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Abstract 

Pneumonia is one of the leading causes of serious illness and deaths among children under five years of age in 

Tanzania and around the world. In this paper, a mathematical model of the transmission dynamics of pneumonia 

with screening and treatment is formulated and analysed with the aim of understanding its transmission 

dynamics and the effects of these interventions. The conditions for the clearance or persistence of the pneumonia 

infection through the stability of the equilibria are derived. The model reproduction number, STR , is derived 

and the stability of equilibrium points is analysed. The results of the analysis shows that there exist a locally 

stable disease free equilibrium point, 0E  when 1STR   and a unique endemic equilibrium, 1E  when 

1STR  . 
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1. Introduction 

Pneumonia is one of the forgotten killer diseases (WHO, 2005). The disease is endemic and claims many lives. It 

is the second biggest killer of children in Tanzania, after malaria (Samarasekera, 2009), it is the leading cause of 

childrens' death in Africa (WHO,2006) and it kills more children per year than any other illness in the world. The 

death rates are around 2 million children worldwide, every year (WHO, 2005). Mathematical models of the 

dynamics of this disease with special emphasis on Tanzania are uncommon. 

Pneumonia is an inflammatory condition of the lungs affecting the microscopic air sacs (alveoli) and is usually 

associated with fever, chest symptoms, and lack of air space (consolidation) on a chest (McLuckie and Leach, 

2009). It is typically caused by infection. Infectious agents include; bacteria, viruses, fungi and parasites (Luckie, 

2009). The disease has a wide range of aetiological factors (causative factors). Classic pneumonia is normally 

caused by Streptococcus pneumoniae (pneumococcus) (Dunn, 2005). Streptococcus pyogenes and Staph aureus 

may also cause pneumonia in debilitated adult patients. Pneumocystosis is commonly found in the lungs of 

healthy people, but being a source of opportunistic infection, it can cause a lung infection in people with a weak 

immune system.  

Pneumococcus is spread through contact with people who are ill or who carry the bacteria in their throat. You 
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can get pneumococcal pneumonia from respiratory droplets from the nose or mouth of an infected person. It is 

common for people, especially children, to carry the bacteria in their throats without being sick. After a person is 

infected and diagnosed with pneumonia, he will be on medication for a particular period of time, the infection is 

contagious for 10 to 14 days after the infected person stops getting treatment (WHO/UNICEF, 2006).  

The individuals that are at high risk of infection are children (under the age of 5years), the elderly (above 

65years of age), and individuals with long-term health problem such as heart disease, sickle cell disease, 

alcoholism, lung disease (not including asthma), diabetes, or liver cirrhosis (WHO, 2005).  

Prevention of pneumonia includes vaccination, environmental measures, screening and appropriately treating 

other diseases (Singh and Aneja, 2011).Methods of prevention of pneumonia infection among newborn infants 

include testing pregnant women for Group B Streptococcus and Chlamydia trachomatis, and providing antibiotic 

treatment (Dunn, 2005). Suctioning the mouth and throat of infants with meconium-stained amniotic acid 

decreases the rate of aspiration pneumonia (Singh and Aneja, 2011). Environmental prevention methods include 

reduction of indoor air pollution as well as smoking cessation and hand-washing when around a person with 

pneumonia, since the bacteria and viruses can also be spread through one’s hands and then to the mouth. Treating 

other infections such as heart diseases, lung diseases, diabetes, sickle cell disease, alcoholism and AIDS also 

reduces the risk of pneumonia (Singh and Aneja, 2011). 

Screening refers to the use of tests and examinations to find a disease, such as cancer, HIV/AIDS and pneumonia 

in people who do not have any symptoms. It reduces morbidity and mortality due to the diseases (Nygard, 2011; 

Ngiliule, 2014). Screening tests offer the best chance to identify and detect the disease at the early stages. 

Research (Ruuskanen et al, 2011) has shown that prevention and proper treatment of pneumonia could avert one 

million deaths in children every year. Treatment alone can save at least 600 000 deaths annually. Treating 

underlying illnesses (such as AIDS) can decrease a person's risk of pneumonia (Ruuskanen et al, 2011; 

WHO/UNICEF, 2005). This paper investigates mathematically the dynamics of pneumonia disease with 

screening and treatment interventions. 

The outline of the rest of the paper is as follows; section 2: model formulation, section 3: model analysis, section 

4: sensitivity analysis, section 5: numerical simulations and discussion. 

2. Model Formulation 

In a compartmental model, the disease is assumed to have several progress stages. Individuals move between 

these stages with specific rates (i.e. each individual can only be in one compartment at a time). It is assumed that 

all individuals in each of the compartments have similar characteristics in that all are in the same stage of the 

disease progress, and as soon as an individual enters a compartment, there is no difference between him/her and 

other individuals in that compartment, this assumption is referred to as the “homogeneity assumption”. This 

assumption originates from the fact that, the waiting time in each compartment is exponentially distributed and 

hence memoryless (Hamed et al, 2010).   

We consider a model that describes the dynamics of pneumonia infection among four (4) sub–populations, 

namely the susceptibles (S), the asymptomatic Infectives (or simply carriers) (Ic), the symptomatic Infectives (Ii), 

the treated Infectives (T). We assume that the susceptible population is generated through birth at a constant rate  

 as well as by recovery of infectives naturally or by treatment. The susceptible population is decreased through 
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infection with pneumonia at a rate 𝜆, where the proportion  become symptomatic infectious immediately and 

join the symptomatic infectious population and the remaining proportion  become asymptomatic infectious, 

it is also decreased by natural mortality at a constant rate μ. The asymptomatic infectious population is decreased 

through screening method at a rate α where they progress to symptomatic infectiousness and through recovery by 

gaining temporary immunity (Ong’ala et al, 2012) at the rate γc, it is also decreased by natural mortality at a 

constant rate μ. The symptomatic infectious population is increased through the change of status of the 

asymptomatic infectious class to symptomatic infectious through screening at a rate  and is decreased through 

natural recovery and natural death (at a constant rate 𝛾c and μ, respectively). The symptomatic infective population 

is increased by transfer of asymptomatic individuals who show the symptoms at the screening rate α, the infected 

proportion q of the susceptible individuals at the rate λ, the vaccinated individuals at the rate ρλ, it is also decreased 

by the treated individuals at the rate σ, the individuals who recovers naturally at the rate γi, and both disease 

induced death rate and natural mortality (at the rate δ and μ respectively). The treated infective population gains 

by administration of treatment at a constant rate σ. Treated infectives recover at a constant rate ωγ and join a 

class of susceptible. This class is also decreased both natural and disease induced deaths (𝜇+τ𝛿). Since, a 

population dynamics model is considered; all the state variables and parameters are assumed to be non-negative. 

Based on the model variables and parameters, the dynamics of the basic pneumonia model are described by the 

compartmental model shown in Figure 1. 

 

Figure 1: A compartmental diagram for a pneumonia model with screening and treatment interventions. 

Applying the assumptions and the relationships that exist between the variables and parameters (Figure 1), the 

basic dynamics of pneumonia are described by the system of four ordinary non-linear differential equations 

given by; 
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with initial conditions        0 0 0 00 , 0 , 0 , 0c c i iS S I I I I T T    , and where the force of infections, 
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 

 
  

 
.          (2)  

c iN = S + I + I +T  is the total population size which is changing at the rate; 

 i

dN
N I T

dt
               (3)  

and the parameter   is the transmission rate. It is worth noting that 0= c  , where c denotes the average 

number of effective contact and 0  the probability of infection,   and   are the modification parameters, 

with 1   implying that, treatment increase recovery rate and 0 , 1q  . 

3 The Model Analysis     

In this section, the basic properties of model system (1) useful for the study and proofs of stability of the system 

are outlined. The model properties are employed to establish criteria for positivity of solutions and 

well-posedness of the system. 

3.1 Invariant Region 

The initial value problem modeled by system (1) is well defined when supplemented with non-negative initial 

conditions. In the absence of the disease, the population size N approaches the carrying capacity. Since 

 i

dN
N I T

dt
        can be written as

dN
N

dt
   , solution starting in the positive orthant 

4

  eventually enters the subset of 
4

  defined by  
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Thus it suffices to consider solutions in the region Ω. Hence, the solution of our initial value problem starting in 

Ω exists and is unique on maximal interval [0, b) for some b > 0. Since solutions remain bounded in the 

positively invariant region Ω, the maximal interval is [0, ∞) (Mubayi et al, 2009). Thus, the initial value problem 

is well posed both mathematically and epidemiologically. 

3.2 The Steady States 

In this section the model system (1) is qualitatively analyzed by determining the model equilibria, carrying out 

their corresponding stability analysis and interpreting the results. Letting  * * * *; ; ;c iE S I I T to be the 

equilibrium point of the system (1). Then, setting the right hand side of system (1) to zero, we obtain; 
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From the second equation of (5), we have 

    
* *

1cI S   ,              (6) 

where 

    1

1
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q
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.     

Substituting (6) in the third equation of (5) and solving for Ii
*
 leads to 

    
* * *
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with, 

    2

( ) (1 )

( )( )

c

c i
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

      
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

    
. 

From the fourth equation of (5), we have 

* *

3*T S  ,          (8) 
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where,     

2
3




  


 
. 

From equations (2), (6) and (7) we have, 

    
* 0  ,              (9) 

or     

* *S N  ,          (10) 

with 

     1 2 c      .  

But, 

* * * * *

c iN S I I T    .       (11) 

Substituting the equations (6), (7) and (8) into (11), leads to 

     * * * * *

1 2 31N S         .        (12) 

Substituting for 
*N , in (10) we obtain 

    

1 2 3

1


  

 


 
.           (13) 

Substituting for 1 2 3, , and     in (13) and after some lengthy algebraic manipulations, gives the value of λ
*
 

as; 

  
    
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,   (14) 

where, 

,cb       ,id         e      , 
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 and STR  is the model reproduction number.  

 

3.3 The disease-free Equilibrium, E0 

Solution (9) leads to the DFE denoted by  0 0 0 0

0 ; ; ;c iE S I I T  given by;  
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3.4 Model Reproduction Number, STR   

In this section, the threshold parameter that governs the spread of a disease which is called the model 

reproduction number is determined. Mathematically, it is the spectral radius of the next generation matrix (van 

den Driessche and Watmough, 2002).  
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where 1a q   and  
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The partial derivatives of iF  and iV  (17) and (18) with respect to iI  and cI  are obtained. This gives 
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The matrices are of size 2 2  since there are two infectious classes. Taking the inverse of V  leads to 
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We compute 
1FV 

, to get  
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radius (dominant eigenvalue) of the matrix is 2 . Hence the model reproduction number,  
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where, 

(i) 1

i

c q
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  
, this represents the number of secondary infection individuals that is 

produced by symptomatic infective individuals who are at a time being treated. 
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

      



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, this represents the average number of secondary 

infection individuals that is produced by infective individuals who have been screened and are at a time 

being treated. 

 

3.5 Analysis of STR  

This section intends to evaluate the success of intervention programme comprising screening and treatment. The 

study aims to determine the necessary and sufficient conditions that may slow down the development of the 

disease through the reduction of the reproduction number below the threshold of one.  
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The following scenarios are studied under this section: (i) no intervention is used (in the absence of intervention), 

(ii) screening alone, (iii) treatment alone and (iv) a combination of both screening and treatment. 

Below we discuss the reproduction numbers for the programmes mentioned above. 

(i) In the absence of interventions (where there is no screening or treatment) that is; 

( 0, 0   ), RST is reduced to: 

 
 
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i c

c qc q
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
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
 

  
.         (22) 

The threshold quantity 0R  is the basic reproductive number of the model, commonly referred 

to as the average number of secondary infections generated by a single infective individual in a 

completely susceptible population (May and Anderson, (1988); Diekmann (2000)). The case 

0 1R   the disease clears from the population and persists if 0 1R  , prompting intervention 

of any kind. 

(ii) Screening only that is;  0   RST is reduced to: 

   
  

1 1
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i c c i
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 (23) 

Clearly, 0SR R  and if 01SR R  the disease clears, but if 01 S RR  the disease 

persists, thus, there is a need of introducing another intervention.  

(iii) With treatment only that is; (α = 0), the RST is reduced to: 

 1
T

i c

c qc q
R



     


 

   
.      (24) 

We now investigate to what extent and under what conditions treatment alone can slow down 

or eradicate the disease. From equations (22) and (24) observing the first terms of each 

equation it can be seen that, 

    

i i

c q c q 

      


    
.  

From this observation, it is noted that, 0TR R , thus, treatment seems to reduce the 0R , 
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and it can clearly eradicate the disease if 01TR R  , but if 01 T RR  the disease 

persists. 

Special cases for treatment, that is, 0   and    are also considered. 

In the absence of treatment (i.e when 0  ), 0TR R  and as    we have, 

                          

 

 

 

1
lim

1

10.0.0

1 0 0 0

1
.

T
i c

c

c

c q
c q

R

c q

c q




  

    

  



 



 



 
 

  
   

 

 
  

    






 

Clearly, in the absence of treatment ( 0  ) and if 0 1R  , the epidemic will develop, but 

if 0 1R   it will die out. As    (all infected individuals having access to 

treatment), 0 0TR R  , thus the epidemic will be fully controlled since this leads to no 

further infections. Thus treatment will succeed in clearing pneumonia. 

Note that, 
 

0

1

c

c q

 


 


. 

(iv) With screening and treatment: This part is examined in two different scenarios; i.e, the 

reproduction number of the model with both interventions is compared to the reduced 

reproduction numbers when each of the interventions is separately used. It easy to show 

that 0STR R , which implies that intervention strategies have a positive impact in reducing 

the spread of pneumonia, particularly if 01STR R  . The case 1STR   has implications 

that treatment and screening are ineffective require other interventions that can reduce the 

disease burden. 

 Comparing (21) and (23), we have 
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   
  

   

 

1 1

1 1

1

S

i c c i

c i c

c i

c q c qc q
R

c q qc
q

c q c

 

           

 

        

 


     

 
  

       

  
   

      


 

   

   (25) 

   
   

   

 

1 1

1 1

1

ST

i c c i

c i c

c i

c q c qc q
R

c q qc
q

c q c

 

             

 

         

 


      

 
  

         

  
   

       


 

    

 (26) 

with, 

 1

c

q
q




  

 
  

  
. 

Comparing the last terms of both (25) and (26), it is observed that 

   

i i

c c 

      


    
, 

the result which concludes that, ST SR R , thus a combination of both screening and 

treatment can clear the disease if 0ST SR R R  , and it is even more efficient than when 

only screening intervention is in place. However, if 01 SST RR R  , then the disease 

persists. 

 Comparing (21) and (24), we have 

 

   

1

1 1

ST

i c

i c c

T

c qc q
R g

c q c qc q
g

R D



      

 

         


  

    

 
   

      

 

, 
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where,  

 
  

1

c i

c q
g



      




    
  

and 

 
     

  

1 1 1

c c c i

c q c q c q
D

  

           

   
            

 

  

 
   

 
 

     
  

1

1 1

1
.

c c c i

c c i

i c

c c i

D c q

c q

c q

  


           

 

        

       

        

 
             

 
         

      
         

 

Thus, 

     
  

1 i c

ST T

c c i

c q
R R

       

        

      
          

.  (27) 

Result (27), shows that, ST TR R , if      0i c            . This also 

shows that, a combination of both screening and treatment can clear the disease 

if 0ST TR R R  , and it is once again more efficient than when only treatment intervention is 

in place. If 01 TST RR R  , then the disease persists. 

Hence the combination of both screening and treatment can eradicate the pneumonia infection 

if RST can be reduced below unity. 

Note that, 
 

1

i     
, is the mean infectious period. 

The model reproduction number, STR  obtained from the method of next generations by Van den Driessche  

and Watmough, 2002, determine the local stability of the disease free equilibrium point which is locally 

asymptotically stable for  1STR   and unstable for  1STR   so the following theorem holds: 
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Theorem 1 The disease-free equilibrium (E0) of the model system (1) is locally asymptotically stable whenever 

 1STR   and unstable if  1STR   . 

3.6 The Endemic Equilibrium E1 

The endemic equilibrium point  * * * *

1 ;  ;  ;  c iE S I I T  is a steady state solution in which the disease 

persists in the population (i.e 0 0c iI and I  ). In this section, the possible existence of the positive 

endemic equilibria of the model (1) is determined by solving the equations of the system (5) at steady state.  

Solving system (5) in section 2.2 at steady state, gives the following solutions, 

                    
   

*

2 1 3 01 1i c ST

S
Q R



     


    
,   (28) 

where, 1 2 3 0, , and Q    are as defined in (6), (7), (8) and (14) in section 2.2 above. It can easily be shown 

that,  2 1 31 0i c        . 

The endemic equilibrium is given by  * * * *

1  ,  ,   c iE S I I and T , where 
* * * *;  ;   c iS I I and T  are the 

coordinates given by results (6), (7), (8), and (28) and they are always positive if and only if 1STR  . 

Therefore we state lemma 1 as; 

Lemma 1 A unique endemic equilibrium point E1 exists and is positive if and only if 1STR  . 

Note that:- If 1STR  , the endemic equilibrium reduces to the DFE. 

4  Sensitivity Analysis 

In determining how best to reduce human mortality and morbidity due to pneumonia, we calculate the sensitivity 

indices of the model reproduction number, STR  to the parameters in the model using the approach of Chitnis et 

al., (2008) and the approach by Blower and Dowlatabadi., (1994). These indices are crucial in determining the 

importance of each individual parameter in the transmission dynamics and prevalence of the disease. Sensitivity 

analysis determines parameters that have a high impact on STR  and should be targeted by intervention 

strategies. Sensitivity indices allow us to measure the relative change in a state variable when a parameter 

changes (Chitnis et al., 2008). The normalized forward sensitivity index of a variable to a parameter is a ratio of 

the relative change in the variable to the relative change in the parameter. If a variable is a differentiable function 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.10, 2015 

 

35 

of the parameter, the sensitivity index may be alternatively defined using partial derivatives. 

Definition 1 The normalized forward sensitivity index of a variable, u, which depends differentiably on index of 

a parameter, p is defined as; .u

p

u p

p u


  


 

From an explicit formula for STR in (21) we derive an analytical expression for the sensitivity of STR  as 

STR S
p

T

ST

pR

Rp


  


 to each of the parameter involved in STR . For example the sensitivity index of STR  

with respect to β is 1,STR ST

ST

R

R







   


 other indices     

, , , , , , , ,ST ST ST ST ST ST ST S T

i

T S

c

R R R R R R R R R

q cand               were obtained and evaluated at 

6, 0.02,   0.13, 2, 0.2, 0.06, 0.051,? , 0.26,   0.4i cq c and             to 

obtain the following results  

              Table 1: Numerical values of sensitivity indices of STR  

Parameter symbol Sensitivity index 

c 1.5322 

β 1 

σ -0.635941 

ν 0.211433 

γc -0.110013 

δ -0.0826724 

α -0.06647494 

γi -0.0635941 

μ -0.0430303 

q -0.0116102 

 

4.1 Interpretation of Sensitivity Indices 

Table 1 shows the sensitivity indices of STR  to the parameters for the pneumonia model with screening and 

treatment interventions, evaluated at the baseline parameter values indicated above. The parameters are ordered 

from most sensitive to least. The most sensitive parameter is the contact rate, c  and the least sensitive parameter 

is the progression proportion of the disease, q . This result implies that, when the parameters ,  c   and ν are 
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increased keeping other parameters constant they increase the value of STR  thus, they increase the endemicity 

of the disease as they have positive indices. While the parameters , , , , ,i cq      and  decrease the value 

of STR  when they are increased while keeping the other parameters constant, implying that they decrease the 

endemicity of the disease as they have negative indices. 

5  Numerical Simulations and Discussion 

5.1 Numerical Simulation 

All figures are plotted using the parameter values presented in Table 2.  

Table 2: Parameter Values for pneumonia Model with interventions 

Symbol Value Source 

π 1000 Ndelwa (2012) 

μ 0.01 Ndelwa (2012) 

ω 1   Brauer (2004) 

γi 0.15-0.2 Estimate 

γc 0.02-0.1 Estimate 

γ 0.1 Ndelwa (2012) 

β 0-10 Underdown (2011) 

δ 0.0575-0.4605 Blower (2002) 

α 0.001-0.1 Estimate 

c 2 Estimate 

σ 0.083-3 Underdown (2011) 

q 0.05-0.2 Estimate 

τ 0 1   Brauer (2011) 

ν 0.001-0.1 Estimate 

The figures below show the outcomes from the analysis. 

Figures (2) (a) and (b) display the effect of the screening rate. It is noted that   increases the symptomatic 

infected population and decreases the asymptomatic infected population. This shows that, due to screening we 

are able to recognize the carriers and hence provide them with the appropriate measures for clearance of the 

epidemic. 

We use Figure (3) to investigate the effect of treatment on the dynamical behaviour of pneumonia infection we 

simulate the model over different values of the treatment rate σ (0.8, 1.2, 2). From the figure it is clearly 

observed that, these values give the corresponding values of the reproduction number RST (5.0571, 4.7830, 

4.6690). 
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    Figure 2: Variation of population under different values of screening rate   

 

Figure 3: Variation of population under different values of treatment rate   

Thus, the result in figure (3), show that, increasing treatment rate has the effect of reducing the number of 

secondary cases and subsequently reduce the pneumonia epidemic. Further increase in the treatment rate reduces 

the reproduction number below unity, this leads to the clearance of infection in the population. The result further 

show that, increasing the treatment rate decreases the severity of the epidemic as seen by gradual decrease in the 

peaks and time lags between peaks as σ increases. 
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Figure 4: The relationship between reproduction numbers as   changes 

Figure (4), shows the relationship between the reproduction numbers as   changes. It is observed that when 

R0 > 1,   increases which implies that, when the number of secondary cases increases,   also increases. 

This result implies that,   has a direct impact on the dynamics of the disease by increasing the infection when 

there is no intervention. It is also observed that   decreases when RST < 1. Therefore we can conclude that, 

when interventions are introduced in the community, the campaigns should be conducted at high rate in order to 

reduce the spread of disease or to eradicate the disease totally. 

Figure (4), also indicates that, 0  T SR R R  , that is, treatment alone is more effective than screening alone. 

However, it is also observed that, 0   ST T SR R R R   , this  result depicts the result in section 3.5 

(analysis of STR ), which also showed that, the combination of treatment and screening is more effective than 

when only one intervention programme is at place.  

5.2 Discussion 

The model of Pneumonia with screening and treatment interventions was formulated and analysed. Using 

differential equations, the invariant set in which the solutions of the model are biologically meaningful was 

derived. Boundedness of solutions was also proved. Analysis of the model showed that, there exist two possible 

solutions, namely the disease-free point and the endemic equilibrium point. Further analysis showed that, the 

disease-free point is locally stable implying that, perturbations and fluctuations on the disease state will always 
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result in the clearance of the epidemic if 1STR  . Sensitivity analysis of the effects of screening and treatment 

was carried out to evaluate or assess the implications of the strategy on the behavior or in predicting the outcome 

of the epidemic. From the Figure 4 we understand that screening and treatment can eradicate the disease, as the 

figure clearly shows how the force of infection decreases when both screening and treatment are in place. 

Figures 2 and 3 also put it clear on how screening and treatment have an impact on the eradication of the disease. 

From both section 3.5 and 5, we conclude that, the combination of both screening and treatment provides better 

results than when only one of the intervention is on place. Therefore screening and treating at the same time can 

eradicate the pneumonia epidemic from the community. 
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