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ABSTRACT: 

It is a well known fact in operator theory that for any operator A, the essential spectrum of A 

is contained in the spectrum of A.  The task of finding conditions under which the two are 

equal has been the subject matter in a number of several research papers.  In this paper we 

show that quasisimilar pure dominant operators have their essential spectra equal to their 

spectra provided one of the intertwining quasiaffinities is compact. 

AMS subject classification 47B47, 47A30, 47B20 key words and phrases: pure dominant and 

essential spectrum. 

 1. INTRODUCTION 

Let H be a complex Hilbert space and Β(Η) denote the Banach algebra of all bounded linear 

operators on H.  An operator 𝐴 ∈ 𝐵(𝐻) is said to be a quasiaffinity if A is both one-one and has 

dense range.  Two operators A and B are said to be similar if there is an invertible operator 𝑆  

such that 𝐴𝑆 = 𝑆𝐵, while A and B are said to be quasisimilar if there exist quasiaffinities X and 

Y such that 𝐴𝑋 = 𝑋𝐵  and 𝐵𝑌 = 𝑌𝐴.   

The concept of quasisimilarity and equality of spectra has been considered by a number of 

authors among them S. Clary [1] who showed that quasisimilar hyponormal operators have 

equal spectra.  J.M. Khalagai and B. Nyamai [2] showed that if 𝐴 and 𝐵 are quasisimilar with 𝐴 

dominant and 𝐵 M-hyponormal them 𝐵 have equal spectra.  B.P. Duggal [3]  Showed that if 

𝐴𝑖,  𝑖 = 1, 2 are quasi-similar 𝑃 − hyponormal such that  ∪𝑖,   𝑖 = 1, 2 is unitary in the polar 

decomposition 𝐴𝑖, =∪𝑖 |𝐴𝑖|  then 𝐴1 and  𝐴2 have not only same spectra but also same essential 

spectra.   

The Problem of looking for conditions under which the essential spectrum is equal to spectrum 

of a given operator has also been considered by a number of authors.  In particular J.P. Williams 

[5] apart from showing that there are several cases under which quasisimilar operators 𝐴 and 𝐵 

have equal essential spectra also proved the following result on equality of spectrum and 

essential spectrum of a given operator. 

Theorem A [5] 

Suppose that 𝑇 is a pure dominant operator, 𝐾 is a compact operator having dense range and 

𝐾𝑇 = 𝑇𝐾. Then spectrum of 𝑇 is equal to essential spectrum of 𝑇. 
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It is at this point that we also pick up the quest of delving into this theory in this paper. 

Definition1 

Let 𝑥 ∈ ℋ  We define 𝜚𝑇(𝑥) to be the set of complex numbers 𝛼 for which there exists a 

neighbourhood 𝑉𝛼 of 𝛼 with  𝑢 analytic on having values in 𝐻 such that (𝑍𝐼 − 𝑇)𝑢(𝑧) = 𝑥 on 

𝑉𝛼. 

This set is open and contains the complement of the spectrum 𝜎(𝑇) of T.  The function 𝑢 is 

called a local resolvent of  𝑇 on 𝑉𝛼.  By definition the local spectrum of 𝑇 at 𝑥 denoted by 

𝜎(𝑇, 𝑥) is the complement of 𝜚𝑇(𝑥) and so is a compact subset of 𝜎(𝑇).  We say that 𝑇 has 

the single valued extension property (in short SVEP) if (𝑧𝐼 − 𝑇) 𝑢(𝑧) = 0 implies 𝑢 = 0 for 

any analytic function 𝑢 defined on any domain D of a complex plane with values in 𝐻. 

An operator 𝑇 ∈ 𝐻 is said to satisfy Dunford’s property (C) if for each closed subset 𝐹 of the 

complex plane the corresponding local spectrum subspace 𝐻𝑇(𝐹) − {𝑥 ∈ 𝐻: 𝜎(𝑇, 𝑥) ⊂ 𝐹} is 

closed. 

Theorem B [5] 

Suppose A and B are dominant operators satisfying Dunford’s property (C) and are 

quasisimilar with at least one of the implementing quasiaffinities compact, then  A and B have 

equal spectra and also equal essential spectra.   

2.  NOTATION AND TERMINOLOGY 

Given an operator 𝐴 ∈ 𝐵(𝐻)the spectrum of 𝐴 is denoted by 𝜎(𝐴).   

Thus 𝜎(𝐴) = {⋋∈ ℂ : 𝐴 −⋋ 𝐼  is not invertible} where ℂ is the complex number field.  The 

commutator of A and B is denoted by [𝐴, 𝐵] where [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴. 

We denote range of 𝐴 and Kernel of 𝐴 by ran 𝐴 and Ker 𝐴.   An operator 𝐴 is said to be 

dominant if to each ⋋∈ ℂ there corresponds a number 𝑀⋋ ≥ 1 such that ‖(𝐴 −⋋) * 𝑥‖ ≤

𝑀‖(∧ − ⋋)𝑥‖ 𝑥 ∈ 𝐻.  But 𝐴 is said to be pure dominant if there exists no non-trivial 

reducing subspace of 𝐴 on which the restriction of 𝐴  is normal.  𝐴 is  𝑀 −hyponormal if 

∃ 𝑀 > 𝑀⋋ for all ⋋ in the definition of dominant operator such that ‖(𝐴 −⋋) * 𝑥‖ ≤

𝑀‖(𝐴 −⋋)𝑥‖  �𝑥 ∈ 𝐻. 

Also A is: 

Hyponormal if 𝐴∗𝐴 ≥ 𝐴𝐴∗ 

Quasinormal if [𝐴∗𝐴, 𝐴] = 0 

𝑃 −hyponormal if for ∪< 𝑝 ≤ 1, (𝐴∗𝐴)𝑝 ≥ (𝐴𝐴∗)𝑝 

Normal if [𝐴, 𝐴∗] = 0 
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Self adjoint if 𝐴 = 𝐴∗ 

Partial isometry if 𝐴 = 𝐴 𝐴∗𝐴 

Isometry   𝐴∗𝐴 = 𝐼 

Unitary if 𝐴∗𝐴 = 𝐴𝐴∗ = 𝐼 

Fredholm if ran𝐴 is closed and both Ker𝐴 and Ker 𝐴∗ are finite dimensional. 

The essential spectrum of 𝐴 is denoted by 𝜎𝑒(𝐴).   Thus 𝜎𝑒(𝐴) = {⋋∈ ℂ: 𝐴 −⋋ 𝐼 is not 

fredholm} 

An operator 𝐴 is said to be compact if it maps the unit ball into a compact set. Equivalently 𝐴 

is compact if and only if lim𝑛→∞ 𝐴𝑥𝑛 = 0 for each sequence (𝑥𝑛) in 𝐻 weakly converging to 

0. 

Note that the following result about properties of compact operators can easily be verified. 

LEMMA C [2] 

(i)  If 𝐴 is compact then so is 𝐴∗ 

(ii) If 𝐴 is compact and 𝐵 is bounded then 𝐴𝐵 and 𝐵𝐴 are also compact. 

We also have the following inclusion of classes of operators. 

Normal ⊂ hyponormal ⊂ p-hyponormal 

 and Hyponormal ⊂M-hyponormal ⊂ Dominant. 

 

3. RESULTS 

Theorem 1 

Let 𝐴, 𝐵 ∈ 𝐵(𝐻) be quasisimilar pure dominant operators with at least one of the intertwining 

quasiaffinities compact.  Then we have: 

𝜎𝑒(𝐴) = 𝜎(𝐴)  

𝜎𝑒(𝐵) = 𝜎(𝐵)  

Proof: Since 𝐴 and 𝐵 are quasisimilar there exist two quasiaffinities X and Y such that  

𝐴𝑋 = 𝑋𝐵 and 𝐵𝑌 = 𝑌𝐴   

We also have that either 𝑋 or 𝑌 is compact implies 𝑋𝑌 and 𝑌𝑋 are compact operators each 

with dense range.  It can also be verified easily that [𝐴, 𝑋𝑌] = 0 and [𝐵, 𝑌𝑋] = 0.  Now from 

theorem 𝐴 above we have 𝜎𝑒(𝐴) = 𝜎(𝐴) and  𝜎𝑒(𝐵) = 𝜎(𝐵) 

Hence the result. 
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Corollary 1 

Let 𝐴, 𝐵 ∈ 𝐵(𝐻) be quasiinvertible operator’s with either 𝐴 or 𝐵 compact.  If 𝐴𝐵 and 𝐵𝐴 are 

pure dominant operators then we have 𝜎𝑒(𝐴𝐵) = 𝜎(𝐴𝐵) and 𝜎𝑒(𝐵𝐴) = 𝜎(𝐵𝐴) 

 Proof: We first note that quasi invertibility is the same as quasiaffinity.  Thus 𝐴 and 𝐵 are 

quasiaffinities and 𝐴𝐵 and 𝐵𝐴 are also compact quasiaffinities which are quasisimilar since 

we have: 

(𝐴𝐵)𝐴 = 𝐴(𝐵𝐴) and  

(𝐵𝐴)𝐵 = 𝐵(𝐴𝐵)  

Hence by theorem 1 above 𝜎𝑒(𝐴𝐵) = 𝜎(𝐴𝐵) and 𝜎𝑒(𝐵𝐴) = 𝜎(𝐵𝐴) 

 Corollary 2 

 Let 𝐴 and 𝐵 be quasisimilar pure dominant operators which satisfy Dunford’s condition (C) 

with at least one of the implementing quasiaffinities compact.  Then we have 

 𝜎𝑒(𝐴) = 𝜎(𝐴) = 𝜎(𝐵) = 𝜎𝑒(𝐵) 

Proof: The proof follows easily from both theorems 𝐵 and theorem 1. 

Corollary 3 

Let 𝐴, 𝐵 ∈ 𝐵(𝐻) be quasiinvertible operators with either 𝐴 or 𝐵 compact.  If 𝐴𝐵 and 𝐵𝐴 are 

pure  dominant operators satisfying Dunford’s  property (C) then we have  

𝜎𝑒(𝐴𝐵) = 𝜎(𝐴𝐵) = 𝜎(𝐵𝐴) = 𝜎𝑒(𝐵𝐴) 

Remark;𝑇ℎ𝑒𝑛 𝑖𝑡𝑠 𝑐𝑙𝑒𝑎𝑟 𝜎𝑒(𝐴𝐵) = 𝜎𝑒(𝐵𝐴) 

Proof: If follows easily from both theorem B and corollary 1 above. 

Theorem 2 

Let A be a pure dominant operator and B be such that  𝐴𝑋 = 𝑋𝐵 implies 𝐴∗𝑋 = 𝑋𝐵∗ where 𝑋 

is a compact quasiaffinity, then 𝜎𝑒(𝐴) = 𝜎(𝐴). 

Proof:  Since 𝐴𝑋 = 𝑋𝐵  implies  𝐴∗𝑋 = 𝑋𝐵∗ it can easily be verified that  

[𝐴, 𝑋𝑋∗ ] = 0  and 

[𝐵, 𝑋∗𝑋 ] = 0  

Where 𝑋𝑋∗ is compact with dense range.  Hence by theorem 𝐴 above  𝜎𝑒(𝐴) = 𝜎(𝐴) 

 

Corollary 4 

If 𝐴 is a pure dominant operator such that  
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𝐴𝑋 = 𝑋𝐴∗ and 𝐴∗𝑋 = 𝑋𝐴 

Where 𝑋 is a compact quasiaffinity then 𝜎𝑒(𝐴) = 𝜎(𝐴) 

Proof: In this case [𝐴, 𝑋𝑋∗] = 0 where 𝑋𝑋∗ is compact with dense range, hence the result 

follows from theorem 2 above. 
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