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Abstract 

In this work a stochastic model is developed and analyzed for the dynamics of Typhoid fever. 

The model includes susceptible, vaccinated, infected, carrier and recovered individuals. The 

model used in this work is based on a deterministic model. The deterministic model is 

transformed into a stochastic model and solved numerically using MATLAB. It is shown that 

the model satisfies the conditions for existence and uniqueness of solution. The simulation 

result also shows that increased vaccination rate will lead to Typhoid fever reduction and 

possible extinction.  
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1.0 INTRODUCTION  

Typhoid is endemic in many developing countries and remains a substantial public health 

problem despite recent progress in water and sanitation coverage (Lauria et al, 2009). 

Globally, it is estimated that typhoid fever causes more than 16 million cases of illness each 

year, resulting in more than 600,000 deaths (Kariuki et al, 2004). Typhoid fever is a 

communicable disease found only in human and occurs due to systemic infection mainly by 

salmonella typhi organism. It is an acute generalized infection of the intestinal lymphoid 

tissue and the gall bladder. Incubation period, usually 10-14 days but it may be as short as 3 

days or as long as 21 days. The epidemic is transmitted by feco-oral route or urine-oral route 

either directly through hands soiled with faeces or urine of cases or carriers or indirectly by 

ingestion of contaminated water, milk, food or through flies (Singh, 2001).  

The literature and development of mathematical epidemiology are well documented and can 

be found in Anderson (1991), Bailey (1975), Brauer and Castillo-Chavez (2000). Modeling 

and transmission dynamics of typhoid is an important topic for a lot of researchers; Lauria et 

al (2009) developed an optimization model for reducing typhoid cases in developing countries 

without increasing public spending. Their work suggested that the magnitude of herd 

protection effects greatly influences the total number of cases avoided and the value of public 

treatment cost savings. Also, Kalajdzievska and Li (2011) developed a mathematical model 

for assessing the effects of carriers on the transmission dynamics of infectious diseases such 

as typhoid. They concluded that carriers play a significant role in the transmission of 

infectious diseases. Mushayabasa et al (2013) studied an epidemiological model for direct and 

indirect transmission of typhoid fever. Sensitivity analysis of the basic reproduction number 

suggested that indirect typhoid transmission has more impact on determining typhoid 

prevalence compared to direct transmission.                

Other researchers on infectious diseases include Kalu and Inyama (2012), Omame and 

Inyama (2014), to mention but a few. 

These models are mostly deterministic, and assume that all input variables are deterministic 

functions of time, ignoring completely the randomness of these variables. Because the 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.8, 2015 

 

105 

fundamental biological processes involved are stochastic, ignoring their inherent randomness 

may lead to misleading and erroneous results. 

In this work, we overcome these limitations by extending the work of Mushayabasa (2011) 

and converting it to a stochastic model. Numerical simulations are carried out and analyzed 

with the aid of MATLAB.  

 

2.0 MODEL FORMULATION 

2.1 The Deterministic model equations 

Let 𝑆(𝑡), 𝐼(𝑡), 𝐶(𝑡) , 𝑉(𝑡) and 𝑅(𝑡) denote the susceptible, infected, carrier, vaccinated and 

recovered individuals at time𝑡. 

 

The flow diagram for the deterministic model is given by 

 

 

            𝜇𝑉                  
  𝜑                                            𝑏 
       𝜏                    

                  𝛼                   𝛽                  𝛾 

                  
 
        𝜇𝑆                   (𝜇 + 𝜎)𝐼        (𝜇 + 𝛿)𝐶          𝜇𝑅 
 
Fig. 2.1 

  : Recruitment rate 

 

𝛼: Per capita infection rate   

 

𝛽: Rate at which infected becomes carrier  

 

𝛾:  Rate of recovery for carriers 
 

𝑏: Recovery rate for infectious individuals 

  

 𝜎: Per capita disease-induced mortality rate  

 

𝜑: Rate at which susceptible individuals are vaccinated 

 

𝜇 : Natural mortality rate 

 

𝜏 : Rate at which the vaccine wanes 

 

𝛿: Per capita carrier-induced mortality rate  

 

Susceptibles 𝑆(𝑡): The number of individuals who can be infected but may have not yet 

contracted the salmonella typhi but may contract it if exposed to any mode of its transmission. 

Infectives 𝐼(𝑡): the number of individuals who have contracted the salmonella typhi and are 

capable of transmitting it. 

𝑆(𝑡) 𝐼(𝑡) 𝐶(𝑡) 𝑅(𝑡) 

𝑉(𝑡) 
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Carriers 𝐶(𝑡): the number of individuals (treated or not) who, although apparently healthy 

themselves,  continue to shed bacteria in their faeces and are capable of transmitting the 

infection. 

Recovered 𝑅(𝑡) : the number of individuals who are recovered after treatment and are 

immune to the disease. The model assumes that there is drug efficacy. 

 

Vaccinated 𝑉(𝑡): the number of individuals who have been vaccinated and can return to the 

susceptible class due to waning vaccination rate.  

 The differential equations for the deterministic model are as follows: 

 

( )

( )

( ) ......................................................................................(2.1)

( )

dS
SI S V

dt

dV
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dt

dI
SI b I

dt

dC
I C
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C bI R
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   

   

 


      


  




     



    

  


 

The transition probabilities are shown on Table 2.1 

 

Table 2.1 TRANSITION PROBABILITIES 

Change Probability Event 

[1 0 0 0 0]𝑇 𝑃1 = ∆𝑡  Birth of a susceptible 

[−1 1 0 0 0]𝑇  𝑃𝟐 = 𝜑𝑆∆𝑡                      Susceptible becomes vaccinated 

[−1 0 1 0 0]𝑇 𝑃𝟑 = 𝛼𝑆𝐼∆𝑡 Susceptible becomes infected 

[−1 0 0 0 0]𝑇 𝑃4 = 𝜇𝑆∆𝑡 Susceptible dies natural death 

[1 − 1 0 0 0 ]𝑇 𝑃𝟓 = 𝜏𝑉∆𝑡 Vaccinated becomes susceptible 

[0 − 1 0 0 0]𝑇 𝑃6 = 𝜇𝑉∆𝑡 Vaccinated dies natural death 

[0 0 − 1 1 0]𝑇 𝑃7 = 𝛽𝐼∆𝑡  Infected becomes a carrier 

[0 0 − 1 0 1]𝑻 𝑃𝟖 = 𝑏𝐼∆𝑡 Infected recovers 

[0 0 − 1 0 0]𝑇 𝑃𝟗 = (𝜇 + 𝜎)𝐼∆𝑡  Infected dies 

[0 0 0 − 1 1]𝑇  𝑃10 = 𝛾𝐶∆𝑡                       Carrier recovers 

 [0 0 0 − 1 0]𝑇  𝑃11 = (𝜇 + 𝛿)𝐶∆𝑡                       Carrier dies  

[0 0 0 0 − 1]𝑇  𝑃12 = 𝜇𝑅∆𝑡                       Recovered dies naturally 

 

 

2.2 The Stochastic Model Equations (SDEs) 

Using the second modelling procedure developed by Allen, et al (2008), the stochastic model 

equations are given by   

 1 2 3 4

( , ( )) ( , ( )) ( )
.................................................(2.2)

(0) (0), (0), (0), (0)
T

d X f t X t dt G t X t dW t

X X X X X

   
 

  
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The drift vector is defined as 
12

1

j j

j

f p 


  

where j  and 
jp  are the random changes and transition probabilities respectively (see Table 

2.1) 

The drift vector 𝑓  is given by 

 

( )

( )

( )

( )

SI S V

S V

f SI b I

I C

C bI R

   

  

   

   

 

     
 

  
     
 

   
   

 

 

The diffusion matrix 𝐺 has the entries 
1

2
,i j jp   

where  ,i j  and jp ( 1,...,5, 1,...,12i j  ) are the components of the random changes and 

transition probabilities respectively. 

The diffusion matrix 𝐺 is given by: 
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           Also, where 

1 2 3 4 5 6 7 8 9 10 11 12( ) [ ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )]TW t W t W t W t W t W t W t W t W t W t W t W t W t  

is a vector of twelve independent Wiener processes. 

The probability distribution 𝑝(𝑡, 𝑥) of the solution that solves the above stochastic differential 

equation satisfies the forward kolmogorov equation given below: 

 
25 5 12 12

, ,

1 1 1 1

[ ( , ) ( , ) ( , )][ ( , ) ( , )]( , ) 1
................................(2.3)

2

i l j li

i i j li i j

p t x g t x g t xp t x f t xp t x

t x x x   


  

   
 

 

2.3 Existence and Uniqueness theorem for SDEs (Ito, 1951) 

 

Assume that the coefficients in the following system of stochastic differential equations  

1 1

( , ) ( , ) ..............................................................................(2.4)
n m

i j

t i t ij t t

i j

dX a t X dt b t X dW
 


  


  
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where  
1 2

1 2

( , ,...... )

( , ,....... )

n T

t t t t

m T

t t t t

X X X X

W W W W




 

 

( , )i ta t X  is an 𝑛 −dimensional vector with entries ( , )ia t x  

 

( , )ij tb t X  is an 𝑛 × 𝑚 matrix with entries ( , )ijb t x   

 

satisfy the following Lipschitz and growth conditions in (2.5) for some constant 𝑘 < ∞, and 

 

for all 𝑡 ∈ 𝑅  and 𝑥, 𝑦 ∈ 𝑅𝑛  

 

( , ) ( , )

( , ) ( , )
.....................................................................................(2.5)
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Then for each 𝑥0 ∈ 𝑅𝑛  there is a unique solution to the system of stochastic differential 

equations (2.4) such that 0 0.X x  

Now consider equation (2.2) with the following: 

  

 (0) [ (0), (0), (0), (0), (0)] [70,54,64,28,10]X S V I C R   
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Then there exists a constant 0M   such that 
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The elements of the diffusion matrix are continuously differentiable. 

 

Also, for the system (2.2) 

 

5
2

1

( )i

i

f f x


      and  

5 12
2

1 1

( )ij

i j

G g x
 

                            

 

where   

 

2 2 2 2 2[ ( ) ] [ ( ) ] [ ( ) ] [ ( ) ] [ ]f SI S V S V SI b I SI C C bI R                                   

 

 

2 2 2 2 2 ( ) 2 ( )G S SI S V V I bI I I C C C R                          

 

Both if  and 
ijg  are continuously differentiable at [ (0), (0), (0), (0), (0)]S V I C R  and hence 

satisfy the Lipschitz condition (by the Mean value theorem for calculus). Since the norms 

exist, they are bounded. They drift and the diffusion matrices are therefore bounded. Hence, 

they satisfy the conditions for existence and uniqueness of solution.  

 

3.0  Numerical Simulation  

We set year as a unit of time. The natural mortality rate 𝜇 is postulated to be equal to the 

inverse of the life expectancy at birth (Santrock, 2007). It is about 49 years in Nigeria 

(UNAIDS-WHO, 2004); that is 𝜇 = 1 49⁄ = 0.02041𝑦𝑟−1. The recruitment rate   controls 

the total population size because  𝑁~  𝜇⁄ . We set = 𝜇 × 41𝑦𝑟−1(Song, et al 2002). The 

per capita infectious rate 𝛼  is taken to be 0.0072 𝑦𝑟−1.  The per capita Typhoid-induced 

mortality rate 𝜎 is 0.9 𝑦𝑟−1 (Adetunde, 2008). For this simulation we set the carrier-induced 

mortality rate 𝛿 to be 0.013 𝑦𝑟−1(Adetunde, 2008). Following Lauria et al (2009), 𝜑 is the 

rate at which susceptible humans are vaccinated and is taken to be 0.9 𝑦𝑟−1.  𝜏 is the rate at 

which vaccination wanes and is taken to be 0.33 𝑦𝑟−1  (Lauria et al, 2009). We take the 

recovery rate as the inversion of an average period between the typhoid activation and the 

moment of recovery. According to Adetunde (2008), rate of recovery  for carriers 𝛾 is taken 
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to be 0.115 𝑦𝑟−1  while the rate of recovery for infectious individuals  𝑏  is set to be 

0.096 𝑦𝑟−1. The initial populations which were taken to be 𝑆(0)= 70, 𝑉(0)= 54, 𝐼(0)= 64, 

𝐶(0)=28, 𝑅(0)= 10, were based on the examination of monthly medical record at the Usman 

Danfodio University Teaching Hospital, Sokoto in 2004 (Ameh and Opara, 2004)  
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FIG. 1   GRAPH OF POPULATION WITH TIME (phi=0.7)
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4.0 Results 

The figures above show the graphs of the different populations: susceptible, vaccinated, 

infected, carrier, and recovered individuals against time. In figure 1, the susceptibles, infected, 

and carrier populations decrease drastically with time while the vaccinated and recovered 

populations increase with time. This is as a result of high vaccination rate of 0.70 𝑦𝑟−1. If the 

vaccination rate increases, more people become immune to the typhoid disease.  Figure 2 

shows the recovered and vaccinated populations decreasing with time whereas there is an 

increase in the infected, susceptible and carrier populations. This is as a result of low 

vaccination rate of 0.5 𝑦𝑟−1 as well as low recovery rate of 0.0115 𝑦𝑟−1 for carriers.  When 

the vaccination rate decreases, and no proper treatment for carriers and infected populations, 

the disease persists in the population. In the result of Adetunde (2008), the higher the 

population density, the greater the risk of instability of the permanent immunity equilibrium, 

which implies the possibility of an epidemic in the population. He also concluded that an 

increase in the rate of infection with time decreases the susceptible population to almost zero 

level. Also, in the result of Mushayabasa (2011), the infective population rose to a peak at the 

initial stage of the epidemic and then decreased sharply with time as the vaccination rate is 
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FIG. 2  GRAPH OF POPULATION WITH TIME (phi=0.5,gamma=0.0115 )
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increased. However, in our result as the vaccination rate is increased with time, the infective 

population falls but with fluctuations before reaching a low level. As the time increases with 

increasing vaccination rate, half of the population becomes susceptible. The paths are not 

smooth as in the deterministic approach of previous results. This is as a result of the fact that 

the deterministic model is insensitive to stochastic variations which can occur in actual 

population. 

5.0 CONCLUSION AND FURTHER RESEARCH 

In this work a stochastic differential equation model is developed and analyzed for the 

prevalence of typhoid disease. The model, which is a multidimensional diffusion process, 

includes susceptible, carrier, infected, vaccinated and treated or recovered individuals. The 

result shows that increased vaccination rate will lead to typhoid disease extinction while low 

vaccination rate as well as improper treatment for carriers will produce an epidemic. 

Further research may include analytical solution of the present model, as well as applications 

of typhoid modelling in nationwide-scale study and implicate the proposed model to other 

contagious diseases of childhood such as chickenpox, malaria, cholera, etc. 
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