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Abstract 

This paper describes a new approach to determine classification performance based on the computation and 

application of margin of error. This procedure revealed that as the proportion of contamination increases, the 

misclassification rate and the margin of error also increases. On the other hand, if the mean probability of correct 

classification is approaching the mean of the optimal probability, the margin of error tends to reduce maximally. 

The upper and lower classification limits enable us to determine the performance of the technique of interest. If 

the computed mean probability exceed the upper classification limit this indicates that the rate of 

misclassification is high. In a general note, we are (1 )%   confident of the classification result based on this 

approach. This new technique was applied to investigate the performance of the Fisher linear classification 

analysis, Fisher’s approach based on the minimum covariance determinant and the probability based 

classification technique. In general, the performance analysis revealed that as the proportion of contamination 

increases, the misclassification rate increases thereby producing large margin of error. The implication of large 

margin of error to classification rule is that the adjusted mean probability based on the margin of error will 

overshot the upper classification limit which indicates high misclassification rate or possibly highly 

contaminated data set. 
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1. Introduction 

The Fisher linear classification analysis (FLCA) [1] was introduced when it was applied  to study the Iris data 

set. Conventionally, the FLCA procedure was proposed for two groups. The FLCA assist in gaining information 

regarding the separation between the two groups with regards to the within group mean and the contribution of 

the profile variables[2, 3].  It is a dimension reduction technique and belongs to the class of supervised learning 

technique[4], though nonparametric[5]. The basic assumptions of the FLCA are homoscedasticity of the 

covariance matrices. The coefficient of the FLCA is computed based on the difference between the within group 

mean vectors and the pooled covariance matrix. These sample statistics are the building blocks of the FLCA but 

are sensitive to influential observations [6-14]. The sample mean vectors and covariance matrices computed 

based on data set generated from a multivariate normal distribution enhances the  performance of the FLCA 

maximally [15, 16].  On the other hand, if the data set is not drawn from a multivariate normal distribution, the 

sample statistics computed are influenced by influential observations hence when these sample statistics are 

applied to develop the FLCA; the misclassification rate for the FLCA tends to increase maximally. 

     It has been suggested that when the data set are not normally distributed the mean vectors and covariance 

matrices are influenced by outliers, hence various propositions have been proposed to robustfiy these parameters 

to enhance maximum classification performance (robust). The maximum likelihood estimator (M estimator)[17], 

generalized maximum likelihood estimator (GM estimators)[18], Smooth estimator (S estimator)[19], minimum 

volume ellipsoid (MVE) [20] and the minimum covariance determinant estimator (MCD) [21] were proposed to 

robustify the mean vectors and covariance matrices. The robustified mean vectors and covariance matrices are 

substituted into the conventional FLCA technique to obtain robust FLCA. The MCD procedure has  been applied 

to robustify the Fisher linear discriminant analysis and the quadratic discriminant analysis[22]. The MCD 
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procedure strictly depends on information glean from the half set. Detail of this robust high breakdown method  

and its application to classification is contain in Rousseeuw (1999).  

 

       Probabilistic extension of the Fisher linear classification analysis was also proposed based on the 

homoscedasticity assumption by [23, 24].  Robust and flexible Fisher linear discriminant analysis based on 

probabilistic concepts that “relax” the equal covariance matrix assumption has been investigated[25].  The 

conventional and robust Fisher’s  techniques assumed that the prior probabilities for the respective groups are 

equal [5]. In this paper, the Fisher’s technique is modified by introducing the within group probabilities to the 

separation parameter. This procedure violates the equal prior probability assumption and adheres strictly to the 

equal covariance matrices. The comparative classification performance of these techniques is investigated for 

contaminated normal data set using the margin of error to determine robustness. 

      The reminder of this paper is organized as follow. Section Two describes the Fisher linear classification 

analysis. The robust Fisher’s approach based on the minimum covariance determinant is contained in Section 

Three. Section Four described the probability base classification technique. The computation of the margin of 

error is described in Section Five. Simulations and conclusion are contained in Sections Six and Seven 

respectively.  

2. Fisher linear classification analysis (FLCA) 

  Fisher linear classification analysis (FLCA) was developed for two groups problem. We assumed that the two 

independent sample observations are drawn from multivariate normal distribution. It is equally assumed that the 

variance covariance matrices are homoscedastic with unknown mean vectors for the respective groups. The 

Fisher’s technique is a linear combination of the observed variables that best describes the maximum separation 

between the groups[4]. Since the population mean vectors and covariance matrices are unknown, the sample 

estimates is used to estimate the population mean vectors and covariance matrices respectively. The estimate of 

the population covariance matrix is unbiased and the evaluation of the Fisher’s linear classification scores based 

on the group mean vectors and the difference between the mean of the Fisher’s linear classification score is 

approximately the Mahalonobis distance[5].  The Fisher linear classification analysis [1]  for two groups 

problem is defined mathematically as follows, 

_ ,Th pv u x       (2.1)   

where u  denote the Fisher linear coefficient, x is the sample observation and _h pv  denote the Fisher’s 

classification sore, a scalar.  The following equation in comparison with the classification score allows an 

observation to be assigned to the correct group, say, 

2

1_ .
2

i
Ti

x

mean cut u


     (2.2)   

Where  _mean cut  denote the midpoint and ix  is the within group mean vectors. The computation of the 

Fisher linear coefficient is possible if the group means are unequal.  This condition is vital to enable separation, 

classification and discrimination feasible.  To design the allocation rule for the two groups based on the 

multivariate sample observations, let ( 1,2)i i   denote the prior probabilities for the two groups and we 

assumed that 1 2   with the basic understanding that 
2

1

1.i

i




  Define 1 (2 /1)c  to be the 

cost of misallocating an observation in group two into group one and let 2 (1/ 2)c   be the cost of 

misallocating an observation from group one into group two, respectively. The total probability of misallocation 

is given as 1 1 2 2.c c       The total probability of correct allocation is obtained by taking the sum of the 

diagonal of the confusion matrix divided by the total sample size and the misallocation probability otherwise. In 

practice, the cost of misallocation is not known; hence Fisher’s allocation rule is based on the assumption that 
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the prior probabilities and misallocation cost for both groups are equal. The comparison between the 

classification score and the midpoint defines the linear classification rule. The Fisher linear classification rule is 

obtained by comparing the classification score with the classification midpoint. The allocation rule is based on 

Equations (2.1-2.2).  An observation is assigned to group one if the classification score is greater than or equal to 

the midpoint otherwise the observation is assigned to group two if the classification score is less than the 

midpoint. 

3. Fisher Linear Classification Analysis Based on Minimum Covariance Determinant (FMCD) 

The minimum covariance determinant procedure search for the subset ih  (out of in ) of the data set whose 

covariance matrix has the minimum determinant[22]. The sample observations based on the half set are chosen 

from the multivariate data set to obtain the MCD estimates of mean vectors and covariance matrices. These 

robust estimates are computed based on the clean data set selected by the half set. The MCD estimates are 

substituted into the conventional Fisher’s equations, say Equations (2.1-2.2) to obtain the robust Fisher linear 

classification rule. Detail description of this method is contained in Hubert and Van Driessen (2004). The MCD 

approach requires the correction factor to obtain unbiased and consistent estimates if the data set comes from a 

multivariate normal distribution.  The correction factor is used for the FAST-MCD algorithm to compute the 

MCD estimates. Detail description and theorem to compute the concentration steps based on the half set of the 

MCD technique is contain in [26], respectively. The allocation procedure for this method is the same as that of 

the Fisher linear classification analysis. 

4. Probability Base  Classification Technique (PCT) 

This procedure[27] requires the computation of the within group mean difference, say, 1 2_ ,h gd x x  and 

the sum of the within group mean vectors is given as 1 2_ ,s x x   respectively. To formulate the coefficient 

of the new procedure, the absolute value of _h gd  is computed, then the following are obtained; 

2

2

_ 1 | _ |,

_ _ / _ ,

_ 1 _ .

dt v s

w pc h gd dt v

s h w pc

  



 

      (4.1) 

  

Based on the definitions in Equation (4.1), the following is obtained 

__ , 1,r r s

iw pt e e p r     
2 /

    (4.2)  

where  

2

1

/ ,i i i

i

p n n


  is the within group probabilities, in  is the sample size for each group, n  is the total 

sample size for the two groups and 

2

2

,i

i

p p


 is the total probability. The coefficient of this technique is given 

as 

1

1

_
_ _ ,

_
_ ,
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w pt
h ku x f u x
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w pt
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


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 
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    (4.3)  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.8, 2015 

 

230 

Where pooledS denote the pooled covariance matrix. The classification cutoff point is given as follows, 

 
_

_ _ ,
2

s
mean p f u


     (4.4)  

  

The classification rule is defined as  

_ _ ,h ku mean p      (4.5)  

  

in this regard, an observation is assigned to group one if Equation (4.5) is satisfied otherwise the observation is 

classified to group two if the following equation hold, 

_ _ .h ku mean p      (4.6) 

5. Margin of error 

Relying on confidence interval technique, we compare the performance of the above classification techniques by 

computing the margin of error based on the proportion of data contamination. In this respect, the t- test is used. 

The computation of the standard deviation is described as follow. 

12

( )( )

, 1,2,...., ,
1

k

j j
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x x
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






x x

x

 

Where x  denote the mean of the optimal probability, x  is the mean probability of correct classification, x is 

the mean for each replication assumed as the sample observations and k  is the number of replications. The new 

sample variance is obtained as follows; 

2
2 2

1

1/ ,w i

i

S S n w


 
  

 
  

2 .t wq S      (5.1)  

         

Where  tq  denotes the standard deviation and the lower and upper classification limit is determine based on 

/2 .tt qx  Where (1 )  is the confidence coefficient and /2t  is based on t  distribution with 2n  

degree of freedom[28]. The margin of error used for the mean of the optimal probability is defined as 

/2 / ,t p M  where p is the sample dimension and M Monte Carlo sample size. In this regard, the margin of 

error of the optimal probability is a constant whereas the margin of error of the mean probability of correct 

classification for each technique depends on the information from the method. The idea is to estimate the upper 

and lower classification benchmark and to determine robustness. In this regard, the classification technique with 

small margin of error is robust while the reverse is possible.  
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6. Simulation study 

The simulation is designed based on the contaminated normal model (0, ) (1 ) ( , ).p p p p pN I N     The 

implication of this model is that we draw  observations from (0, )p pN I and 1   observations from 

( , )p p pN   for each group with different sample mean vectors, variance and percentage of contamination 

10,20,30,40.  The Monte Carlo simulation is performed for various dimensions p (2,3,4) and sample 

sizes 

2

1

20,30,60, 1,2, .i i

i

n i n n


    The simulation setup is based on the normal contaminated  model; 

A: 
1 2 2

2 2 2

: (0,1) (1 ) (0,9)

: (0,1) (1 ) (1,9)

N N

N N

  

  

 

 
 

A1: 
1 3 3

2 3 3

: (0,1) (1 ) (0,0.625)

: (0,1) (1 ) (5,0.625)

N N

N N

  

  

 

 
 

A2: 
1 4 4

2 4 4

: (0,1) (1 ) (1,16)

: (0,1) (1 ) (8,16)

N N

N N

  

  

 

 
 

 For each group, the data set are drawn and reshuffled based on the value of .  The data set is divided into 

training sample (60%) and validation sample (40%), respectively. The mean probability of correct classification 

and standard deviation are based on 1000 replications. The margin of error based on equation (5.1) is 

added/subtracted from the computed mean probability of correct classification to determine robustness (within 

upper classification limit) and breakdown (above upper classification limit). The mean probability of correct 

classification and the adjusted mean probability of correct classification are compared to investigate the effect of 

contamination. We observed that as the sample size increases the margin of error become smaller and otherwise. 

The tables below reveal the performance of these techniques. Table 1 contains the performance of the various 

linear classification techniques based on the simulation setup A. Figure 1 compares the conventional mean 

probability with the adjusted mean probability of correct classification. The analysis revealed that as the 

proportion of contamination increases, the misclassification rate increases for FLCA, FMCD and PCT as shown. 

Due to the high misclassification rate the margin of error is large and thereby presenting the MFLCA, MFMCD 

and MPCT to be robust for increasing proportion of contamination, respectively. In other worlds, based on the 

results reported in Table 1, the robust technique has the smallest margin of error whereas the method that 

underperformed has large margin of error. The explanation is self evident in Figure 1. 

Table 1.Mean probability of correct classification based on margin of error (Optimal mean=0.6480 for FLCA, 

FMCD, PCT, maximum benchmark = 0.6558, minimum benchmark =0.6402 for MFLCA, MFMCD, 

MPCT 3p  ) 

% of cont. 
in  FLCA FMCD PCT MFLCA MFMCD MPCT 

10 30 0.6292 

(0.0200) 

0.6283 

(0.0199) 

0.6275 

(0.0199) 

0.6543  

(0.0032) 

0.6542 

(0.0032) 

0.6542 

(0.0032) 

20 30 0.6108 

(0.0194) 

0.6079 

(0.0193) 

0.6106 

(0.0194) 

0.6544 

(0.0032) 

0.6544 

(0.0033) 

0.6444 

(0.0032) 

30 30 0.5738 

(0.0182) 

0.5482 

(0.0174) 

0.5732 

(0.0182) 

0.6552 

(0.0037) 

0.6562 

(0.0041) 

0.6553 

(0.0037) 

40 30 0.5444 

(0.0172) 

0.5118 

(0.0162) 

0.5472 

(0.0173) 

0.6563 

(0.0042) 

0.6578 

(0.0050) 

0.6562 

(0.0041) 
Cont.: contamination 

OMPC: optimal mean probability of classification for the margin of error 

M_MPC: lower limit of OMPC 
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FLCA: conventional mean probability based on FLCA 

FMCD: conventional mean probability based on FMCD 

PCT: conventional mean probability based on PCT 

MFLCA: mean probability based on margin of error for FLCA 

MFMCD: mean probability based on margin of error for FMCD 

MPCT: mean probability based on margin of error for PCT 
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  Figure 1. Comparison of performance based on conventional and adjusted mean 

 probability of classification 

The overshot is due to the high misclassification rate for the MFMCD technique which implies that as the 

misclassification rate increases the margin of error become large. Table 2 and Figure 2 contain the simulation 

results for setup A1. 

 

Table 2.Mean probability of correct classification based on margin of error (Optimal mean = 0.9251 for FLCA, 

FMCD, PCT, maximum benchmark=0.9427, minimum benchmark=0.9074 for MFLCA, MFMCD, MPCT, 

2p   ) 

% of cont. 
in  FLCA FMCD PCT MFLCA MFMCD MPCT 

10 20 0.8179 

(0.0260) 

0.8069 

(0.0256) 

0.8163 

(0.0259) 

0.9344 

(0.0047) 

0.9348 

(0.0049) 

0.9345 

(0.0048) 

20 20 0.8082 

(0.0257) 

0.7953 

(0.0253) 

0.7992 

(0.0254) 

0.9348 

(0.0049) 

0.9354 

(0.0052) 

0.9352 

(0.0051) 

30 20 0.7700 

(0.0245) 

0.7854 

(0.0250) 

0.7726 

0.0246) 

0.9365 

(0.0058) 

0.9358 

(0.0054) 

0.9364 

(0.0058) 

40 20 0.7231 

(0.0231) 

0.7512 

(0.0239) 

0.7274 

(0.0232) 

0.9390 

(0.0071) 

0.9375 

(0.0063) 

0.9387 

(0.0069) 
Cont.: contamination 

OMPC: optimal mean probability of classification for the margin of error 

M_MPC: lower limit of OMPC 

FLCA: conventional mean probability based on FLCA 

FMCD: conventional mean probability based on FMCD 

PCT: conventional mean probability based on PCT 

MFLCA: mean probability based on margin of error for FLCA 

MFMCD: mean probability based on margin of error for FMCD 

MPCT: mean probability based on margin of error for PCT 

OPM: optimal mean probability 
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  Figure 2. Comparison of performance based on conventional and adjusted mean 

 probability of classification 

 

Table 3 and Figure 3 contain the simulation results for setup A2. 

Table 3.Mean probability of correct classification based on margin of error (Optimal mean = 0.9671 for FLCA, 

FMCD, PCT, maximum benchmark=0.9984, minimum benchmark=0.9357, for MFLCA, MFMCD, 

MPCT 4p  ) 

% of cont. 
in  FLCA FMCD PCT MFLCA MFMCD MPCT 

10 60 0.9291 

(0.0294) 

0.9305 

(0.0294) 

0.9291 

(0.0294) 

0.9728 

(0.0029) 

0.9728 

(0.0029) 

0.9728 

(0.0029) 

20 60 0.8642 

(0.0273) 

0.9012 

(0.0285) 

0.8565 

(0.0271) 

0.9751 

(0.0040) 

0.9736 

(0.0042) 

0.9754 

(0.0042) 

30 60 0.7613 

(0.0241) 

0.8599 

(0.0272) 

0.7720 

(0.0245) 

0.9805 

(0.0068) 

0.9753 

(0.0042) 

0.9800 

(0.0065) 

40 60 0.6145 

(0.0196) 

0.7948 

(0.0252) 

0.6455 

(0.0206) 

0.9894 

(0.0113) 

0.9787 

(0.0059) 

0.9875 

(0.0104) 
Cont.: contamination 

OMPC: optimal mean probability of classification for the margin of error 

M_MPC: lower limit of OMPC 

FLCA: conventional mean probability based on FLCA 

FMCD: conventional mean probability based on FMCD 

PCT: conventional mean probability based on PCT 

MFLCA: mean probability based on margin of error for FLCA 

MFMCD: mean probability based on margin of error for FMCD 

MPCT: mean probability based on margin of error for PCT 

OPM: optimal mean probability 
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  Figure 3. Comparison of performance based on conventional and adjusted mean 

 probability of classification 

 

7. Conclusion  

Conventionally, the Fisher linear classification analysis and the probability based classification technique 

performed very well for large sample sizes which implies that the central limit theorem is evident. Generally, as 

the rate of contamination increases, the mean probability of correct classification decreases.  In this study, the 

Fisher technique based on the minimum covariance determinant is robust than the other techniques. In the same 

vain, the probability based classification method is robust than the Fisher’s procedure.  The new analytic 

procedure revealed that as the misclassification rate increases the margin of error increases due to increase in 

contamination. It also indicates that as the misclassification rate decreases the margin of error decreases. In this 

case, care must be taken to analyze the performance. The new analytic procedure revealed that if the mean 

probability based on the margin of error exceeds the upper limit, corrective action should be taken because it 

shows that that technique is not robust and hence the high misclassification rate has given rise to large margin of 

error.  On a general note, this approach also determine upper and lower performance limit and we are certain that 

if  the performance level is not within this limits corrective action is required. This simulation has revealed that 

as the misclassification rate increases the margin of error also increases the revise is also applicable. This 

analytic procedure is useful for practical applications. In either case, we are 95% confident of the classification 

results. Conclusively, based on classification analysis, the performance of the two groups linear classification 

performance can be investigated based on the information obtained from the margin of error. If the margin of 

error is very small this implies that that classification method is robust the contrary is evidently possible. 
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