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Abstract 

 In this paper we have generalized the result of Kamal Wadhwa and Hariom Dubey by using occasionally 

weakly compatible maps using intuitionistic fuzzy metric space. The concept of compatible maps introduced by 

Kramosil and Michalek and weakly compatible maps in fuzzy metric space is generalized by A. Al. Thagafi and 

Nasser Shahzad by introducing the concept of occasionally weakly compatible mappings. 
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Introduction 

Fuzzy Set was introduced and defined by Zadeh. Kramosil and Michalek introduced fuzzy metric space, George 

and Veeramani modified the notion of fuzzy metric space with the help of continuous t- norm. Vasuki proved 

fixed point theorem for R- weakly commuting mapping. Pant introduced the new concept of common fixed point 

theorems.  

Preliminaries 

Definition: A binary operation *: [0, 1] × [0, 1] → [0, 1] is a continuous t-norm if * is satisfying the 

following conditions: 

(a)  * is commutative and associative;  

(b)  * is continuous;  

(c)  a * b = a for all a ∈  [0, 1];  

(d) a* b ≤ c * d whenever a ≤ c and  b ≤ d and a, b, c, d  ∈ [ 0, 1]. 

Definition: A 3-tuple (X, M, *) is said to be a fuzzy metric space if X is an arbitrary set, * is a continuous 

t-norm and M is a fuzzy set on X
2 

× (0, ∞ ) satisfying the following conditions ; for all x, y, z ∈ X, s, t  > 

0. 

(FM-1)M (x, y, t) > 0; 

(FM-2) M(x, y, t) =1 if and only if x = y; 

(FM-3) M(x, y, t) = M(y, x, t); 

(FM-4) M(x, y, t)* M(y, z, s) ≤ M(x, z, t + s); 

(FM-5) M(x, y,.): (0, ∞ )→[ 0, 1 ] is continuous.  

Then M is called a fuzzy metric on X. The function M(x, y, t) denote the degree of nearness between x 

and y with respect to t.  

Example: Let (X, d) be a metric space. Denote a *b =a b for a, b ∈ [0, 1] and let 𝑀𝑑 be a fuzzy set on X
2
 

× (0, ∞) defined as follows: 

                    𝑀𝑑 (x, y, t) =
𝑡

𝑡+𝑑(𝑥,   𝑦)
 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.8, 2015 

 

184 

Then (X, 𝑀𝑑, *) is a fuzzy metric space, we call this fuzzy metric induced by a metric d the standard 

intuitionistic fuzzy metric space. 

Definition: Let (X, M,*) be a fuzzy metric space, then  

(a) A sequence {𝑥𝑛} in X is said to be convergent to x in X if for each  > 0 and each     t > 0, there exists  

𝑛0 ∈ N such that  M (𝑥𝑛, x, t) > 1  ̶   for all n ≥ 𝑛0. 

(b)A sequence {𝑥𝑛} in X is said to be Cauchy if for each  > 0 and each t > 0, there exist 𝑛0 ∈ N such that 

M (𝑥𝑛, 𝑥𝑚, t) > 1  ̶   for all   n, m ≥ 𝑛0 . 

(c)A fuzzy metric space in which every Cauchy sequence is convergent is said to be complete. 

Definition: Two self-mappings A and S of a fuzzy metric space (X, M, *) are called compatible if  lim
𝑛→∞

 M 

(AS𝑥𝑛, SA𝑥𝑛, t) = 1, whenever { 𝑥𝑛} is a sequence in X such that 

lim𝑛→∞ 𝐴𝑥𝑛  = lim𝑛→∞ 𝑆𝑥𝑛 =x for some x in X. 

Definition: Two self-maps A and B of a fuzzy metric space (X, M, *) are called weakly compatible (or 

coincidentally commuting) if they commute at their coincidence points, i.e. if Ax = Bx for some x ∈ X 

then ABx = BAx. 

If self-maps A and B of a fuzzy metric space (X, M, *) are compatible then they are weakly compatible. 

Let (X, M,*) be a fuzzy metric space with the following condition: 

(FM-6)lim𝑡→∞M (x, y, t) =1 for all x, y ∈ X. 

Lemma: Let (X, M, *) be a fuzzy metric space. If there exists k ∈[0, 1] such that  

M (x, y, kt) ≥ M(x, y, t) then x = y. 

Lemma: Let {𝑥𝑛} be a sequence in a fuzzy metric space (X, M, *) with the condition (FM-6). If there 

exists k ∈[0, 1] such that 

M (𝑦𝑛, 𝑦𝑛+1, kt) ≥ M (𝑦𝑛−1, 𝑦𝑛, t) for all t > 0 and n ∈ N 

Then { 𝑦𝑛 } is a Cauchy sequence in X. 

Lemma: Let X be a set A and B owc self maps of X. If A and B have a unique point of coincidence w = Ax = 

Bx, then w is the unique common fixed point of A and B. 

Main Results 

Theorem: Let (X, M,  N, *, ◊) be a complete intuitionistic fuzzy metric space and let A, B, S, T be self mapping 

of X. Let the pairs (A, S) and (B, T) be owc and k > 1 then  

M(Ax, By, kt) ≤ min

{
 
 

 
 
M(Sx, Ty, t), M(Sx, Ax, t), M(Ty, By, t),

M(Sx, By, t), M(Ty, Ax, t)
aM(Ax,Ty,t)+ b M(By,Sx,t)+ c M(Sx,Ty,t)

a + b + c
,

M(By,Ty,t)+ M(Ax,Sx,t)

2 }
 
 

 
 

                                         (1) 

N(Ax, By, kt) ≥ max

{
 
 

 
 
N(Sx, Ty, t), N(Sx, Ax, t), N(Ty, By, t),

N(Sx, By, t), N(Ty, Ax, t)
aN(Ax,Ty,t)+ b N(By,Sx,t)+ c N(Sx,Ty,t)

a + b + c
,

N(By,Ty,t)+ N(Ax,Sx,t)

2 }
 
 

 
 

                                           (2) 

For all x, y Є X and t > 0 such that Aw = Sw = w and a unique point z Є X such that            Bz = Tz = z. 

Moreover z = w, so that there is a unique common fixed point of A, B, S, T. 
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Proof: Let the pairs (A, S) and (B, T) are OWC so there are points x, y Є X such that           Ax = Sx and By = 

Ty, we claim that Ax = By. If not then by inequality (1) and (2) 

 M(Ax, By, kt) ≤  min

{
 
 

 
 
M(Sx, Ty, t), M(Sx, Ax, t), M(Ty, By, t),

M(Sx, By, t), M(Ty, Ax, t)
aM(Ax,Ty,t)+ b M(By,Sx,t)+ c M(Sx,Ty,t)

a + b + c
,

M(By,Ty,t)+ M(Ax,Sx,t)

2 }
 
 

 
 

                                         

N(Ax, By, kt) ≥ max

{
 
 

 
 
N(Sx, Ty, t), N(Sx, Ax, t), N(Ty, By, t),

N(Sx, By, t), N(Ty, Ax, t)
aN(Ax,Ty,t)+ b N(By,Sx,t)+ c N(Sx,Ty,t)

a + b + c
,

N(By,Ty,t)+ N(Ax,Sx,t)

2 }
 
 

 
 

      

M(Ax, By, kt) ≤ min

{
 
 

 
 
M(Ax, By, t), M(Ax, Ax, t), M(By, By, t),

M(Ax, By, t), M(By, Ax, t)
aM(Ax,By,t)+ b M(By,Ax,t)+ c M(Ax,By,t)

a + b + c
,

M(By,By,t)+ M(Ax,Ax,t)

2 }
 
 

 
 

                                         

N(Ax, By, kt) ≥ max

{
 
 

 
 
N(Ax, By, t), N(Ax, Ax, t), N(By, By, t),

N(Ax, By, t), N(By, Ax, t)
aN(Ax,By,t)+ b N(By,ASx,t)+ c N(Ax,By,t)

a + b + c
,

N(By,By,t)+ N(Ax,Ax,t)

2 }
 
 

 
 

                                            

M(Ax, By, kt) ≤ min { M(Ax, By, t), 1, 1, M(Ax, By, t), M(Ax, By, t), M(Ax, By, t), 1} 

N(Ax, By, kt) ≥ max { N(Ax, By, t), 0, 0, N(Ax, By, t), N(Ax, By, t), N(Ax, By, t), 0} 

M(Ax, By, kt) ≤ M(Ax, By, kt)  and N(Ax, By, t) ≥ 0   

then by lemma   Ax = By. 

Suppose that there is another point z such that Az = Sz. Then by inequality (1) and (2) we have Az = Sz = By = 

Ty so Ax = Az and w = Ax = Sx is the unique point of coincidence of A and S. By lemma w is the only common 

point of A and S. Similiarly there is a unique  point   z Є X such that z = Bz = Tz. 

Assume that w ≠ z then by (1)  

M(w, z, kt) = M(Aw, Bz, kt) ≤ min

{
 
 

 
 
M(Sw, Tz, t), M(Sw, Aw, t), M(Tz, Bz, t),

M(Sw, Bz, t), M(Tz, Aw, t)
aM(Aw,Tz,t)+ b M(Bz,Sw,t)+ c M(Sw,Tz,t)

a + b + c
,

M(Bz,Tz,t)+ M(Aw,Sw,t)

2 }
 
 

 
 

                                         

N(w, z, t) = N(Aw, Bz, kt) ≥ max

{
 
 

 
 
N(Sw, Tz, t), N(Sw, Aw, t), N(Tz, Bz, t),

N(Sw, Bz, t), N(Tz, Aw, t)
aN(Aw,Tz,t)+ b N(Bz,Sw,t)+ c N(Sw,Tz,t)

a + b + c
,

N(Bz,Tz,t)+ N(Aw,Sw,t)

2 }
 
 

 
 

 

                      M(w, z, kt) ≤ min{

M(w, z, t), M(w,w, t), M(z, z, t), M(w, z, t),

M(z, w, t), M(w, z, t),
{ M(z,z,t)+ M(w,w,t)

2

}  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.8, 2015 

 

186 

                       N(w, z, kt) ≥ max {

N(w, z, t), N(w,w, t), N(z, z, t), N(w, z, t),

N(z, w, t), N(w, z, t),
{ N(z,z,t)+ N(w,w,t)

2

} 

                   M(w, z, kt) ≤ M(w, z, t) and N(w, z, kt) ≥ 0. 

Therefore w = z. Z is a common fixed point of A, B, S, T. 

Uniqueness: Let u be another common fixed point of A, B, S, T. Then put x = z and y = u in (1) and (2). 

                 M(Az, Bu, kt) ≤ min

{
 
 

 
 
M(Sz, Tu, t), M(Sz, Az, t), M(Tu, Bu, t),

M(Sz, Bu, t), M(Tu, Az, t)
aM(Az,Tu,t)+ b M(Bu,Sz,t)+ c M(Sz,Tu,t)

a + b + c
,

M(Bu,Tu,t)+ M(Az,Sz,t)

2 }
 
 

 
 

                                                                  

                 N(Az, Bu, kt) ≥ max

{
 
 

 
 
N(Sz, Tu, t), N(Sz, Az, t), N(Tu, Bu, t),

N(Sz, Bu, t), N(Tu, Az, t)
aN(Az,Tu,t)+ b N(Bu,Sz,t)+ c N(Sz,Tu,t)

a + b + c
,

N(Bu,Tu,t)+ N(Az,Sz,t)

2 }
 
 

 
 

 

                  M(z, u, kt) ≤ M(z, u, t) and N(z, u, kt) ≥ 0.Then by lemma z = u. 
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