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ABSTRACT 

The  study examines exchange rate volatility with GARCH models using monthly exchange rate data from 

January 1990 to November 2013. Simple rate of returns is employed to model the exchange rate volatility of 

Ghana Cedi-United States Dollar. The models included both symmetric and asymmetric models that capture the 

most common stylized facts about returns such as volatility persistence and leverage effect. The result identified 

EGARCH (2, 2) as the overall best fitted model. This model has the least AIC of -6.28 and SIC of -6.16.  

Diagnostic test of the models residuals with the Ljung-Box test, the ARCH-LM test and the ACF plots revealed 

that the models are free from higher order autocorrelation and conditional heteroscedasticity separately. Our 

results also revealed persistence of volatility and the non-existence of leverage effects as shown by the 

asymmetric models. 

Keywords: Leptokurtic, volatility persistence, leverage effect. 

 

 1. Introduction 

Exchange rate is one of the macroeconomic variables that play an essential role in the management of most 

economies. Changes in exchange rates have pervasive effects, with consequences for prices, wages, interest 

rates, production levels, and employment opportunities, and thus with direct or indirect implications for the 

welfare of virtually all economic participants. 

 Exchange rate refers to the number of one currency required to purchase one unit of another currency while 

volatility is a measure for variation of price of a financial instrument over time. There are various possible 

factors that could account for exchange rate volatility.  Froot and Rogoff (1991) noted that increases in 

government consumption tend to increase the relative price of nontradables which forms a large proportion of 

government spending. This was collaborated by De Gregorio et al. (1994). Stancik (2007) also outlined the 

sources of exchange rate volatility as domestic and foreign money supply, inflation, level of output and the 

exchange rate regime. The study seeks to modelled exchange rate volatility between the Ghana cedi and the US 

dollar. 

2.Materials and Methods 

2.1 Data and Source  

The data for this study was monthly exchange rate data of the Ghana cedi to the US dollar from January, 1990 to 

November 2013. The data was obtained from the Bank of Ghana database. 276 data points was used in the 

estimation and the remaining 11 data point was also used in our out of sample forecast.  

2.2 Unit Root Test 

In order to make inferences on time series, the data must be weakly stationary. A weakly stationary time series is 

one who’s first and second moments are invariant of time. We check for stationarity by using The Augmented 

Dicker Fuller Test and Philip Perrons test. 
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2.2.1 Augmented Dicker Fuller Test 

We used the Augmented Dickey Fuller (ADF) Test to determine whether the times series has a unit root (non-

stationary) or is weakly stationary. This test is based on the assumption that the series follows a random walk 

with model.   

𝑦𝑡 = 𝛾1𝑦𝑡−1 + 𝑒𝑡 

The null hypothesis for this test is : 

H0: 𝛾 = 0, the existence of unit root and the alternative hypothesis is 

 H1: 𝛾 < 0, the non-existence of unit root. The test statistic for the ADF test is given by  

𝐴𝐷𝐹 =
γ

SE(γ)̂
                                                                                                              

Where 𝛾 denote the Least Squares estimates of 𝛾 and 𝑆𝐸(�̂�) is the standard error. The null hypothesis is rejected 

if the test statistic is greater than the critical value. 

2.2.2 Philip-Perron (PP) Test 

The PP test is similar to the ADF test with regards to the statement of its hypothesis. This test corrects the 

statistic for serial correlation and possible Heteroscedastic error terms. The test is based on the regression 

equation 

∆𝑌𝑡 = 𝛼 + 𝜋𝑌𝑡−1 + 𝛿𝑡 + 𝜀𝑡                                                                                                   

Where 𝑌𝑡 is the time series, 𝛼 is the intercept, 𝜋 is the coefficient of interest, t is the time or trend variable and 𝜀𝑡 

is the disturbance term. The Ordinary Least Squares standard errors are adjusted for serial correlation in the 

disturbance term 𝜀𝑡 .We fail to reject the null hypothesis of the existence of unit root if the test statistic is less 

than the critical value 

2.3 Testing for Heteroscedasticity 

One of the most significant issues before applying the Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) methodology is to first examine the residuals for evidence of heteroscedasticity.  

We will employ the Ljung-Box Statistics test and the ARCH LM test 

2.3.1 ARCH-LM Test 

The ARCH-LM test proposed by Engle (1982) is used to test for the presence of conditional heteroscedasticity in 

the model residuals. In summary, the test procedure is performed by first obtaining the residuals from the 

ordinary least squares regression of the conditional mean equation which might be an autoregressive (AR) 

process, moving average (MA) process or a combination of AR and MA processes; (ARMA) process. After 

obtaining the residuals, the next step is regressing the squared residuals on a constant and q lags. The null 

hypothesis is: 

H0: There is no heteroscedasticity in the model residuals 

against 

H1: There is heteroscedasticity in the model residuals 

The test statistic is 

LM = 𝑛𝑅2                                                                                                            

where n is the number of observations and 𝑅2  is the coefficient of determination of the auxiliary residual 

regression. 

𝑒𝑡
2 = 𝛽0 + 𝛽1𝑒𝑡−1

2 + 𝛽2𝑒𝑡−2
2 +. . . +𝛽𝑞𝑒𝑡−𝑞

2 + 𝑣𝑡                                        
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where 𝑒𝑡 is the residual. The null hypothesis is rejected when the p-value is less than the level of significance and 

is concluded that there is heteroscedasticity. 

2.3.2 Ljung – Box Test  

The null hypothesis (𝐻0 ) for this test is that the first lags of the autocorrelation function of the series is zero 

against the alternative hypothesis ( 𝐻1) that not all the first lags of the autocorrelation function of the series is 

zero.  

The test statistic is given as;  

𝑄 = 𝑇(𝑇 + 2) ∑(𝑇 − 𝑘)−1𝑟𝑘
2

𝑚

𝑘=1

 

where 

𝑟𝑘
2 represent the residual autocorrelation at lag k 

T is the number of residua\\m is the number of time lags included in the test 

Q is also asymptotically as chi-square with degrees of freedom under the null hypothesis. The decision rule is to 

reject the null hypothesis of non-autocorrelation of the residuals if the p- value of Q is less than the significance 

level. 

 

2.4 Volatility Modelling Techniques. 

The study employed both symmetric and asymmetric models. In the symmetric models, the conditional variance 

only depends on the magnitude, and not the sign, of the underlying asset, whereas in the asymmetric models the 

shocks of the same magnitude, positive or negative, have diverse effect on future volatility. 

2.4.1 The Generalized Autoregressive Conditional Heteroscedasticity (GARCH) Model 

The GARCH model introduces and use the lagged conditional variance terms as autoregressive terms. The 

standard GARCH (p, q) process is specified as: 

𝑎𝑡 = 𝜎𝑡𝜖𝑡      𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝑎𝑡−1

2𝑝
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗 

 2𝑞
𝑗=1                                                 

  𝑤ℎ𝑒𝑟𝑒 

 𝛼𝑜 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0, ∑ (𝛼𝑖 + 𝛽𝑗) < 1

max(𝑝,𝑞)

𝑖=1

. 

2.4.2 The Exponential GARCH (EGARCH) Model 

This model captures asymmetric responses of the time-varying variance to shocks and, at the same time, ensures 

that the variance is always positive. It was developed by Nelson (1991) with the following specification. An 

EGARCH (p, q) model can be written as 

ln(𝜎𝑡
2) = 𝜔 + ∑ 𝛼𝑖 |

𝜀𝑡−1

𝜎𝑡−1
− ∫

2

𝜋
|

𝑝
𝑖=1 + ∑ 𝛽𝑗 log(𝜎𝑡−1

2 )𝑞
𝑗=1 + ∑ 𝛾𝑘 |

𝜀𝑡−1

𝜎𝑡−1
|𝑟

𝑘=1                   

Where 𝛾 is the asymmetric response parameter or leverage parameter. 

2.3 Models estimation and selection 

The study made use of the maximum likelihood estimation approach to estimate the parameters of the models 

and the best models selected based on the Akaike Information Criterion (AIC) and the Schwarz Bayesian 

Information (SIC) Criterion. The best model is the one with least values of AIC and SIC. 
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2.4 Model Diagnostics 

The selected models were tested to determine whether or not they properly represent the data set. The diagnostic 

check on the residuals of the fitted models was to examined whether they are white noise series or not. The 

Ljung Box test, the ARCH-LM test and the ACF plots of the standardised residuals and squared residuals were 

applied to the residuals of the best models to determine whether they are random and their variance 

homoscedastic. 

2.5 Results and Discussions  

The distribution is positively skewed and the excess kurtosis of 11.86 shows that the series is   leptokurtic in 

nature. The skewness indicates non-normality and this is supported by the Jarque Berra statistic of 1271.46 with 

an associated p-value of zero as showed in Table 1. To provide better economic and statistical interpretation for 

the exchange rate data as indicated by Tsay (2005), the data was converted to returns by taking the log 

difference. We then checked for stationarity by using the Augmented Dicker Fuller test and the Philips- Perrons 

test as shown in Tables 2 and 3 respectively, both tests confirms that the data is stationary.  

We fitted a mean equation with various ARMA (p, q) models and selected an ARMA (1, 1) as the best mean 

equation based on AIC and SIC values as shown in Table 4. A test for heteroscedasticity was performed on the 

residuals of the mean equation with the ARCH LM test and the Ljung Box test as shown in Tables 5 and 6 

respectively.  

The order determination of the models was done by examining the Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) plots of the squared returns and the squared residuals series. 

We fitted several ARCH models and selected the best ARCH model based on their AIC and SIC values. This 

was done for the rest of the models and ARCH (3), GARCH (2, 3), EGARCH (2, 2) and TGARCH (2, 3) models 

were selected as best models in their respective categories. These results are shown in Tables 7 to 10.1.  

The significance of 𝛼𝑖   in ARCH(3)and 𝛼𝑖 𝑎𝑛𝑑 𝛽𝑗 in GARCH (2, 3) indicates that lagged conditional variance 

and squared disturbance has an impact on the conditional variance, in other words this means that news about 

volatility from the previous periods has an explanatory power on current volatility. 

There is evidence of weakly stationarity in volatility of the monthly exchange rate in the GARCH (2,3) model as 

the sum of the ARCH parameters and the GARCH parameter are less than one,(i.e.0.380209+0.346804-

.473063+.235592+.496889 = 0.986431). This implies that there is volatility persistence in the monthly exchange 

rate. The persistence in the volatility in the monthly exchange rate means that the impact of new shocks or 

information on the monthly exchange rate will last for a longer period. 

The EGARCH (2, 2) is covariance stationary since the sum of the GARCH parameters ( 𝛽𝑗) are less than one. It 

also provides evidence to the effect that the volatility in the current month’s rate of exchange rate is perfectly 

explained by the volatility in the previous month’s exchange rate.   

Moreover, there was the existence of asymmetric effects on the volatility of the monthly exchange returns. 

Consequently positive shocks (news) and negative shocks (news) would have different impacts on the volatility 

of the monthly exchange rates. However, there was no evidence of leverage effects in the two asymmetric 

models as the leverage parameter(𝛾) is positive in the EGARCH (2, 2) and negative in the TGARCH (2, 3). The 

absence of leverage effects indicates that the impact of a positive shock on the volatility of the monthly exchange 

rate exceeds that of a negative shock of equal magnitude. From the results, a positive shock would have an 

impact of 0.6119 on exchange rate in the EGARCH(2,2) model and 0.8428 in the TGARCH(2,3)  model while a 

negative shock of the same magnitude would have an impact of -0.7495 in the EGARCH(2,2) model and 0.2126 

in the TGARCH(2,3) model respectively.  

This is consistent with the findings of Giot (1999), Olewe (2009) and Bala and Asemota (2013). The EGARCH 

(2, 2) model was selected as the overall best model when it was compared with the other models based on their 

AIC and SICS values as shown in Table 11. The conditional mean and conditional variance equations of the 

EGARCH (2, 2) are given below. 

𝑦𝑡 =  0.004208 + 0.858562𝑦𝑡−1 + 𝑎𝑡 − 0.2752071𝜀𝑡−1, 𝑎𝑡 = 𝜎𝑡𝜀𝑡    and 
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ln(𝜎𝑡
2) = −0.912221 − 0.363771 |

𝜀𝑡−1

𝜎𝑡−1

− ∫
2

𝜋
| + 0.294954 |

𝜀𝑡−2

𝜎𝑡−2

− ∫
2

𝜋
| + 0.680713 |

𝜀𝑡−1

𝜎𝑡−1

|

+ 0.801330 log(𝜎𝑡−1
2 ) + 0.112875 log(𝜎𝑡−2

2 ) 

Dropping the insignificant parameter, the EGARCH (2, 2) model reduces to. 

ln(𝜎𝑡
2) = −0.912221 − 0.363771 |

𝜀𝑡−1

𝜎𝑡−1

− ∫
2

𝜋
| + 0.294954 |

𝜀𝑡−2

𝜎𝑡−2

− ∫
2

𝜋
| + 0.680713 |

𝜀𝑡−1

𝜎𝑡−1

|

+ 0.801330 log(𝜎𝑡−1
2 ) 

 

The selected model was diagnosed using the Univariate ARCH LM test, the Ljung Box test and the ACF plots of 

the residuals and were found to be adequate. 

The evaluation of the forecasted results using the Chi-Square goodness of fit test shows that there is no 

significance difference between the expected and the observed values as shown in Table 15 

4.6 Conclusions 

In this study, the exchange rate volatility between the Ghana cedis and US dollars from January, 1990 to 

November, 2013 was studied. The results revealed that volatility is persistent. The study also found that there is 

an adverse asymmetric reaction with good news increasing the volatility more than bad news. 
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APPENDIX 

Table1: Descriptive Statistics for exchange rate return series 

 

 Mean  0.014756 

 Median  0.006496 

 Maximum  0.147983 

 Minimum -0.016216 

 Std. Dev.  0.022585 

 Skewness  2.655882 

 Kurtosis  11.85897 

 Jarque-Bera  1271.463 

 Probability  0.000000 

 Sum  4.220180 

 Sum Sq. Dev.  0.145377 
 

 

 

Figure1: Histogram of descriptive statistics. 
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Table2: Augmented Dicker-Fuller test  

Test                               Constant           P-value                  Constant + Trend         P-value 

ADF                            -4.087254           0.0012                     -4.271757                      0.0040 

                                                    Critical values 

1%                              - 3.453400                                           -3.990935 

5%                              -2.871582                                            -3.425841 

10%                            -2.572193                                           -3.136090  
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Table 3:Philips –Perrons Test 

Test              Constant                  P-value            Constant + Trend    P-value 

PP              -9.243601 0.0000            -9.494340              0.0000 

                                              Critical values 

1%              -3.453153                                         -3.990585 

5%             -2.871474                     -3.425671 

10%           -2.572193                                          -3.135994 

 

 

 

Table 4: Selecting an appropriate mean equation 

ARMA(p,q)            AIC             SIC          

ARMA(1,1)       -5.1529*           -5.1134 *       

ARMA(2,1)       -5.1463            -5.1067        

ARMA(1,2)       -5.1420            -5.1025       

ARMA(2,2)      -4.9528             -4.9131  

ARMA(2,3)     -4.8690              -4.8303 

ARMA(3,2)     -4.8313             -4.7915 

ARMA(3,3)     -4.8405             -4.8007 

 

Table5: Heteroskedasticity Test: ARCH  LM   test   

     

     

F-statistic 5.188111     Probability 0.0000 

Obs*R-squared 52.40494     Probability 0.0000 

     
     

 

Table6: Test for Heteroscedasticity (ARCH effects) using Ljung Box test 

 

 

 

 

 

 

 

 

 

 

Lags              Test statistic                    P-value 

     6                        86.94                           0.000 

    12                    104.58                            0.000 

    18                    105.90                            0.000 

    24                    110.51                            0.000 

    36                    119.14                            0.000 
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Figure2: ACF and PACF square returns 

 

 

Figure 3: ACF and PACF of square residuals 

 
Table 7: Selecting the best ARCH model 

Model             AIC                   SIC 

    1               -5.7813             -5.7152 

    2              -5.8412              -5.7621 

    3              -5.9823*              -5.8900* 
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Table 7.1: Estimate parameters of ARCH (3) 

 

     

     

Variable Coefficient Std. Error z-Statistic Prob.   

     

     

C 0.005098 0.002525 2.019196 0.0435 

AR(1) 0.860566 0.042109 20.43665 0.0000 

MA(1) -0.323967 0.050841 -6.372141 0.0000 

     

     

 Variance Equation   

     

     

𝛼0 2.32E-05 3.16E-06 7.343816 0.0000 

𝛼1 0.421938 0.103341 4.663574 0.0000 

𝛼2 0.138041 0.057012 2.421236 0.0155 

𝛼3 0.414510 0.095881 4.323171 0.0000 

     
     

 

Table 8: Selecting the best GARCH model. 

Model                           AIC                      SIC 

GARCH(1,1)              -6.1092               -6.0301 

GARCH(1,2)              -6.1044                -6.0121 

GARCH(2,1)             - 6.1067               -6.0143 

GARCH(2,2)             -6.0994                -5.9939 

GARCH(2,3)             -6.2098 *              -6.0911* 

GARCH(3,2)             -6.0924               -5.9737 

GARCH(3,3)            -6.1198                -5.9880 

 

Table 8.1: Estimate parameters of GARCH (2, 3) 

  

     
     

Variable Coefficient Std. Error z-Statistic Prob.   

     
     

C 0.003093 0.001507 2.051682 0.0402 

AR(1) 0.813910 0.040999 19.85195 0.0000 

MA(1) -0.311451 0.077618 -4.012621 0.0001 

     
     
 Variance Equation   

     
     

𝛼0 6.16E-06 1.77E-06 3.470828 0.0005 

𝛼1 0.380209 0.069340 5.483240 0.0000 

𝛼2 0.346804 0.057705 6.009926 0.0000 

𝛽1 -0.473063 0.029876 -15.83425 0.0000 

𝛽2 0.235592 0.032011 7.359693 0.0000 

𝛽3 0.496889 0.036680 13.54657 0.0000 
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Table 9: Selecting the best EGARCH model 

Model                                   AIC                        SIC 

EGARCH(1,1)                -6.2378                 -6.1355 

EGARCH(1,2)                -6.0969                 -5.9914 

EGARCH(2,1)               -6.0850                 -5.9793 

EGARCH(2,2)           -6.2816*          -6.1630* 

EGARCH(2,3)           -6.0295           -5.8977 

EAGRCH(3,2)          -6.0990          -5.9671 

EGARCH(3,3)  -        6.2651        -6.1501 

 

 

Table 9.1: Parameters estimate of EGARCH (2, 2) 
 

     
     

Variable Coefficient Std. Error z-Statistic Prob.   

     
     

C 0.004208 0.001426 2.951852 0.0032 

AR(1) 0.858562 0.034816 24.66001 0.0000 

MA(1) -0.275207 0.053857 -5.109988 0.0000 

     
     
 Variance Equation   

     
     

𝛼0 -0.912221 0.219257 -4.160505 0.0000 

𝛼1 -0.363771 0.116324 -3.127214 0.0018 

𝛼2 0.294954 0.098256 3.001888 0.0027 

𝛾 0.680713 0.103558 6.573260 0.0000 

𝛽1 0.801330 0.168448 4.757132 0.0000 

𝛽2 0.112875 0.157730 0.715624 0.4742 

     
     

 

 

 

Table10: Selecting the best TGARCH model 

Model                                      AIC                    SIC 

TGARCH(1,1)                     -6.1169 -6.0246 

TGARCH(1,2)                    -6.1366 -6.0311 

TGARCH(2,1)                    - 6.0498            -5.9443 

TGARCH(2,2)          -6.0154          -5.8967 

TGARCH(2,3)          -6.2034*          -6.0715* 

TGARCH(3,2)                     -6.0386           -5.9067 

TGARCH(3,3)          -5.9615         -5.8164 
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Table10.1: Parameters estimate of TGARCH (2, 3) model. 

 

     
     

Variable Coefficient Std. Error z-Statistic Prob.   

     
     

C 0.002014 0.001242 1.621231 0.1050 

AR(1) 0.888971 0.031820 27.93761 0.0000 

MA(1) -0.534720 0.063594 -8.408295 0.0000 

     
     
 Variance Equation   

     
     

𝛼0 1.37E-06 5.67E-07 2.407478 0.0161 

𝛼1 0.606283 0.110655 5.479034 0.0000 

𝛾 -0.630217 0.159273 -3.956839 0.0001 

𝛼2 0.236483 0.050789 4.656219 0.0000 

𝛽1 -0.244248 0.041125 -5.939128 0.0000 

𝛽2 0.212095 0.037381 5.673826 0.0000 

𝛽3 0.454835 0.042198 10.77847 0.0000 

     
     

 

 

 

Table 11: Selecting the most appropriate model 

Model                      AIC                         SIC 

ARCH(3) -5.9823 -5.8900 

GARCH(2,3)          -6.2098                  -6.0911 

EGARCH(2,2)       -6.2816*                  -6.1630* 

TGARCH(2,3)       -6.2034                  -6.0715 

 

MODEL DIAGNOSTICS  

Table12: Heteroskedasticity Test: ARCH LM for 

EGARCH(2,2)   

     

     

F-statistic 0.247895     Probability 0.9954 

Obs*R-squared 3.093091     Probability 0.9949 

     
     

 

 

Table 13: Ljung Box test for EGARCH (2,2) 

LAGs            test Statistic           P- value 

6                          1.3926 0.966 

12                       3.2794 0.993 

18   4.7920                  0.999 

24     6.2208                1.000 

36   10.047                 1.000             
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Figure 4: ACF of standardised residuals and squared residuals of EGARCH (2,2) 

 

 
 

 

Table 14: Forecast values for EGARCH (2, 2) with corresponding observed values. 

 Year/Month                                   Observed                  Forecasted 

2013M01 0.002125                         0.001332 

2013/M02     0.001273        0.002202 

2013M03     0.007710                         0.001944 

2013M04     0.006084                         0.005628 

2013M05     0.014637                         0.005693 

2013M06     0.003138                         0.010700 

2013M07     0.001283                         0.005371 

2013M08     0.003329                         0.002822 

2013M09     0.002502                         0.003314 

2013M10     0.034240    0.002967 

2013M11     0.025833    0.021386 

 

Table 15: Chi-square goodness of fit test 

Critical values(table values) 

5%  

Test Statistic 

18.307    0.3712 
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