z) = R(X, Y, Z)− 2π(Y )π(Z)X + 2π(X)π(Z)Y (3.5)

and
R̄ic(Y, Z) = Ric(Y, Z)− 2(n− 1)π(Y )π(Z). (3.6)

Now, we prove following theorems:

Theorem 3.1. Let f : (Mn, g) → (M̄n, ḡ) be special geodesic map-
ping of a Riemannian manifold (Mn, g) onto a Riemannian manifold
(M̄n, ḡ). Then associated 2− form ψ(Y, Z) of special geodesic mapping
satisfies

(∇̄Xψ)(Y, Z) = 2π(X)ψ(Y, Z).

Proof: We have from equation (3.4)

(∇̄Xψ)(Y, Z) = 2(∇̄Xπ)(Y )π(Z) + 2π(Y )(∇̄Xπ)(Z),

which, in view of equation (3.1), gives

(∇̄Xψ)(Y, Z) = 2π(X)2π(Y )π(Z), (3.7)

which, due to equation (3.4), yields

(∇̄Xψ)(Y, Z) = 2π(X)ψ(Y, Z). (3.8)

This is complete proof of the theorem.

Theorem 3.2. Let f : (Mn, g) → (M̄n, ḡ) be special geodesic map-
ping of a Riemannian manifold (Mn, g) onto a Riemannian manifold
(M̄n, ḡ). Then associated 2− form ψ(Y, Z) of special geodesic mapping
satisfies

(∇Xψ)(Y, Z) = 5π(X)ψ(Y, Z).
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Proof: We have

(∇̄Xψ)(Y, Z) = X(ψ(Y, Z))− ψ(∇̄XY, Z)− ψ(Y, ∇̄XZ).

Using equation (2.1) in above, we get

(∇̄Xπ)(Y ) =X(ψ(Y, Z))− ψ(∇XY + π(Y )X + π(X)Y, Z)

−ψ(Y,∇XZ + π(Z)X + π(X)Z,Z).

After simplification and using equation (3.4), we arrive at

(∇̄Xψ)(Y, Z) = (∇Xψ)(Y, Z)− 8π(X)π(Y )π(Z),

which in view of (3.7), gives

(∇Xψ)(Y, Z) = 5π(X).2π(Y )π(Z). (3.9)

Again using equation (3.4) in above, we get

(∇Xψ)(Y, Z) = 5π(X)ψ(Y, Z). (3.10)

This proves the statement.

Theorem 3.3. Let f : (Mn, g) → (M̄n, ḡ) be special geodesic map-
ping of a Riemannian manifold (Mn, g) onto a Riemannian manifold
(M̄n, ḡ). Then the tensor D(X, Y, Z) defined by

D(X, Y, Z) = (∇̄Xψ)(Y, Z)− (∇̄Y ψ)(X,Z) (3.11)

vanishes.

Proof: Proof follows from the equations (3.4), (3.8) and (3.11).

Theorem 3.4. Let f : (Mn, g) → (M̄n, ḡ) be special geodesic map-
ping of a Riemannian manifold (Mn, g) onto a Riemannian manifold
(M̄n, ḡ). Then the tensor E(X, Y, Z) defined by

E(X, Y, Z) = (∇Xψ)(Y, Z)− (∇Y ψ)(X,Z) (3.12)

vanishes.

Proof: Proof follows from the equations (3.4), (3.10) and (3.12).

Theorem 3.5. If f : (Mn, g) → (M̄n, ḡ) is a special geodesic map-
ping of a Riemannian manifold (Mn, g) onto a Riemannian manifold
(M̄n, ḡ), then

(∇̄U R̄)(X, Y, Z) = (∇̄UR)(X, Y, Z)− 2π(U)ψ(Y, Z)X + 2π(U)ψ(X,Z)Y.
(3.13)

Proof: Proof follows from the equations (2.7) and (3.8).
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Theorem 3.6. If f : (Mn, g) → (M̄n, ḡ) is a special geodesic map-
ping of a Riemannian manifold (Mn, g) onto a Riemannian manifold
(M̄n, ḡ), then

(∇̄XR̄ic)(Y, Z) = (∇̄XRic)(Y, Z)− 4(n− 1)π(X)π(Y )π(Z). (3.14)

Proof: Proof follows from the equations (3.1) and (3.6).

Theorem 3.7. Let f : (Mn, g)→ (M̄n, ḡ) be special geodesic mapping
of a flat Riemannian manifold (Mn, g) onto a Riemannian manifold
(M̄n, ḡ). Then M̄n is of constant curvature.

Proof: If Mn is flat, then from equations (3.5) and (3.6), we have

R̄(X, Y, Z) = −2π(Y )π(Z)X + 2π(X)π(Z)Y (3.15)

and

R̄ic(Y, Z) = −2(n− 1)π(Y )π(Z). (3.16)

In view of equations (3.15) and (3.16), we have

R̄(X, Y, Z) =
1

n− 1
[R̄ic)(Y, Z)X − R̄ic)(X,Z)Y ], (3.17)

which proves the result.

Corollary 3.1. Let f : (Mn, g)→ (M̄n, ḡ) be special geodesic mapping
of a flat Riemannian manifold (Mn, g) onto a Riemannian manifold
(M̄n, ḡ). Then M̄n is symmetric iff it is Ricci symmetric.

Proof: Differentiating (3.17) covariantly, we get

(∇̄U R̄)(X, Y, Z) =
1

n− 1
[(∇̄U R̄ic)(Y, Z)X − (∇̄U R̄ic)(X,Z)Y ].

(3.18)
From above we see that if M̄n is Ricci symmetric, then M̄n is symmet-
ric. Also if M̄n is symmetric, then M̄n is Ricci symmetric always true.
This complete the proof.

Theorem 3.8. Let f : (Mn, g) → (M̄n, ḡ) be special geodesic map-
ping of a Riemannian manifold (Mn, g) onto a Riemannian manifold
(M̄n, ḡ). Then following relation holds:

(1) if Mn is flat manifold , then M̄n is divergence free and
(2) if M̄n is flat, then Mn is divergence free.

Proof: (1) Divergence of the curvature tensor of a Riemannian mani-
fold M̄n is given by [1]

(divR̄)(X, Y, Z) = (∇XR̄ic)(Y, Z)− (∇Y R̄ic)(X,Z). (3.19)
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Suppose Mn is flat, i.e. R(X, Y, Z) = 0, therefore from equation (3.6),
we have

R̄ic(Y, Z) = −2(n− 1)π(Y )π(Z).

From this, we get

(∇̄XR̄ic)(Y, Z) = −2(n− 1)[(∇̄Xπ)(Y )π(Z) + π(Y )(∇̄Xπ)(Z)]

which, due to the equation (3.1), gives

(∇̄XR̄ic)(Y, Z) = −4(n− 1)π(X)π)(Y )π(Z).

Clearly, we have

(∇̄XR̄ic)(Y, Z)− (∇̄Y R̄ic)(X,Z) = 0. (3.20)

Using equation (3.20) in equation (3.19), we get

(divR̄)(X, Y, Z) = 0, (3.21)

which shows that M̄n is divergence free.
Similarly we can prove the other part (2).

Theorem 3.9. Let f : (Mn, g) → (M̄n, ḡ) be special geodesic map-
ping of a Riemannian manifold (Mn, g) onto a Riemannian manifold
(M̄n, ḡ). Then M̄n is Ricci flat if and only if

W (X, Y, Z) = R̄(X, Y, Z). (3.22)

.

Proof: The Weyl Projective curvature tensor W of Mn is given by [9]

W (X, Y, Z) = R(X, Y, Z)− 1

n− 1
[Ric(Y, Z)X −Ric(X,Z)Y ]. (3.23)

Suppose the equation (3.22) hold. Then from equation (3.23), we get

R̄(X, Y, Z) = R(X, Y, Z)− 1

n− 1
[Ric(Y, Z)X −Ric(X,Z)Y ]. (3.24)

Using equation (3.5) in above equation, we get

2π(X)π(Z)Y − 2π(Y )π(Z)X =
1

n− 1
[Ric(X,Z)Y −Ric(Y, Z)X].

(3.25)
In view of equation (3.6), the above equation, gives

R̄ic(X,Z)Y = R̄ic(Y, Z)X,

which on contraction, gives

R̄ic(Y, Z) = 0.
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This shows that M̄n is Ricci flat manifold.

Conversely, suppose M̄n is Ricci flat manifold. Then from equation
(3.6), we have

Ric(Y, Z) = 2(n− 1)π(Y )π(Z). (3.26)

Using this in equation (3.23), we get

W (X, Y, Z) = R(X, Y, Z)+
1

n− 1
[2(n−1)π(X)π(Z)Y−2(n−1)π(Y )π(Z)X]

(3.27)
Now, equations (3.5) and (3.27), we get

W (X, Y, Z) = R̄(X, Y, Z).

This completes the proof.
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