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Abstract 

A review is given on existing work and result of the performance of some discriminant analysis procedures 

under varying conditions. Few of the developed methods (Fisher’s Linear Discriminant Function, Logistic 

Regression and Quadratic discriminant function) were reviewed. Some new results are presented for the case 

involving allocation with more than two groups. Shortfalls in the reviewed procedures necessitated the need for 

an improved procedure that can classify observations into multiple groups with high efficiency (minimal error 

rate). 
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1. Introduction 

Multivariate analysis has been a major arm of statistics which has significantly solved problems in classifications 

of multivariable data. Discrimination analysis and  Logistic Regression are tools that are used for classification 

and prediction. Press, and Wilson,( 1978)  defines classification into one of several populations is  discriminant 

analysis, or classification. Relating quantitative variables to other variables through a logistic cdf functional form 

is logistic regression. Estimators generated for one of these problems are used in the other. According to 

Markowski and Markowski (1987) Fisher’s approach to discriminant problem is parametric and relies on 

assumptions such as multivariate normality for optimality and, therefore, may be less effective on more realistic 

classes of problems.     

Several methods for discriminant analysis have been proposed. Differences between methods arise because of 

the variety of distributional assumptions made about the variables describing each object or individual to be 

classified. The methods based on the assumption of normality are the ones most widely used in practice. If we 

are willing to assume that our groups are described by multivariate normal densities with different means but the 

same covariance matrix, then a rule exist (for a two groups case) that allocates an individual with vector scores x 

to group D1 if 

     𝐚T [𝐱 −
1

2
(𝐗1 − 𝐗2)] > 0           (1) 

 Where 𝐚 = 𝐒−1(𝐗1 − 𝐗2), �̅�1 and 𝐗2 are the vector of means for group one and two respectively and S is the 

variance-covariance matrix assumed to be the same for the two groups. The above was suggested by Fisher 

(1936) whose idea was to find a linear combination of the p variables which separates the two training samples 

as much as possible, and he showed that for any such combination, 𝐚T𝐱 , is maximized by taking 𝐚 as defined 

above. In many practical situations, the population parameters, 𝛍1, 𝛍2 and  Ʃ  are unknown, Wald (1944) and 

Anderson (1951) suggested replacing the unknown parameters by the estimates of their sample, then the 

allocation rule will therefore be to allocate any future observation to group D1 if  

 δ = (𝐗1 − 𝐗2)T𝐒−1 [𝐱 −
1

2
(𝐗1 + �̅�2)] > K           (2) 

Otherwise, allocate to group D2. 

The constant, K is the cutoff point depending on the relative costs of misallocation from each population and 

also on the a-priori probabilities of x coming from each population. When none of this information is available, 

this constant is taken as zero. Fisher’s LDF have attracted a large amount of methodological research due to the 

popularity of its technique in the field of multivariate analysis. Areas of research have been majorly on the 

distribution of the classification statistic, estimation of probabilities of misclassification, variables selection, 

estimation of the parameters of the allocation rule, performance of Fisher’s LDF under varying conditions 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.9, 2015  

 

200 

including when classification involves more than two groups. Fisher’s LDF have attracted great patronage due to 

its simplicity and ease of computation, however, knowledge of the performance of Fisher’s LDF under certain 

conditions would be significantly valuable even though users may feel that little damage done in using Fisher’s 

LDF in such situation are negligible. Hills (1967) in Krzanowski (1977) pointed out that Fisher’s LDF will 

provide a useful tool for discrimination under wide distributional conditions but may be quite unsuitable for 

allocating a particular observation to one of two populations which are not multivariate normal. 

       This brings us to the light of what this paper intends to achieve, that is, to review known and existing results 

of the performance of the Fisher’s LDF vis-a-viz when some basic underlying assumptions are violated, when 

available data are of several forms and when discrimination involves more than two groups. Also, present some 

new result of the limitation of Fisher’s LDF for the case of discrimination and allocation with more than two 

groups. Conditions for the success and/or failure of linear discriminant function will be investigated and 

presented as well. 

2. Review of Some Violated Assumptions and the Consequences 

2.1 Unequal Variance-Covariance Matrices 

When the assumption that two populations of interest have equal covariance matrices fails, the allocation rule 

described in (2) becomes, assign a future individual with vector of scores x to group D1 if   

𝐱T(𝐒2
−1 − 𝐒1

−1)𝐱 − 2𝐱T(𝐒2
−1𝐗2 − 𝐒1

−1𝐗1) + (𝐗2
T𝐒2

−1�̅�2 − 𝐗1
T𝐒1

−1𝐗1) ≥ In [(
|S2|

|S1|
) + 2In (

π2

π1
)]             (3) 

Otherwise to group D2.   π1 and  π2 are probabilities of group membership for group one and two respectively. 

Since the left-hand side contains square and cross-product terms, it is termed the Quadratic disriminant function. 

Even if the assumption of multivariate normality is justified, use of Fisher’s LDF may not be optimal for 

allocation due to heterogeneity of dispersion matrices (Krzanowski, 1977). The robustness of Hotelling’s T
2
 

under heterogeneity of dispersions could provide an alternative to this problem. Gilbert (1969) investigated the 

behavior of Fisher’s LDF by comparing it with that of the optimal quadratic form when the parameters of the 

two populations are assumed to be known. Gilbert restricted attention to the case where one variance-covariance 

matrix is a multiple, d, of the other. The result revealed that the Fisher’s LDF may be satisfactory for 

classification but not for estimating risks of individuals belonging to a particular population. It becomes worse as 

number of variables increased. 

2.2 Non-Normality. 

One of the basic assumptions in discriminant analysis is that observations are distributed multivariate normal. In 

practical cases, this assumption is even more important in assessing the performance of Fisher’s LDF in data 

which do not follow the multivariate normal distribution. Fisher’s LDF has shown to be relatively robust to 

departure from normality. The non-normality of data could be as a result of the nature of the data. While some 

may be continuous but with joint distribution that is not normal, others may be discrete and each can assume 

only a finite number of values. Some could also be a mixture of both discrete and continuous. Although, various 

methods of data treatment such as logarithmic transformation, square root transformation, inverse transformation 

e.t.c. suggests normality yet optimality is not commonly met. 

2.3 When Data are mixtures of Continuous and Categorical variables (Normal and otherwise).  

Fisher’s Linear Discriminant Function (FLDF) approach to dealing with mixtures of Continuous and Categorical 

variables is such that assigns codes or score to each state of the categorical variable and analysis performed with 

methods originally intended for continuous data. This implies that certain amount of distortion is likely to be 

introduced by treating the categorical variables as if they were continuous. Olkin et al (1961) and Krzanowski 

(1975, 1977, 1980, 1982) developed a method (henceforth referred to as Location Model) that handles this 

situation without making any such transformation to the categorical data. This procedure assumes that, y, vector 

of continuous variables has a multivariate normal distribution with mean 𝛍i(m) in cell m and population Di 

(m=1,2,…,k; i=1,2), with common dispersion matrix Ʃ in all cells of both populations. The advantage of their 

proposed method over the conventional FLDF was evaluated using their respective average error rates under 

various scenarios. Scenarios such as varying sample sizes, varying number of discriminating variables 

(categorical and continuous), varying prior probabilities of group membership among others. The average error 

rate using FLDF was higher than that of using the Location model in all cases considered and for many 

parameter combinations. Thus, Krzanowski (1982) asserted that when there is evidence of interaction between 

categorical variables and populations, FLDF tends to give poorer result than the rule derived from the Location 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.9, 2015  

 

201 

model. An extreme case would arise when the continuous variable means differ between the populations for each 

cell but the marginal means are the same in the two populations. Oyeyemi et al (2013) investigated the 

performance of the FLDF (direct and stepwise), Location Model and Logistic Regression under various number 

of binary variables mixed with continuous variables. Oyeyemi et al revealed that the performance FLDF in such 

situation is very poor especially with few binary variables and large sample sizes. 

2.4 When Data are Continuous but Non-normal 

When continuous data are non-normal, an appropriate way of handling it is by making transformation to the data. 

The choice of the distributional transformation is relatively dependent on the situation at hand. Such approach 

could also be implored in discriminant analysis when continuous data are non-normal. Lachembruch et al (1973) 

considered three distributions generated from the normal distribution by using some non-linear transformation. 

Results indicated that Fisher’s LDF was greatly affected by non-normality of the population. Error rates for one 

population were generally larger than the optimum values while the reverse was true in the other population and 

the sum of the two error rates increased for some distributions. Lachembruch et al concluded that, the use of 

Fisher’s LDF in non-normal situations could be bad and misleading, and recommended that the data be 

transformed to approximate normality before the use of the LDF. Zhezhel (1968) considered the case of arbitrary 

distribution with equal covariance matrix when the continuous data are non-normal and calculated the maximum 

error rate from each population over this class of distributions. Results obtained shows that there are cases when 

the Fisher’s LDF gives poorer result than the random classification. The performance of the Logistic regression 

has not been investigated in this situation possibly because the distribution makes no assumption about the 

observations.  

2.5 When Data are Discrete 

When data are discrete, Aitchson and Aitken (1976) and Titterington (1977) suggested the use of kernel density 

estimation, and conventionally, researchers assign arbitrary numerical score and proceed with procedures 

intended for continuous variables. However, the work by Gilbert (1968) and Moore (1973) using data generated 

from a first order interaction model indicated that care was needed in the selection of a discrimination procedure 

with binary variables. Log likelihood ration for the population was said to undergo traversal which Fisher’s LDF 

didn’t follow, hence, was found to have performed quite well.  

2.6 A Case of Three Groups 

With Fisher’s LDF, when more than two groups are involved, the allocation rule described in (2) can no longer 

work. This has been extended following the already existing procedure of Fisher’s LDF to provide an 

appropriate allocation rule. With, three groups, considering all possible combinations, without repetition, the 

allocation rule will be based on three functions: 

 h12(x) = (�̅�1 − 𝐗2)T𝐒−1 [𝐱 −
1

2
(𝐗1 + 𝐗2)]           (4) 

     h13(x) = (𝐗1 − 𝐗3)T𝐒−1 [𝐱 −
1

2
(�̅�1 + 𝐗3)]          (5) 

     h23(x) = (𝐗2 − �̅�3)T𝐒−1 [𝐱 −
1

2
(𝐗2 + �̅�3)]          (6) 

The above functions assumes equal covariance matrix for the three groups but vector of means are different in 

each of the here groups. This is to avoid the violation of any of the underlying assumptions. Now, assuming no 

information is available about the cost of misclassification and a-priori probabilities, the classification rule 

derived from (3), (4) and (5) is to allocate an individual with vector of scores x to 

   D1 if h12(𝐱) > 0  and h13(𝐱) > 0                    (7) 

   D2 if h12(𝐱) < 0  and h23(𝐱) > 0                 (8) 

   D3 if h13(𝐱) < 0  and h23(𝐱) < 0             (9) 

3. New Result (for case of more than two groups) And Its Discussion. 

A natural extension of the m=3 groups to m=4 groups give rise to the following functions.  
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 h12(x) = (�̅�1 − 𝐗2)T𝐒−1 [𝐱 −
1

2
(𝐗1 + 𝐗2)]        (10) 

            h13(x) = (𝐗1 − 𝐗3)T𝐒−1 [𝐱 −
1

2
(�̅�1 + 𝐗3)]        (11) 

     h14(x) = (𝐗1 − 𝐗4)T𝐒−1 [𝐱 −
1

2
(�̅�1 + 𝐗4)]        (12) 

     ℎ23(𝑥) = (�̅�2 − �̅�3)𝑇𝑺−1 [𝒙 −
1

2
(�̅�2 + �̅�3)]        (13) 

      ℎ24(𝑥) = (�̅�2 − �̅�4)𝑇𝑺−1 [𝒙 −
1

2
(�̅�2 + �̅�4)]        (14) 

     ℎ34(𝑥) = (�̅�3 − �̅�4)𝑇𝑺−1 [𝒙 −
1

2
(�̅�3 + �̅�4)]         (15) 

And consequently, a set of allocation rules would emerge, thus, allocate a future observation to group  

   D1 if h12(𝐱) > 0 , h13(𝐱) > 0 and  h14(𝐱) > 0         (16) 

   D2 if h12(𝐱) > 0 , h23(𝐱) > 0 and h24(𝐱) > 0         (17) 

   D3 if h13(𝐱) > 0 , h32(𝐱) > 0 and h34(𝐱) > 0         (18) 

   D4 if h14(𝐱) > 0 , h24(𝐱) > 0 and h34(𝐱) > 0         (19) 

Since, allocation in this case involves a simultaneous consideration of more than two groups, it is imperative that 

the rule be consequently more than one for each possible allocation. From the above derivations and 

presentations, it is undoubtedly clear that as the number of group increases, functions and allocation rules 

increases correspondingly and the direction of the inequality signs would almost be impossible to state. This 

would naturally make allocation tedious and confusing. Situation could also arise in which the score for an 

individual to be classified do not satisfy one of the inequalities. It becomes more difficult to handle when the 

assumption of equal variance-covariance for all groups is violated as the resulting functions and allocation rule 

will be extremely lengthy thereby becoming almost impossible to evaluate. Generalization of the Fisher’s LDF 

procedure for more than two groups exists in notation, however, the application is somewhat difficult and 

inconsistent (Tao et al., 2006) and the performance of the methods for several groups is not generally reliable 

(David, H., 1996). Although use of computer aided calculations and packages like Support Vector Machine 

(Vapnik, 1998), Pairwise Comparison (Hastie and Tibshirani, 1998), Multi-Class Objective Function (Weston 

and Watkins, 1998) among others have hidden this. However, its reality for theoretical purposes and consistency 

cannot be overlooked or undermined. The choice of the direction of the inequality signs in the allocation rules is 

out of an attempt to ensure that each pair of group combinations is considered on both lower and upper bounds 

of the optimum values. As Gilbert (1969) and Moore (1973) pointed out, Fisher’s LDF is optimal when “two” 

populations have multivariate normal distributions with equal covariance matrices. It suffices to say that, even 

when the assumptions are rightly met, use of the Fisher’s LDF under conditions of multi-groups may not be 

optimal.  

 Again, according to Press and Wilson (1978), classification of an observation into one of several population is 

discriminate analysis, while relating qualitative variables to other variables  through a logistic (cumulative 

density function) functional form is logistic regression. Although estimates generated from one of these methods 

are often used in the other.  However the conditions for the application of both are not the same. Discriminate 

function estimators have often been used in logistic regression in both theory and application (Turett et al 1967). 

Halperin et al (1971) reported that when discriminant function estimators were compared empirically with 

maximum likelihood estimators for logistic regression problems, they were found to be generally inferior, 

although not always by substantial amount.  The procedure has performed averagely better than the Fisher’s LDF 

in many situations because it is more like a non-parametric method which makes no assumption about the 

distribution of the data. 

4. Conclusion 

Performance of Linear Discriminant Function under some non-optimal conditions have been reviewed as it 

relates to few commonly used statistical methodology for discrimination and classification. A new result of 

another situation in which some conventional discriminant analysis procedures has failed to provide clear and 

explicit methodology has also been reported. Though, a theoretical and mathematical derivations and framework 
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which must be validated is in process to overcome some of the challenges that has limited optimal result in 

classification with regard to multiple groups, it is however, worthwhile to point attention to this considering its 

importance to the effort of obtaining a methodology for discriminant analysis that is efficient in every 

ramification. Thus, we conclude by suggesting that, in order to overcome the limitation posed to discriminant 

analysis involving more than two groups with regard to the conventional FLDF, each group should have its own 

corresponding allocation rule and allocation done by considering pairs of groups. Allocation by pairing groups 

ensures that the underlying principle of LDA is maintained while the procedures for allocation differ. This will 

be case confronting the practicing statistician who wants to decide whether he can use existing discriminant 

analysis procedure, or whether some other procedure will give better results.  
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