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A Common Unique Random Fixed Point Theorems in S – Metric 

Spaces 

 

Anupama Gupta  

Abstract: In this paper, we present some new definitions of S – metric spaces and prove 

some random fixed point theorem for two random functions in complete    S – metric 

spaces. We get some improved versions of several fixed point theorems in S – metric 

spaces. 
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Introduction: 

In 1922, the Polish mathematician, Banach, proved a theorem which ensures, under 

appropriate conditions, the existence and uniqueness of a fixed point. His result is called 

Banach’s fixed point theorem or the Banach contraction principle. This theorem 

provides a technique for solving a variety of applied problems in mathematical science 

and engineering. Many authors have extended, generalized and improved Banach’s fixed 

point theorem in different ways. In [8] Jungck introduced more generalized commuting 

mappings, called compatible mappings, which are more general than commuting and 

weakly commuting mappings. This concept has been useful for obtaining more 

comprehensive fixed point theorems. One such generalization is generalized metric 

space or D – metric space initiated by Dhage in 1992. He proved some results on fixed 

points for a self – map satisfying a contraction for complete and bounded D – metric 

spaces. Rhoades generalized Dhage’s contractive condition by increasing the number of 

factors and proved the existence of unique fixed point of a self – map in D – metric space. 

Recently, motivated by the concept of compatibility for metric space. Singh and Sharma 

introduced the concept of       D–compatibility of maps in D – metric space and proved 

some fixed point theorems using a contractive condition. Naidu observed that almost all 

fixed point theorems in D – metric spaces are not valid or of doubtful validity. Also, 

Sedghi and Shobe introduced 𝐷∗- metric space, by modifying the tetrahedral inequality 

in D – metric space and proved some basic result in it. In this paper, we introduce 𝐷∗- 

metric which is a probable modification of the definition of     D – metric introduced by 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.9, 2015  

 

140 

Dhage and prove some basic propertied in 𝐷∗- metric space. We also prove a common 

fixed point theorem for six mappings under the condition of weakly compatible 

mappings in 𝐷∗- metric spaces. 

In what follows (X, 𝐷∗) will denote a 𝐷∗- metric space,  ℕ the set of all natural numbers, 

and 𝑅+ the set of all positive real numbers. 

The definition of 𝐷∗- metric as follows: 

Definition 1: Let X be a nonempty set. A generalized metric (or 𝐷∗- metric) on X is a 

function 𝐷∗: 𝑋3→ [0, ∞)that satisfies the following conditions for each          x, y, z, a Є X. 

(1)  𝐷∗ (x, y, z) ≥ 0, 

(2) 𝐷∗ (x, y, z) = 0 if and only if x = y = z, 

(3) 𝐷∗ (x, y, z)  = 𝐷∗ (p{x, y, z}), (symmetry) where p is a permutation function, 

(4) 𝐷∗ (x, y, z) ≤ 𝐷∗ (x, y, a)   + 𝐷∗ (a, z, z). 

The pair (X,  𝐷∗) is called a generalized metric (or 𝐷∗- metric) space. 

In this paper we introduce new concept of a generalized metric space which is more 

generalized than 𝐷∗- metric space, that is S – metric space and prove some basic 

properties and some fixed point theorems in s – metric spaces. 

Definition 2. Let X be a nonempty set. A generalized metric (or S – metric) on X is a 

function S: 𝑋3→ [0, ∞)that satisfies the following conditions for each            x, y, z, a Є X, 

(1)𝑆(x,y,z)  ≥ 0,  

(2) 𝑆(x,y,z) = 0 if and only if x = y = z,  

 (3) 𝑆(x,y,z)≤ 𝑆(a,y,z) +𝑆(a,x,x) . 

The pair (X, S) is called a generalized metric (or S – metric) space. 

Immediate examples of such a function are  

(a) If X = 𝑅𝑛then we define  
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𝑆(x,y,z)= ‖y + x – 2z‖ + ‖y - z‖. 

 (b) 𝑆(x,y,z) = d(x, y) + d (x, z) here, d is the ordinary metric on X. 

(c) If X = 𝑅𝑛 then we define 

𝑆(x,y,z) = ‖x - z‖ + ‖y - z‖ 

(d) if X = ℝ then we define  

𝑆(x,y,z) = |𝑎𝑦+𝑧 - 𝑎2𝑥| + |y - z|, 

For every x, y, z Є X, a > 0 and a ≠ 1. Here, d is an ordinary metric on X. 

Remark 2. Let (X, S) be a S – metric space. If we define f: 𝑋2 → [0, ∞) as             𝑓(𝑥,𝑦)= 

𝑆(x,y,y) for all x, y Є X then f is an ordinary metric on X. 

Proof. Clearly 𝑓(𝑥,𝑦) ≥ 0 for all x, y Є X and 𝑓(𝑥,𝑦) = 0 iff x = y. 

𝑓(𝑥,𝑦) = 𝑆(x,y,y) = 𝑆(y,x,x) = 𝑓(𝑦,𝑥) from Remark 1. 

From Definition 2 we have 

𝑓(𝑥,𝑦) = 𝑆(x,y,y)  

                               ≤ 𝑆(z,y,y)  + 𝑆(z,x,x) 

                       = 𝑓(𝑧,𝑦) +𝑓(𝑧,𝑥). 

Thus f is a metric on X. 

Let (X, S) be a S – metric space. For r > 0 define 

𝐵𝑠(𝑥, 𝑟) = {y Є X: 𝑆(x,y,y) < r}. 

Definition3. Let (X, S) be a S- metric space and A ⊂ X.  

(1) If for every x Є A there exists r > 0 such that 𝐵𝑠(𝑥, 𝑟) ⊂ A, then subset A is called 

open subset of X. 
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(2) Subset A of X is said to be S – bounded if there exists r > 0 such that               𝑆(x,y,y) < 

r for all x , y Є A. 

      (3) A sequence {𝑥𝑛} in X converges to x if and only if  

𝑆(𝑥𝑛,x,x) = 𝑆( x,𝑥𝑛,𝑥𝑛)→ 0 as n → ∞. 

That is for each 𝜖 > 0 there exists 𝑛0 Є ℕ such that 

∀ n ≥  𝑛0 →  𝑆( x,𝑥𝑛,𝑥𝑛) < 𝜖. 

(4) Sequence {𝑥𝑛} in X is called a Cauchy sequence if for each 𝜖 > 0, there exists 𝑛0 Є ℕ 

such that 𝑆(𝑥𝑛,𝑥𝑚,𝑥𝑚) < 𝜖 for each n, m ≥ 𝑛0. The S – metric space (X, S) is said to be 

complete if every Cauchy sequence is convergent. 

Let 𝜏 be the set of all A ⊂ X with x Є A if and only if there exists r > 0 such that 𝐵𝑠(𝑥, 𝑟) ⊂ 

A. Then 𝜏 is a topology on X (induced by the S – metric Space). 

Lemma1. Let (X, S) be a S – metric space. If r > 0, then ball 𝐵𝑠(𝑥, 𝑟) with centre      x Є X 

and radius r is open ball. 

Proof: Let z Є 𝐵𝑠(𝑥, 𝑟), Hence 𝑆(x,z,z) < r. If set 𝑆(x,z,z)  = 𝛿    and 𝑟′ = r – 𝛿 then we prove 

that 𝐵𝑠(𝑧, 𝑟′)  𝐵𝑠(𝑥, 𝑟). Let y Є 𝐵𝑠(𝑧, 𝑟′), by triangular inequality we have 

𝑆(x,y,y)=𝑆(y,x,x)≤ 𝑆(x,x,x)+𝑆(z,y,y)  <  𝑟′ + 𝛿 = r . 

Hence 𝐵𝑠(𝑧, 𝑟′)  𝐵𝑠(𝑥, 𝑟). That is ball 𝐵𝑠(𝑥, 𝑟) is open ball. 

Lemma 2. Let (X, S) be a S – metric space. If there exists sequences {𝑥𝑛} and {𝑦𝑛} such 

that 𝑥𝑛 → x and 𝑦𝑛 → y, then 

𝑆(𝑥𝑛,𝑦𝑛,𝑦𝑛)  → 𝑆(x,y,y). 

Proof: Since sequence {(𝑥𝑛, 𝑦𝑛, 𝑦𝑛)} in 𝑋3 converges to a point (x, y, y) Є 𝑋3 i. e.  

lim𝑛→∞ 𝑥𝑛 = x,  lim𝑛→∞ 𝑦𝑛 = y, 

For each 𝜖 > 0 there exists 𝑛1 Є ℕ such that for every 
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n ≥  𝑛1 ⟹ 𝑆(x,𝑥𝑛,𝑥𝑛) < 𝜖/ 2 

and 𝑛2 Є ℕ such that for every 

n ≥ 𝑛2 ⟹ 𝑆(y,𝑦𝑛,𝑦𝑛) < 𝜖/ 2. 

If 𝑛0 = max {𝑛1, 𝑛2}, then for every n ≥ 𝑛0 by triangular inequality we have  

𝑆(𝑥𝑛,𝑦𝑛,𝑦𝑛) ≤ 𝑆(x,𝑦𝑛,𝑦𝑛)+ 𝑆(x,𝑥𝑛,𝑥𝑛) 

                        ≤ 𝑆(y,𝑦𝑛,𝑦𝑛) +𝑆(y,x,x) +𝑆(x,𝑥𝑛,𝑥𝑛)  

                       < 𝜖/ 2 + 𝜖/ 2 + 𝑆(y,x,x) = 𝑆(y,x,x) + 𝜖.  

Hence we have 𝑆(𝑥𝑛,𝑦𝑛,𝑦𝑛)- 𝑆(y,x,x) <  𝜖.  

On the other hand  

𝑆(y,x,x) ≤ 𝑆(𝑥𝑛,x,x)  +𝑆 (𝑥𝑛,y,y) 

                ≤ 𝑆(𝑥𝑛,x,x)  +𝑆(𝑦𝑛,y,y)  +𝑆(𝑦𝑛,𝑥𝑛,𝑥𝑛)  

                 < 𝜖/ 2 + 𝜖/ 2 + 𝑆(𝑥𝑛,𝑦𝑛,𝑦𝑛)  

                = 𝑆(𝑥𝑛,𝑦𝑛,𝑦𝑛)+ 𝜖. 

That is,  

𝑆(y,x,x) - 𝑆(𝑥𝑛,𝑦𝑛,𝑦𝑛) < 𝜖 . 

Therefore we have |𝑆(𝑥𝑛,𝑦𝑛,𝑦𝑛)– 𝑆(x,y,y)| < 𝜖 i.e. 

lim𝑛→∞ 𝑆(𝑥𝑛,𝑦𝑛,𝑦𝑛) = 𝑆(x,y,y) 

Lemma 3: Let (X, S) be a S – metric space. If sequence {𝑥𝑛} in X converges to x, then x is 

unique. 
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Proof. Let 𝑥𝑛 → y and and y ≠ x. Since {𝑥𝑛} converges to x and y, for each 𝜖 > 0 there 

exist 𝑛1Є ℕ such that for every n ≥ 𝑛1  ⟹𝑆(𝑥𝑛 ,x,x)  < 𝜖 /2 and 𝑛2 Є ℕ such that for every 

n ≥ 𝑛2 ⟹𝑆(𝑥𝑛,y,y)  < 𝜖 /2. 

If  𝑛0 = max {𝑛1, 𝑛2}, then for every n ≥ 𝑛0 by triangular inequality we have  

𝑆(x,y,y) ≤ 𝑆(𝑥𝑛 ,x,x) +𝑆(𝑥𝑛,y,y)  < 𝜖/ 2+ 𝜖/ 2 = 𝜖. 

Hence 𝑆(x,y,y) = 0 is a contradiction. So, x = y. 

Lemma 4. Let (X, S) be a S- metric space. If sequence {𝑥𝑛}in X converges to x, then  

sequence {𝑥𝑛} is a Cauchy sequence. 

Proof. Since 𝑥𝑛 → x for each 𝜖 > 0 there exists 𝑛1 Є ℕ such that 

 for every n ≥  𝑛1 ⟹ 𝑆(x,𝑥𝑛,𝑥𝑛) < 𝜖/ 2  

and 𝑛2 Є ℕ such that for every m ≥ 𝑛2 ⟹ 𝑆(x,𝑥𝑚,𝑥𝑚) < 𝜖/ 2.  

If  𝑛0 = max {𝑛1, 𝑛2}, then for every n ≥ 𝑛0 by triangular inequality we have  

𝑆(𝑥𝑛,𝑥𝑚,𝑥𝑚) ≤𝑆(x,𝑥𝑛,𝑥𝑛)  + 𝑆(x,𝑥𝑚,𝑥𝑚) < 𝜖/ 2+ 𝜖/ 2 = 𝜖. 

Hence sequence {𝑥𝑛} is a Cauchy sequence. 

Main Results: 

Definition4: Let F: ℝ × X → X be a function, where X is a nonempty set. Then function g: 

ℝ → X is said to be a random fixed point of the function F if              𝐹(t,g(t) = g(t) for all t 

in ℝ.  

We shall prove the following theorem. 

Theorem 1: Let (X, S) be a complete S – metric space and let F, G: ℝ × X → X be two 

functions satisfying the following condition: 

S(𝐹(𝑡,𝑥), 𝐺(𝑡,𝑦), 𝐺(𝑡,𝑦)) ≤ 𝑘1 S( x, 𝐹(𝑡,𝑥), 𝐹(𝑡,𝑥)) + 𝑘2(S(t, 𝐺(𝑡,𝑦), 𝐺(𝑡,𝑦)) 
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                                                                     + 𝑘3𝑆(x,y,y). 

For every x, y Є X, t Є ℝ where 𝑘𝑖  ≥ 0 for i = 1, 2, 3 and 0 < 𝑘1 + 𝑘2 + 𝑘3 < 1. Then F and 

G have a unique common fixed point. 

Proof: We define a sequence of functions {𝑔𝑛} as 𝑔𝑛: ℝ → X is arbitrary function for t Є ℝ, 

and n = 0, 1, 2, 3, . . .  

𝑔2𝑛+1(𝑡) = 𝐹(t,𝑔2𝑛(𝑡),  𝑔2𝑛+2(𝑡) = 𝐺(t,𝑔2𝑛+1(𝑡), 

If 𝑔2𝑛(𝑡) = 𝑔2𝑛+1(𝑡)= 𝑔2𝑛+2(𝑡) for t Є ℝ, for some n then we set that 𝑔2𝑛(𝑡) is a random 

fixed point of F and G. Therefore, we suppose that no two consecutive terms of sequence 

{𝑔𝑛 } are equal. Now by using (i) in all t Є ℝ we have  

𝑆(𝑔2𝑛+1(𝑡),𝑔2𝑛+2(𝑡),𝑔2𝑛+2(𝑡) =𝑆(𝐹(t,𝑔2𝑛(𝑡),𝐺(t,𝑔2𝑛+1(𝑡),𝐺(t,𝑔2𝑛+1(𝑡))   

                                              ≤  𝑘1𝑆(𝑔2𝑛(𝑡),𝐹(t,𝑔2𝑛(𝑡),𝐹(t,𝑔2𝑛(𝑡))
 

                                                      + 𝑘2 𝑆(𝑔2𝑛+1(𝑡),𝐺(t,𝑔2𝑛+1(𝑡),𝐺(t,𝑔2𝑛+1(𝑡)
 

                                                      +  𝑘3 𝑆(𝑔2𝑛(𝑡),𝑔2𝑛+1(𝑡),𝑔2𝑛+1(𝑡) 

Therefore,  

𝑆(𝑔2𝑛+1(𝑡),𝑔2𝑛+2(𝑡),𝑔2𝑛+2(𝑡) ≤ 
𝑘1+𝑘3 

1− 𝑘2
 𝑆(𝑔2𝑛(𝑡),𝑔2𝑛+1(𝑡),𝑔2𝑛+1(𝑡) 

                                                                  . 

                                                                  .  

                                                                  . 

                                              ≤ 
𝑘1+𝑘3 

1− 𝑘2

2𝑛+1
𝑆(𝑔0(𝑡),𝑔1(𝑡),𝑔1(𝑡)) 

Similarly we have 
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𝑆(𝑔2𝑛(𝑡),𝑔2𝑛+1(𝑡),𝑔2𝑛+1(𝑡))   ≤( 
𝑘1+𝑘3 

1− 𝑘2
)2𝑛  𝑆(𝑔0(𝑡),𝑔1(𝑡),𝑔1(𝑡))   

Thus for every n Є ℕ we get,  

        𝑆(𝑔𝑛(𝑡),𝑔𝑛+1(𝑡),𝑔𝑛+1(𝑡) ≤( 
𝑘1+𝑘3 

1− 𝑘2
)𝑛 𝑆(𝑔0(𝑡),𝑔1(𝑡),𝑔1(𝑡)) 

Now we show that {𝑔𝑛(𝑡)} is a Cauchy sequence. 

              𝑆(𝑔𝑛(𝑡),𝑔𝑚(𝑡),𝑔𝑚(𝑡)≤ 𝑆(𝑔𝑛+1(𝑡),𝑔𝑚(𝑡),𝑔𝑚(𝑡)  + 𝑆 (𝑔𝑛+1(𝑡),𝑔𝑛(𝑡),𝑔𝑛(𝑡))  

                                             ≤ 𝑆 (𝑔𝑛+2(𝑡),𝑔𝑚(𝑡),𝑔𝑚(𝑡) 

                                                + 𝑆(𝑔𝑛+2(𝑡),𝑔𝑛+1(𝑡),𝑔𝑛+1(𝑡) 

                                                + 𝑆(𝑔𝑛+1(𝑡),𝑔𝑛(𝑡),𝑔𝑛(𝑡)+ . . .  

                                            ≤ 𝑆(𝑔𝑛−1(𝑡),𝑔𝑚(𝑡),𝑔𝑚(𝑡) 

                                                  + 𝑆(𝑔𝑛+2(𝑡),𝑔𝑛+1(𝑡),𝑔𝑛+1(𝑡))  

                                                  + 𝑆(𝑔𝑛+1(𝑡),𝑔𝑛(𝑡),𝑔𝑛(𝑡)) 

                                             = 𝑆(𝑔𝑚−1(𝑡),𝑔𝑚(𝑡),𝑔𝑚(𝑡))  

                                                  + . . . +𝑆(𝑔𝑛+1(𝑡),𝑔𝑛+2(𝑡),𝑔𝑛+2(𝑡) )  

                                                 + 𝑆(𝑔𝑛(𝑡),𝑔𝑛+1(𝑡),𝑔𝑛+1(𝑡)). 

If q =  
𝑘1+𝑘3 

1− 𝑘2
 then   

            𝑆(𝑔𝑛(𝑡),𝑔𝑚(𝑡),𝑔𝑚(𝑡)) ≤ 𝑞𝑚−1 𝑆(𝑔0(𝑡),𝑔1(𝑡),𝑔1(𝑡)) 

                                                    + 𝑞𝑚−2  𝑆(𝑔0(𝑡),𝑔1(𝑡),𝑔1(𝑡)) 

                                                     + . . . + 𝑞𝑛𝑆(𝑔0(𝑡),𝑔1(𝑡),𝑔1(𝑡))                                                 
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                                                = 
𝑞𝑛− 𝑞𝑚

1−𝑞 
   𝑆(𝑔0(𝑡),𝑔1(𝑡),𝑔1(𝑡))→ 0. 

Thus {𝑔𝑛(𝑡)} is a Cauchy and by the completeness of X, {𝑔𝑛(𝑡)} converges to g(t) in X. 

Now we prove that 𝐹(t,g(t)) = g(t).  

Replace x = g(t) and y = 𝑔2𝑛+1(𝑡) in inequality (i) we have 

𝑆(𝐹(t,g(t)),𝐺(t,𝑔2𝑛(𝑡)),𝐺(t,𝑔2𝑛(𝑡))) ≤ 𝑘1 𝑆(g(t),𝐹(t,g(t)),𝐹(t,g(t))) 

                                                        + 𝑘2 𝑆(𝑔2𝑛(𝑡),𝐺(t,𝑔2𝑛(𝑡)),𝐺(t,𝑔2𝑛(𝑡))) 

                                                         + 𝑘3 𝑆( g(t),𝑔2𝑛(𝑡),𝑔2𝑛(𝑡)). 

On making n → ∞  in the above inequality we get 

                      𝑆(𝐹(t,g(t),g(t),g(t)) ≤  𝑘1𝑆(g(t),𝐹(t,g(t)),𝐹(t,g(t))) + 𝑘2𝑆(g(t),g(t),g(t))          

                                                          + 𝑘3𝑆(g(t),g(t),g(t)) 

                                                  = 𝑘1𝑆(g(t),𝐹(t,g(t)),,𝐹(t,g(t)),) 

Therefore 𝑆(g(t),𝐹(t,g(t)),,𝐹(t,g(t)),) = 0 that is 𝐹(t,g(t))  = g(t). 

 Replace x = g(t) and y = g(t) in inequality (i) we have 

            𝑆(𝐹(t,g(t),𝐺(t,g(t)),,𝐺(t,g(t)) ) ≤ 𝑘1 𝑆(g(t),𝐹(t,g(t)),𝐹(t,g(t))
) 

                                                           + 𝑘2 𝑆(g(t),𝐺(t,g(t)),𝐺(t,g(t))) 

                                                            +𝑘3 𝑆(g(t),g(t),g(t)) 

                                                     = 𝑘2 𝑆(g(t),𝐺(t,g(t)),𝐺(t,g(t))) 

Therefore 𝑆(𝐹(t,g(t),𝐺(t,g(t)),,𝐺(t,g(t)))  = 0 that is 𝐹(t,g(t) =𝐺(t,g(t)  = g(t). Thus g(t) is a 

common random fixed point of F and G.  
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Now to prove uniqueness let if possible h(t) ≠ g(t) be another common random fixed 

point of F and G. Then by inequality (i) we have 

                         𝑆(g(t),h(t),h(t)) = S(𝐹(t,g(t)),𝐺(t,h(t)), 𝐺(t,h(t))) 

                                                   ≤ 𝑘1 𝑆(g(t),𝐹(t,g(t)),𝐹(t,g(t))) 

                                                      + 𝑘2𝑆(h(t),𝐺(t,h(t)),𝐺(t,h(t))) 

                                                      +𝑘3𝑆(g(t),h(t),h(t))) 

                                                   = 𝑘3𝑆(g(t),h(t),h(t)) 

Therefore  𝑆(g(t),h(t),h(t))) = 0 that is g(t) = h(t) . Thus g(t) is a unique common random 

fixed point of F and G. 

Corollary 2: Let (X, S) be a complete S – metric space and let F: ℝ × X → X be function 

satisfying the following condition: 

                𝑆(𝐹(t,x), 𝐹(𝑡,𝑦)𝐹(𝑡,𝑦),) ≤ 𝑘1 𝑆(x,𝐹(𝑡,𝑥),𝐹(𝑡,𝑥) )+ 𝑘2𝑆(y,𝐹(𝑡,𝑦),𝐹(𝑡,𝑦))  

                                                     + 𝑘3𝑆(x,y,y), 

For every x, y Є X, t Є ℝ where 𝑘𝑖  ≥ 0 for i = 1, 2, 3 and 0 < 𝑘1 + 𝑘2 + 𝑘3 < 1 . Then F 

have a unique common fixed point. 

Proof: By Theorem 1, it is enough set 𝐹(𝑡,𝑦) = 𝐺(𝑡,𝑦).  

Corollary 3: Let (X, S) be a complete S – metric space and let F: ℝ × X → X be function 

satisfying the following condition: 

𝑆(𝐹(t,x), 𝐹(𝑡,𝑦)𝐹(𝑡,𝑦),) ≤ k 𝑆(x,y,y), 

for every x, y Є X, t Є ℝ where 0 < k<1. Then F have a unique common fixed point. 

Proof: By Corollary 2 , it is enough set 𝑘1 = 𝑘2 = 0.  
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