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Abstract 

Human Papillomavirus (HPV) is an age long DNA virus from the papillomavirus family. It is a casual virus for deadly 

diseases, prominent among them is the cervical cancer. In this paper, the effectiveness of screening in curtailing the spread of 

HPV is accessed using mathematical model. Using the next generation method, the basic reproduction number 𝑅0 is 

computed in terms of the model parameters. The disease free equilibrium (DFE) is obtained and found to be locally and 

globally asymptotically stable if  𝑅0 < 1 and unstable when 𝑅0 > 1. The stability of endemic equilibrium is examined using 

centre manifold theorem and showed to exhibit forward bifurcation when 𝑅0 > 1 under certain condition. Numerical 

simulations are carried out to show how screening controls the spread of HPV disease when there are multiple sexual partners 

and the result indicates that effective screening must be accompanied by counseling for faithfulness to one sexual partner.  

Keywords: Human Papillomavirus, Screening, Disease free equilibrium, Multiple sexual partners 

1.0  Introduction 

Human Papillomavirus (HPV) is a DNA virus from the papillomavirus family that is infectious to humans. It is the most 

common sexually transmitted infection that nearly all sexually active men and women contract at some point in their lives. 

HPV can cause normal cells in the skin to turn abnormal and form productive infections only in keratinocytes of the skin or 

mucous membrane like any other papillomavirus. Most HPV are asymptomatic and will cause no physical symptoms 

however, in some people asymptomatic infections will become clinical and may cause anogenital warts, squamous cell 

papilomas or cancers of the cervix, vulva, vagina, penis, oropharynx and anus (CDC, 2008 and Capra et al., 2008). In 

particular, 70% of cervical cancers are caused by HPV16 and HPV18 (Schiffman et al., 2007). 

There are more than 100 types of HPV that have been identified but most of them are harmless while others can cause 

infection (Bergot et al., 2011). At least 30 types of it can cause infection in the genital areas and are spread from person to 

person through skin-to-skin sexual contact; vaginal, anal, or oral sex with someone who has the virus (Barnabas et al., 2006). 

It can be transmitted even when an infected person has no signs and symptoms. The resulting disease includes anogenital 

warts, respiratory papillomatosis, and cancers of the cervix, vulva, vagina, anus and the penis, as well as cancers of the head 

and neck.  

Cervical cancer is the most common HPV-related disease and the second cause of death in women (after breast cancer). It 

accounts for 10% of all cancers in women. Progression to malignancy after acquisition of HPV usually takes at least 10 years. 

In 90% of cases the body immune system clears HPV within two years; this period is referred as the latency period.  

No antiviral drug has been developed for HPV and detection has largely relied on the recommended yearly Pap smear for 

women of reproductive age groups, which locates cellular abnormalities that indicate that HPV may be present (Llamazares 

and Smith, 2008). This is mostly for cervical cancer but no routine screening tests for HPV on the vulva, vagina, anus and the 

penis, as well as cancers of the head and neck.  

Several researchers have developed interest in HPV in order to understand and explain the dynamics and spread of the 

disease. Thus, many mathematical models as well as methods of analyzing them were proposed. The work by Lee and 

Tamaru (2012) studied the impact of treatment on African American women in the United States. Brown and White (2009) 

and Ribassin-Majed et al.(2012) considered the possibility of vaccination against the HPV, taking into consideration possible 

waning immunity and sex-specific immunization among males in heterosexual populations. Shaban and Mofi (2014) 

considered screening and vaccination as effective means of curtailing the infection of HPV in homogeneous population while 

Froelich et al.(2002) examined the impact of screening males in heterogeneous population. None of these studied the effect 

of multiple sexual partners on the dynamics of HPV transmission. 

Although many mathematical models have considered the effect of screening, this paper will study the effect of screening 

considering the number of sexual partners of initially infected and chronically infected individuals. This is done using the 

ideal by Froelich et al.(2002). 
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The paper is organized as follows. Section 2 is the model formulation. Section 3 is analysis of the model. Numerical 

simulation is carried out in section 4. Finally conclusion is presented in section 5. 

2.0 Model Formulation 

Let 𝑁(𝑡) be the total population of size at time 𝑡. The population 𝑁(𝑡) is divided into four classes namely; Susceptible 𝑆(𝑡), 

Initially infected, 𝐼(𝑡), Chronically infected, 𝐶(𝑡) and Recovered R(𝑡) individuals with natural mortality rate 𝜇 in all classes 

and 𝑑 as the chronically infected induced death rate. We assumed that susceptible individuals are recruited at the rate 𝜇𝑁 and 

become infected through sexual contacts with the infected and chronically individuals 𝐼(𝑡)  and 𝐶(𝑡) at rate  λ𝑡, where  

λ𝑡 =
𝜎(𝛽1𝐼 + 𝛽2𝐶)

𝑁
                                                                                

𝜎 represents the mean number of sexual partners of the individuals in 𝐼(𝑡) and 𝐶(𝑡) while 𝛽1 and 𝛽2 are the respective sexual 

contact rates of the 𝐼(𝑡) and 𝐶(𝑡) classes. Some initially infected class 𝐼(𝑡) progress to chronically class after going through 

screening at the rate 𝑞𝜃. This may be because of late screening and poor body immune system to recover naturally, while 

some recovers naturally through body immune system at rate (1 − 𝑞)𝜃 where 0 < 𝑞 < 1. In addition, some initially infected 

class 𝐼(𝑡) progress to chronically infected class without screening at the rate 𝑝𝜏, while some recovers naturally through body 

immune system or by treatment at a rate (1 − 𝑝)𝜏 where 0 < 𝑝 < 1. Furthermore, the recovered individuals become 

susceptible again after waning immunity at a rate 𝛼 and the chronically infected people may recover with the help of 

treatment after screening and successful diagnosis at a rate 𝑘. 

Based on the above assumptions, the governing system of differential equations for the spread of the disease is given by  

𝑑𝑆

𝑑𝑡
= 𝜇𝑁 − 𝜎 (

𝛽1𝑆𝐼+𝛽2𝑆𝐶

𝑁
) − 𝜇𝑆 + 𝛼𝑅                                                          (1) 

𝑑𝐼

𝑑𝑡
= 𝜎 (

𝛽1𝑆𝐼+𝛽2𝑆𝐶

𝑁
) − (𝜇 + 𝜏 + 𝜃)𝐼                                                              (2) 

𝑑𝐶

𝑑𝑡
= 𝑝𝜏𝐼 − (𝜇 + 𝑘 + 𝑑)𝐶 + 𝜃𝑞𝐼                                                                          (3) 

𝑑𝑅

𝑑𝑡
= (1 − 𝑝)𝜏𝐼 − (𝜇 + 𝛼)𝑅 + (1 − 𝑞)𝜃𝐼 + 𝑘𝐶                                          (4) 

with non-negative initial conditions  

 𝑆(0) > 0, 𝐼(0) ≥ 0,    𝐶(0) ≥ 0,   𝑎𝑛𝑑  𝑅(0) ≥ 0. 

3.0  Analysis of the Model 

3.0.1  Positivity and Boundedness of the Solutions 

Theorem 3.1. For all time 𝑡 ≥ 0, all the solutions of the system (1) – (4) are restricted in the compact subset Ω =

{(𝑆, 𝐼, 𝐶, 𝑅) ∈ ℝ+
4 : 𝑁 = (𝑆(𝑡) + 𝐼(𝑡) + 𝐶(𝑡) + 𝑅(𝑡)) ≤ 𝐾)} 

Proof.  Let (𝑆(𝑡), 𝐼(𝑡), 𝐶(𝑡), 𝑅(𝑡)) be any solution with positive initial conditions. 

We have 𝑁 = 𝑆(𝑡) + 𝐼(𝑡) + 𝐶(𝑡) + 𝑅(𝑡). The time derivative of 𝑁(𝑡) along the solution of the system (1) – (4) is  
𝑑𝑁

𝑑𝑡
≤ 0. 

Applying theorem of differential inequality (Birkhof and Rota, 1982), we get  𝑁 ≤ 𝐾 a constant. Then 0 ≤ 𝑁 ≤ 𝐾 as 𝑡 → ∞. 

Thus, it has been proved that all the solutions of (1) – (4) are bounded in the interval [0,∞). Therefore, the model can be 

considered as being epidemiologically and mathematically well posed.    

3.0.2  Disease - Free Equilibrium (DFE) 

The disease – free equilibrium is the equilibrium when there is no disease in the population. At equilibrium point, 
𝑑𝑆

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝐶

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0, we have the following system of equations to be solved simultaneously for 𝑆, 𝐼, 𝐶 and 𝑅. 

 𝜇𝑁 − 𝜎 (
𝛽1𝑆𝐼+𝛽2𝑆𝐶

𝑁
) − 𝜇𝑆 + 𝛼𝑅 = 0                                                                                                                                 (5) 
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𝜎 (
𝛽1𝑆𝐼+𝛽2𝑆𝐶

𝑁
) − 𝐼(𝜇 + 𝜏 + 𝜃) = 0                                                                                                                                      (6) 

                                               

𝑝𝜏𝐼 − (𝜇 + 𝑘 + 𝑑)𝐶 + 𝜃𝑞𝐼 = 0                                                                                                                                           (7)                                                                    

(1 − 𝑝)𝜏 − (𝜇 + 𝛼)𝑅 + (1 − 𝑞)𝜃𝐼 + 𝑘𝐶 = 0                                                                                                                  (8)                                           

We have 

𝜇𝑁 − 𝜇𝑆 = 0 

from which we obtain 

𝑆 = 𝑁 ,  provided  𝜇 ≠ 0 

Thus, the disease – free equilibrium 𝐸0 is  

𝐸0 = (𝑁, 0,0,0) 

3.0.3  Stability of Disease Free Equilibrium 

We shall compute the basic reproduction number 𝑅0 using the next– generation method. The basic reproduction number is a 

threshold quantity used to study the prevalence of an infectious disease in epidemiological model. According to Diekmann et 

al., (1990), the basic reproduction number 𝑅0 is the spectral radius (i.e the dominant eigenvalue) of the next generation 

matrix. It is given as 

𝑅0 = 𝜌(𝐺𝑈−1)                               

where 𝜌(𝐺𝑈−1) is the spectral radius of the matrix 𝐺𝑈−1 given as 

𝐺𝑈−1 = [
𝜕𝐹𝑖(𝐸0)

𝜕𝑥𝑗
] [

𝜕𝑉𝑖(𝐸0)

𝜕𝑥𝑗
]

−1

 

𝐹𝑖 is rate of appearance of new infection in compartment  𝑖 

𝑉𝑖 is the transfer of individuals in and out of compartment 𝑖 by any other means and 

𝐸0 is the disease free equilibrium. 

Using the next generation method, the system of differential equation  (1) − (4) are rearranged in the order of the infected 

compartments first, then the uninfected compartment. We have two infected compartments namely, 𝐼 and 𝐶  whereas  𝑆 and 

𝑅 as uninfected compartments. 

𝑑𝐼

𝑑𝑡
= 𝜎 (

𝛽1𝑆𝐼+𝛽2𝑆𝐶

𝑁
) − 𝐼(𝜇 + 𝜏 + 𝜃)                                                                                                                       (9)                                                            

𝑑𝐶

𝑑𝑡
= 𝑝𝜏𝐼 − (𝜇 + 𝑘 + 𝑑)𝐶 + 𝜃𝑞𝐼                                                                                                                           (10)                                                               

𝑑𝑆

𝑑𝑡
= 𝜇𝑁 − 𝜎 (

𝛽1𝑆𝐼+𝛽2𝑆𝐶

𝑁
) − 𝜇𝑆 + 𝛼𝑅                                                                                                                   (11)                                                        

𝑑𝑅

𝑑𝑡
= (1 − 𝑝)𝜏𝐼 − (𝜇 + 𝛼)𝑅 + (1 − 𝑞)𝜃𝐼 + 𝑘𝐶                                                                                                (12)                                         

from which 𝐹, 𝑉, 𝐺, 𝑈, and 𝐺𝑈−1 are given as 

     𝐹 =

[
 
 
 
 𝜎 (

𝛽1𝑆𝐼+𝛽2𝑆𝐶

𝑁
)

0
0
0 ]

 
 
 
 

, 𝑉 =

[
 
 
 
 

𝐼(𝜇 + 𝜏) + 𝜃𝐼

−𝑝𝜏𝐼 + (𝜇 + 𝑘 + 𝑑)𝑐 − 𝜃𝑞𝐼

−𝜇𝑁 + 𝜎 (
𝛽1𝑆𝐼+𝛽2𝑆𝐶

𝑁
) + 𝜇𝑆 − 𝛼𝑅

−(1 − 𝑝)𝜏𝐼 + (𝜇 + 𝛼)𝑅 − (1 − 𝑞)𝜃𝐼 − 𝑘𝐶]
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 𝐺 = [

𝜕𝐹1(𝐸0)

𝜕𝐼

𝜕𝐹1(𝐸0)

𝜕𝑐
𝜕𝐹2(𝐸0)

𝜕𝐼

𝜕𝐹2(𝐸0)

𝜕𝑐

] = [
𝜎𝛽1 𝜎𝛽2

0 0
] 

  𝑈 = [

𝜕𝑉1(𝐸0)

𝜕𝐼

𝜕𝑉1(𝐸0)

𝜕𝑐
𝜕𝑉2(𝐸0)

𝜕𝐼

𝜕𝑉2(𝐸0)

𝜕𝑐

] = [
µ + 𝜏 + 𝜃 0
−𝑝𝜏 − 𝜃𝑞 𝜇 + 𝑘 + 𝑑

] 

and 

 𝐺𝑈−1 = [
𝜎𝛽1

𝜇+𝜏+𝜃
+

𝜎𝛽2(𝑝𝜏+𝜃𝑞)

(𝜇+𝜏+𝜃)(𝜇+𝑘+𝑑)

𝜎𝛽2

𝜇+𝑘+𝑑

0 0
]   

We find the eigenvalue of 𝐺𝑈−1 as 

|𝐺𝑈−1 − λI| = 0 

This gives 

 λ1 = 0  𝑜𝑟 λ2 =
𝜎𝛽1(𝜇+𝑘+𝑑)+𝜎𝛽2(𝑝𝜏+𝜃𝑞)

(𝜇+𝜏+𝜃)(𝜇+𝑘+𝑑)
 

  Since the spectral radius of 𝐺𝑈−1 is given by  

𝑅0 = 𝑚𝑎𝑥[|λ1|, |λ2|],  

we have  

 𝑅0 =
𝜎𝛽1(𝜇+𝑑+𝑘)+𝜎𝛽2(𝑝𝜏+𝜃𝑞)

(𝜇+𝜏+𝜃)(𝜇+𝑘+𝑑)
                                                                                                                                  (13)  

If 𝑅0 < 1 , the disease dies out, otherwise the disease will be maintained in the population. From the equation (13), we have 

𝑅0 increases as the number of sexual partners of 𝐼(𝑡) and 𝐶(𝑡) increase. This implies that 𝑅0 can be kept at minimum if there 

is a restriction on the number of sexual partners of 𝐼(𝑡) and 𝐶(𝑡).  

Theorem 2: The disease – free equilibrium of the system of ODE  (9) − (12)  is locally asymptotically stable if 𝑅0 < 1 and 

unstable if 𝑅0 > 1. 

The proof of theorem 2 is done by linearization method. The Jacobian matrix associated with the system (9)-(12) at the DFE 

𝐸0 = (0,0,𝑁, 0) is  

𝐽(𝐸0) =

[
 
 
 

𝜎𝛽1 − (𝜇 + 𝜏) − 𝜃 𝜎𝛽2 0 0

𝑝𝜏 + 𝜃𝑞 −(𝜇 + 𝑘 + 𝑑) 0 0
−𝜎𝛽1 −𝜎𝛽2 −𝜇 𝛼

(1 − 𝑝)𝜏 + (1 − 𝑞)𝜃 𝑘 0 −(𝜇 + 𝛼)]
 
 
 
 

and the characteristics of equation corresponding to 𝐽(𝐸0) is given by 

 𝜌(λ) = (−𝜇 − λ)(−(𝜇 + 𝛼) − 𝜆)[λ2 + 𝐴λ + B] = 0 

where 

 𝐴 = −[(𝜎𝛽1 − (𝜇 + 𝜏 + 𝜃)) − (𝜇 + 𝑘 + 𝑑)] 

 𝐵 = −[𝜎𝛽2(𝑝𝜏 + 𝜃𝑞) + (𝜇 + 𝑘 + 𝑑)(𝜎𝛽1 − (𝜇 + 𝜏 + 𝜃))] 

Using Routh–Hurwitz criteria, 𝐸0 is locally asymptotically stable if 𝐴 > 0 and 𝐵 > 0. 

We have    

       𝐴 = −[(𝜎𝛽1 − (𝜇 + 𝜏 + 𝜃)) − (𝜇 + 𝑘 + 𝑑)] > 0 
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𝐵 = −[𝜎𝛽2(𝑝𝜏 + 𝜃𝑞) + (𝜇 + 𝑘 + 𝑑)(𝜎𝛽1 − (𝜇 + 𝜏 + 𝜃))] > 0 

This implies that 

 𝜎𝛽2(𝑝𝜏 + 𝜃𝑞) + (𝜇 + 𝑘 + 𝑑)(𝜎𝛽1 − (𝜇 + 𝜏 + 𝜃)) < 0  or   (𝜎𝛽1 − (𝜇 + 𝜏 + 𝜃)) − (𝜇 + 𝑘 + 𝑑) < 0 

 and gives 

 
𝜎𝛽1(𝜇+𝑘+𝑑)+𝜎𝛽2(𝑝𝜏+𝜃𝑞)

(𝜇+𝜏+𝜃)(𝜇+𝑘+𝑑)
< 1     or    

𝜎𝛽1

(2𝜇+𝜏+𝜃+𝑘+𝑑)
< 1                                                                    (*) 

Comparing (*) with (13), we have 𝑅0 < 1.This proves the theorem 2. 

3.0.4  Global Stability of the Disease-Free Equilibrium 

Using the approach by Castillo – Chavez et al. (2002), the system of equations (9) - (12) can be rewritten as 

 
d𝐱

dt
= F(𝐱, 𝐈),                                                                                                                                                                   (14) 

 
d𝐈

dt
= G(𝐱, 𝐈),               G(𝐱, 0) = 0                                                                                                                              (15) 

Where 𝐱 ∈ ℝ2 = (S, R) denotes the number of uninfected individuals (susceptible and recovered) and 𝐈 ∈ ℝ2 =

 (I, C) denotes the number of infected individuals (infected and chronically infected). E0 =  (0,0, N, 0) as the disease free 

equilibrium of the system (9) – (12). 

The condition for global stability for E0 is given by 

(H1) For    
d𝐱

dt
= F(𝐱, 𝟎),  𝑥∗ is globally asymptotically stable, 

(H2)  G(𝐱, 𝐈) = 𝑊𝑰 − �̃�(𝐱, 𝑰),     �̃�(𝐱, 𝑰)   ≥ 0        𝑓𝑜𝑟     (𝐱, 𝑰) ∈ Ω                                                           (16)                  

where 𝑊 = 𝐷𝐼𝐺(𝐱, 0) is an M-matrix (i.e. the off diagonal elements of 𝑊 are nonnegative) and  Ω is the region where the 

system of equations of the model makes epidemiological meaningful. 

If the system (9)-(12) satisfies the above condition then the following theorem holds: 

Theorem 3: The disease-free equilibrium E0 = (0,0, N, 0) is globally asymptotically stable if 𝑅0 < 1 and that condition (16) 

is satisfied.  

From (15) and (16), we have 

�̃�(𝐱, 𝑰) = (𝐺 − 𝑈)𝑰 −
𝑑𝑰

𝑑𝑡
 ,    where (𝐺 − 𝑈) = 𝑊 

so, we have 

 (𝐺 − 𝑈) = [
𝜎𝛽1 − (𝜇 + 𝜏 + 𝜃) 𝜎𝛽2

𝑝𝜏 + 𝜃𝑞 −(𝜇 + 𝑘 + 𝑑)
] ,   �̃�(𝐱, 𝑰) = [𝜎𝛽1𝐼(1 − 𝑆

𝑁⁄ ) + 𝜎𝛽2𝐶(1 − 𝑆
𝑁⁄ )

0
] 

since 𝑆 ≤ 𝑁, it is clear that  

�̃�(𝐱, 𝑰) ≥ 0  

This implies that 

 
𝑑𝑰

𝑑𝑡
≤ (𝐺 − 𝑈)𝑰                                                                                                                                              (17) 

All the eigenvalues of (𝐺 − 𝑈) has negative real parts if 
𝜎𝛽1

(2𝜇+𝜏+𝜃+𝑘+𝑑)
< 1 and 𝑅0 < 1. It follows that for  𝑅0 < 1, the 

inequality (17) is stable and it results as 𝑡 → ∞, (𝐼, 𝐶) → (0,0). Then, the DFE E0 = (0,0, N, 0) is globally asymptotically 

stable if 𝑅0 < 1.  
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3.0.5  Local Stability of Endemic Equilibrium 

The local stability of endemic equilibrium is determined by finding the eigenvalues of the Jacobian Matrix evaluated at the 

endemic equilibrium. Sometimes, this approach can be mathematically complicated. Here, we recourse to the approach of 

centre manifold theory described by Castillo - Chavez and Song (2004) to investigate the stability of endemic equilibrium. 

Centre Manifold theory is used to investigate the existence of backward and forward bifurcation at 𝑅0 = 1 (Arion et 

al.(2003); Huang et a;.,(1992) and Xue and Wang, (2012)).When the bifurcation is forward, it implies that disease free 

equilibrium is locally asymptotically stable for 𝑅0 < 1 and there is no disease in the population and also endemic equilibrium 

is locally asymptotically stable for 𝑅0 > 1.Backward bifurcation occurs when the endemic equilibrium exists for 𝑅0 < 1 and 

disease free equilibrium may exists when 𝑅0 > 1. 

Theorem 3: Centre manifold theory (Castillo – Chavez and Song, 2004). 

Consider a general system of ODEs with the parameter 𝛽: 

 
𝑑𝒙

𝑑𝑡
= 𝒇(𝒙, 𝛽)                                                                                                                                                              (18) 

𝒇: 𝑅 → 𝑅𝑛 and 𝒇 ∈ 𝐶2(𝑅2  ×  𝑅) 

Where 0 is an equilibrium point for the system (18) for all values of the parameter 𝛽, that is 𝒇(0, 𝛽) ≡ 0 for all 𝛽 and  

  𝐴 = 𝐷∗𝒇(0,0) = [
𝑑𝑓𝑖

𝑑𝑥𝑗
(0,0)] 

is the linearization point 0 with 𝛽 evaluate at 0. Zero is a simple eigenvalue of 𝐴 and all other eigenvalues of 𝐴 have negative 

real parts. Matrix 𝐴 has a non negative right eigenvector 𝒘 = (𝑤1, 𝑤2, 𝑤3, 𝑤4) and a left eigenvector 𝒗 = (𝑣1, 𝑣2, 𝑣3, 𝑣4) 

corresponding to the zero eigenvalue. 

Let 𝑓𝑘 be the 𝑘𝑡ℎ component of 𝑓 and  

𝑎 = ∑ 𝑣𝑘𝑤𝑖𝑤𝑗

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝑥𝑗

(0,0)

𝑛

𝑘,𝑖,𝑗=1

 

𝑏 = ∑ 𝑣𝑘𝑤𝑖

𝜕2𝑓𝑘

𝜕𝑥𝑖𝜕𝛽
(0,0)

𝑛

𝑘,𝑖=1

 

 the local dynamics of the system (13) around the equilibrium point 0 is totally determined by the signs of 𝑎 and 

𝑏. 

1. 𝑎 > 0, 𝑏 > 0 when 𝛽 < 0 with |𝛽| ≪ 1, 0 is locally asymptotically stable, and there exists a positive 

unstable equilibrium; when 0 < 𝛽 ≪ 1, 0 is unstable and there exists a negative and locally 

asymptotically stable equilibrium. 

2. 𝑎 < 0, 𝑏 < 0, when 𝛽 < 0 with |𝛽| ≪ 1, 0 unstable; when 0 < 𝛽 ≪ 1, asymptotically stable, and 

there exists a positive unstable equilibrium; 

3. 𝑎 > 0, 𝑏 < 0, when 𝛽 < 0 with |𝛽| ≪ 1, 0 unstable; and there exists a locally asymptotically stable 

negative equilibrium; when 0 < 𝛽 ≪ 1, 0 is stable and a positive unstable equilibrium appears; 

4. 𝑎 < 0, 𝑏 > 0, when 𝛽 < 0 changes from negative to positive, 0 changes its stability from stable to 

unstable. Corresponding to a negative equilibrium becomes positive and locally asymptotically stable. 

Particularly, if 𝑎 < 0 and 𝑏 > 0, then a forward bifurcation occurs at 𝛽 = 0. 

Applying the theorem 3 involves the following change of variables; Let 

𝐼 = 𝑥1,      𝐶 = 𝑥2,      𝑆 = 𝑥3,     𝑅 = 𝑥4  

Let 𝒙 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)
𝑇  be the vector written so that the model can be re-written in the form   

𝑑𝒙

𝑑𝑡
= 𝒇(𝑥), where 𝒇 =

(𝑓1, 𝑓2, 𝑓3, 𝑓4)
𝑇 as follows 
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𝑑𝑥1

𝑑𝑡
= 𝑓1(𝑥) =  𝜎 [

𝛽1𝑥1𝑥3+𝛽2𝑥2𝑥3

𝑁
] − (𝜃 + 𝜇 + 𝜏)𝑥1                                                                                                              (19)

𝑑𝑥2

𝑑𝑡
= 𝑓2(𝑥) = (𝑝𝜏 + 𝜃𝑞)𝑥1 − (𝜇 + 𝑘 + 𝑑)𝑥2                                                                                                                      (20) 

𝑑𝑥3

𝑑𝑡
= 𝑓3(𝑥) = 𝜋𝑁 − 𝜎 [

𝛽1𝑥1𝑥3+𝛽2𝑥2𝑥3

𝑁
] − 𝜇𝑥3 + 𝛼𝑥4                                                                                                          (21)    

𝑑𝑥4

𝑑𝑡
= 𝑓4(𝑥) = ((1 − 𝑝)𝜏 + (1 − 𝑞)𝜃)𝑥1 − (𝜇 + 𝛼)𝑥4 + 𝑘𝑥2                                                                                         (22)

 

The Jacobian matrix of the equations  (9) − (12) at the disease-free equilibrium 𝐽(𝐸0) is defined in previous section. Taking 

𝛽1 = 𝛽 and 𝛽2 = 𝑟𝛽, where 𝛽 is chose as the bifurcation parameter and the bifurcation occurs at 𝑅0 = 1, we consider the 

case 𝑅0 = 1 and solve for the bifurcation parameter 𝛽. 

We have 

𝑅0 =
𝜎𝛽(𝜇 + 𝑘 + 𝑑) + 𝜎𝑟𝛽(𝑝𝜏 + 𝜃𝑞)

(𝜇 + 𝜏 + 𝜃)(𝜇 + 𝑘 + 𝑑)
= 1 

from which we obtain 

    𝛽 =
(𝜇+𝜏+𝜃)(𝜇+𝑘+𝑑)

𝜎[(𝜇+𝑘+𝑑)+𝑟((𝑝𝜏+𝜃𝑞))]
 

The linearized system of the system  (9) − (12) with 𝛽1 = 𝛽 and 𝛽2 = 𝑟𝛽 at 𝑅0 = 1 has a simple zero eigenvalue. Using the 

Centre Manifold theory, the Jacobian matrix of  (9) − (12) has right eigenvector associated with the zero eigenvalue as 

[
 
 
 

𝜎𝛽 − (𝜇 + 𝜏 + 𝜃) σrβ 0 0

𝑝𝜏 + 𝜃𝑞 −(𝜇 + 𝑑) 0 0
−𝜎𝛽 −σrβ −𝜇 𝛼

(1 − 𝑝)𝜏 + (1 − 𝑞)𝜃 𝑘 0 −(𝜇 + 𝛼)]
 
 
 

[

𝑤1

𝑤2
𝑤3

𝑤4

] = [

0
0
0
0

]                          (21)  

where 𝒘 = (𝑤1, 𝑤2, 𝑤3, 𝑤4)
𝑇 is the right eigenvector. 

Evaluating the system in (21) gives  

𝑤2 =
𝑝𝜏 + 𝜃𝑞

(𝜇 + 𝑑)
𝑤1, 𝑤3 =

𝑚1

𝛼𝑚2
𝑤1, 𝑤4 =

𝑚3

𝑏𝑚2
𝑤1 

Where 

 𝑚1 = (𝑝𝜏 + 𝜃𝑞)(𝑘 − 𝜎𝑟𝛽(𝜇 + 𝛼)) + (𝜇 + 𝑘 + 𝑑)((1 − 𝑝)𝜏 + (1 − 𝑞)𝜃) − 𝜎𝛽(𝜇 + 𝛼), 

 𝑚2 = (𝜇 + 𝑘 + 𝑑)(𝜇 + 𝛼), 

 𝑚3 = ((1 − 𝑝)𝜏 + (1 − 𝑞)𝜃)(𝜇 + 𝑘 + 𝑑), 

The left eigenvector of the Jacobian 𝐽(𝐸0) associated with the zero eigenvalue is given by 𝒗 = (𝑣1, 𝑣2, 𝑣3, 𝑣4)
𝑇. Transposing 

Jacobian  𝐽(𝐸0) first and multiply by 𝒗, we have 

[

𝜎𝛽 − (𝜇 + 𝜏 + 𝜃) 𝑝𝜏 + 𝜃𝑞 −𝜎𝛽 (1 − 𝑝)𝜏 + (1 − 𝑞)𝜃

σrβ −(𝜇 + 𝑑) −σrβ 𝑘
0 0 −𝜇 0
0 0 𝛼 −(𝜇 + 𝛼)

] [

𝑣1

𝑣2
𝑣3

𝑣4

] = [

0
0
0
0

] 

 

from which we get  

𝑣3 = 𝑣4 = 0, 𝑣2 =
𝜎𝑟𝛽

𝜇 + 𝑑
𝑣1 

Using the property  𝒘. 𝒗 = 1, we obtain 
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 𝒘 = (
(𝜇+𝑘+𝑑)2

𝜎𝑟𝛽(𝑝𝜏+𝜃𝑞)+(𝜇+𝑘+𝑑)2
,

(𝑝𝜏+𝜃𝑞)(𝜇+𝑘+𝑑)

𝜎𝑟𝛽(𝑝𝜏+𝜃𝑞)+(𝜇+𝑘+𝑑)2
,

𝑚1

𝛼𝑚2

(𝜇+𝑘+𝑑)2

𝜎𝑟𝛽(𝑝𝜏+𝜃𝑞)+(𝜇+𝑘+𝑑)2
,

𝑚3

𝑏𝑚2

(𝜇+𝑘+𝑑)2

𝜎𝑟𝛽(𝑝𝜏+𝜃𝑞)+(𝜇+𝑘+𝑑)2
)  and  

 𝒗 = (1,
𝜎𝑟𝛽

𝜇+𝑘+𝑑
, 0, 0) 

Computations of 𝒂 and 𝒃 

From the system (19) - (22), the associated non-zero partial derivative of 𝐹 at DFE for 𝑣1, 𝑣2 are given by 

 
𝜕2𝑓1

𝜕𝑥1𝜕𝑥3
=

𝜎𝛽

𝑁
  ,   

𝜕2𝑓1

𝜕𝑥2𝜕𝑥3
=

𝜎𝑟𝛽

𝑁
  ,   

Since 𝑣3 = 0 and 𝑣4 = 0  

It follows that 

 𝑎 = 𝑣1 [𝑤1𝑤3
𝜎𝛽

𝑁
+ 𝑤2𝑤3

𝜎𝑟𝛽

𝑁
] 

or 

 𝑎 = [𝑤1
2 𝑚1

𝛼𝑚2

𝜎𝛽

𝑁
+ 𝑤1

2 𝑚1

𝛼𝑚2

𝑝𝜏+𝜃𝑞

(𝜇+𝑘+𝑑)

𝜎𝑟𝛽

𝑁
]. 

This gives  

 𝑎 = [𝑤1
2 1

𝛼𝑚2

𝜎𝛽

𝑁
+ 𝑤1

2 1

𝛼𝑚2

𝑝𝜏+𝜃𝑞

(𝜇+𝑘+𝑑)

𝜎𝑟𝛽

𝑁
]𝑚1 

For  𝑏, we have  

 𝑏 = 𝑣1 [𝑤1
𝜕2𝑓1

𝜕𝑥1𝜕𝛽
(0,0) + 𝑤2

𝜕2𝑓1

𝜕𝑥2𝜕𝛽
(0,0)] 

Substituting  𝛽1 = 𝛽 and 𝛽2 = 𝑟𝛽  into 𝒇 and differentiating, we have 

 𝑏 = 𝑤1 [
𝜎

𝑁
+

𝑝𝜏+𝜃𝑞

(𝜇+𝑘+𝑑)

𝜎𝑟

𝑁
] > 0. 

Theorem 4: The system (9) – (12) exhibits a backward bifurcation at 𝑅0 = 1 if  𝑚1 > 0 and 𝑎 > 0. If 𝛽 < 0, there 

exists a positive unstable endemic equilibrium point and when 𝛽 changes from negative to positive, a positive 

stable endemic equilibrium point exists. Therefore, the endemic equilibrium point is locally asymptotically stable 

for 𝑅0 > 1 but close to 1. 

 4.0 Numerical Result 

To examine the dynamics of the model numerically, the system is solved using the fourth-order Runge-Kutta method with the 

following values for the parameters 𝜇 = 0.1, 𝜎 = 2, 𝛽1 = 0.4,   𝛽2 = 0.05, 𝜃 = 0.6, 𝑝 = 0.2, 𝑞 = 0.3, 𝑘 = 0, 𝛼 = 0.2, 𝜏 =

0.3, 𝑑 = 0.03 and initial conditions  𝑆(0) = 120000, 𝐼(0) = 50000, 𝐶(0) = 25000, 𝑅(0) = 5000  for the period of 15 

years. The result are displayed graphically in figures 1(𝑎) − 3(𝑐). Figures 1(𝑎) − 1(𝑐) show the effect of the number of 

sexual partners on the initially infected, chronically infected and recovered individuals. As the number of sexual partner 

increases, the number of people that are initially infected with HPV and the number of people that recovered among these 

initially infected HPV individuals increase. Similarly, the number of people that progress to chronically infected class among 

those initially infected with HPV also increases. This is because in about 90% of those who are initially infected with HPV, 

their body’s immune system is able to clear the infection within two years (Medical News Today, 2014). 

Figures 2(𝑎) − 2(𝑐) show the effect of screening on multiple sexual partners of the initially infected, chronically infected 

and recovered individuals. As the rate of screening increases, the number of people that are initially infected with HPV and 

the number of people that recovered among these initially infected HPV individual decreases, while the number of people 

that progress to chronically infected class among those initially infected with HPV increases. This is perhaps as a result of 

multiple sexual partners of the initially and chronically infected individuals.  
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Figures 3(𝑎) − 3(𝑐) show the effect of screening on a single sexual partner of the initially infected, chronically infected and 

recovered individuals. As the rate of screening increases, the number of people that are initially infected with HPV decreases, 

while the number of people that progress to chronically infected class and the number of people that recovered among these 

initially infected HPV individual increases. This is because the initially and chronically infected are faithful to one sexual 

partner.    

Therefore, in order to reduce the spread of HPV, effective screening must be accompanied by counselling for faithfulness to 

one sexual partner.  

5.0 CONCLUSION 

A variate of the model by Froelich et al.(2002) is proposed to incorprorate mean numbers of sexual partners for initially and 

chronically infected HPV infectives in a homogeneously varying population. Intervention such as screening was considered 

in model in order to know the effect on the number of sexual partners of the initially and chronically infected HPV 

individuals. The model is investigated to exhibit local and global asymptotic stabilty at DFE provided 𝑅0 < 1. While, the 

stability of the endemic equilibrium is examined using bifurcation analysis (centre manifold approach) and proved to be 

backward bifurcation based on certain conditions. Results from numerical simulations indicate that an increase in the rate of 

screening will reduce the number of initially infected HPV and increase the number of chronically infected and recovered 

HPV indivdiuals if the HPV infected indivduals stick to one sexual partner if at all they will have sexual partners. 
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