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Abstract  

In this paper we studied mathematical models for fluid flow often involve systems of convection-diffusion equations 

as a main ingredient. Operator splitting - one splits the time evolution into partial steps to separate the effects of 

convection and diffusion.  In the present paper it has been shown that that the temporal splitting error can be 

significant when there is a shock present in the solution, is well-understood for scalar convection – diffusion 

equation.   
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1. Introduction  

This paper deals the motivation for operator splitting methods is that it is easy to combine efficient methods for 

solving the convection step with efficient methods for the diffusive step. In the case for convection dominated 

systems, it is a major advantage to be able to use an accurate and efficient hyperbolic solver developed for 

tracking discontinuous solutions. Furthermore, combining this with efficient methods for the diffusive-step, we 

obtain a powerful and efficient numerical method which is well suited for solving parabolic problems with sharp 

gradients.  

 Moreover, the obvious disadvantage of operator splitting methods is the temporal splitting errors. The 

temporal splitting error in OS methods can be significant in regions containing viscous shocks. (Dahle H., 

Norway,(1988);  Karlsen, K, Brusdal, K.,  Dahle, H., Evje, S. and Lie, K. A., (1998);  Karlsen, K. & Risebro, 

N. (1997)) . To resolve viscous shock profiles correctly, we must resort to very small splitting steps. But, this 

imposes a time step restriction that is not present in the underlying numerical methods for the convective and 

diffusive step.   I addition, to reduce the influence of temporal splitting errors in OS methods, to allow for the 

use of large splitting steps, the corrected operator splitting (COS) method was introduced  (Espedal, M. &  

Ewing, R  (1987). It was found that a recent mathematical description of the method was demonstrated          

(Karlsen, K,. & Risebro, N (2000).  In the present paper our main concern behind the scalar COS method is to 

take into account the unphysical entropy loss (due to Olenik’s convexification) Oleinik, O  (1963), produced by 

the hyperbolic solver in the convective step.  The COS approach uses the wave structure from the convective 

step to identify where the (nonlinear) splitting errors occur. The purpose of the paper demonstrated here is to 

derive through understanding of the nonlinear mechanism behind the viscous splitting error typically appearing 

in operator splitting methods for systems of convection-diffusion equations.      

 

2.Operator Splitting   

We consider the one-dimensional Cauchy problem for ( )1≥× lll  systems of convection-diffusion equations  
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l
ε ) > 0 is a constant diagonal matrix. Again, St denotes the solution operator which takes the initial data V0(x) to 

a weak solution at time t of the purely hyperbolic problem  
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Moreover, we denote V(x, t) = St V0(x) for the weak solution. Next, we denote H t  the operator which takes the 

initial data W0(x) as a weak solution at a time of the purely parabolic problem  
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In this case, we consider a fixed final computing time T > 0. But, we also choose a fixed splitting step ∆t > 0 and 

an integer Nt such that Nt ∆t = T. We define the semi-discrete OS algorithm by  

U∆t (. , n∆t) : = [H∆t ° S∆t]
n   
U0(.),  n = 0,…..Nt                                          (4) 

In addition in applications, the exact solution operators St , Ht  in Eq. (4) are replaced by numerical methods. 

We use front tracking, demonstrated by Risebro (Risebro, N. (1993); Risebro, N. Tveito, A. (1991)      

Risebro, N. Tveito, A. (1992)) as an approximate solution operator for the hyperbolic part. Now, for the 

parabolic part, we use a simple explicit central difference method.  

 

3. Nonlinear Error Mechanism  

The Operator splitting approximations can be too diffusive near viscous shock when the splitting step ∆t is large; 

we study first the scalar case. The entropy condition introduces a local linearization of f (.) once a shock is 

formed in the convection step. Thus this linearization represents the entropy loss associated with the formation of 

a shock in the hyperbolic solution. Thus, the evolution of the hyperbolic is governed locally by some convex / 

concave envelope fc of  f  between the left and right shock values shown in Figure 1. Furthermore, a similar 

linearization can be introduced locally for the parabolic problem. Hence, the flux function f can be decomposed 

into a convective part fc and a shelf-sharpening part f − fc that tends to counteract the diffusive forces. We study 

that fc  governs the local translation  and  f − fc the shape (or structure) of the viscous front. In the present 

paper the OS algorithm, the local residual flux f − fc is disregarded in the hyperbolic step and the corresponding 

self-sharpening effects are therefore not taken into account in the splitting, resulting in a splitting error. Figure 1, 

shows an illustration  of f,  fc and the residual flux fres = f − fc in the scalar case. Now, we study and consider the 

propagation of a single viscous shock. Assume that the splitting step is sufficiently large so that a shock has 

developed in the hyperbolic sudstep Eq. (2) i.e  the solution ( )ttV =,.  consists a single discontinuity at  

xx =   

With left and right shock values ( )Tlll vvV 11 ,...... and  ( )Trrr vvV 11 ,......  . Then the behaviour (forward and 

backward in time) of V(x, t) locally around ( )tx ,  is governed by the linearized hyperbolic problem  
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where  σ  denotes the Rankine-Hugoniot shock speed satisfying  

( ) ( )=− rl VFVF σ ( )rl VV − ,  

We claim that a large part of the splitting error that occurs locally around ( )tx ,  in the standard OS algorithm 

can be understood in terms of the difference between the nonlinear system in Eq. (1) and the linearized system in 

Eq.(5) with right-hand side 
2

2
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. In the operator splitting (OS) strategy, the self-sharpening disappears once 

a shock develops because F(U) is in effects replaced by  σ U  locally. Thus, one step in OS effectively 

amounts to solving ( )
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3.1 The Cos Strategy   

To compensate for the loss of self-sharpening effects, the scalar COS approach proposes to include the 

residual flux Fres in the diffusion step of the splitting. The COS method therefore replaces the purely parabolic 

split problem by Eq.(3), we obtain  
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where Fres (x, W) represents residual flux in the point of x. Letting ℘t denotes the solution operator associated 

with Eq.(6), the COS solution is obtained  

U∆t(., n∆t) : = [ ℘∆t ° S∆t]
n
 U0(.)  (7)  

In addition, we have replaced the convection-diffusion equation  in Eq.(6), where the flux term in Eq.(6) is 

seemingly more complicated than the one in Eq.(1). However, we see that while F contains convective and 

self-sharpening effects, Fres only contributes to self-sharpening effects. Hence, viscous shock fronts are moved to 

the correct location in the convective step and given a correct shape in the diffusive step.  

 When applied to systems of parabolic equations, the correction algorithm needs to be reformulated, 

since one cannot simply write down the solution of hyperbolic step in terms of convex / concave envelopes. 

Instead, we identify the following term as   
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for each discontinuity in the solution from the hyperbolic step. Then the parabolic subproblem Eq.(3) is modified 

locally by adding Fres (U), which gives the new split problem Eq.(6). Now by integrating Eq.(8) with respect to x 

we obtain the residual flux  

( ) ( ) ( )( ) ( ) ( )9VUVFUFUFres ′−−′−= σ   

Again we have chosen the constant of integration such that  

( ) ( ) 0==′ r

resres VFVF  
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3.2 A COS Method  

 The OS methods introduced above result in two different sub-problems that each must be solved numerically. 

We have solved convection part by a front tracking method while the diffusion part is solved by an explicit 

central finite difference scheme.  

3.2.1 Convection Solver   

 We have demonstrated front tracking method [7, 8, 9] for solving systems of conservation laws Eq.(2)  
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The advantage of front tracking method is an algorithm for computing a piecewise constant approximation to V 

(x, t), it directly identifies the correct physical envelop, given that the Riemann solver is correct. We will not 

study Riemann solver in the present paper but just finding good approximative Riemann solvers for systems in 

general a difficult problem.  

 First, V0 is approximated by a step function so that a Riemann problem can be associated with each jump 

in the approximate initial data. The solution of each Riemann problem is approximated by step functions. 

Furthermore, in front tracking approximation, rarefaction waves are approximated by step functions sampled 

along the wave curves (according to a pre-set, parameter  δ ), while the rest of the Riemann solution is left 

intact. By doing this each Riemann problem produces a sequence of jump discontinues (fronts) that travel with a 

finite wave speed. On the other hand, the Riemann solution is represented by a list of fronts, sorted according to 

increasing wave speeds. Thus a global solution (in x) is formed by connecting the local Riemann solution – it 

consists constant states separated by a space-time rays i.e., a list of fronts sorted from left to right. But, there will  

be first time at which two or more space-time rays intersect, i.e., two or more fronts collide. This collision 

describes a new Riemann problem which can be solved and inserted into the list. In addition, the algorithm 

proceeds in this manner from collision to collision. The numerical method is unconditionally stable and very 

first.  

3.2.2 Diffusion Solver    

The parabolic step in Cauchy problem of the form  
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In application G denotes residual flux term in Eq.(8), D is still the diagonal matrix diag( ε1,….εm) > 0. To solve 

this system, one can instance use the explicit we have central finite difference method such that,  
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Now, this scheme is stable provided the discretization parameters τ and ∆x satisfy the under mentioned 

conditions  

iGi xx ελετ max2max;max/5.0 2 ≤∆∆≤  

Where λG represents the eigenvalues ofG′ , the derivative of G ( Strikwerda, J. (1989)). Hence for Cauchy 

problem Eq.(10), which has linear diffusion, convergence and error estimates for this is shown in                            

(Hoff, D. Smoller, J. (1985)). The stability conditions above may severe restrictions on the discretizations 

parameters – especially on ∆x for small values of ε .However, both these conditions can be weakened or  

removed by using a more sophisticated process. In concrete, to keep the technical details at a minimal level, we 
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chose the simple explicit scheme.   

  

4. Construction Of The Residual Flux      

 In this section we will construct residual flux Fres (x,  .)  appearing in Eq.(6). Now we assume that the 

discontinuities of U
n+1/2

(x) are located at the point {xi}. Hence given a piecewise constant front tracking solution, 

U 
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 of the hyperbolic equation in Eq.(15). Again, we consider ( )Ti
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respectively. Locally, around the ith discontinuity emerging from (xi, to) the nonlinear problem Eq.(2) is 

governed by the linearized problem   
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Although a residual flux term can be identified for every discontinuity in the front tracking solution,  it should 

not be included fro discontinuities which approximate rarefaction waves or for weak shocks. Hence, we only 

include residual terms for shock waves with strength exceeding a user-defined threshold parameter γ . Further, 

the process of identifying relevant residuals can be made more rigorous, and simplified, by tagging fronts in the 

front tracker according to wave type (shock/rarefaction/ contact)  (Datta Gupta, A. King, M.. (1995; Hewett, T. 

A. Yamada, T. (1997; King, M. Datta Gupta, A., (1998); Chavent, G. & Jaffre, J. (1996); Chen, Z.  Ewing,  R.  

(1997)).    

 For explicit discretization we apply the residual fluxes in state space (u1,……..um). We demonstrate that in 

each special interval where the solution is monotone in all its components ( monotonicity), all residual fluxes are 

explained on disjoints sets in state space. Therefore, the residual flux is set to zero outside (a subset of) the 

associated monotonicity interval,   

( ) ( ) ( ) ( )14, xDUFUxF i

i

i

resres χ∑=   

( ) ( )150v. =∇+ SFS t   

Where ( )xIχ  represents the indicator function of the interval I ⊂  ℝand Di is the (subset of) monotonicity 

interval, S and F(S) denotes vectors of saturations and fluxes respectively. We apply for implicit discretization a 

simpler approach where – it prescribes the length of the intervals where the correction is applied. However, 

specifying reasonable length for the correction intervals must be based on experience.  
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Results And Discussion  

The following conclusions can be drawn from the above study  

(i) we demonstrate numerically that operator splitting (OS) methods for systems of  

convection-diffusion equations in one-space dimensions.  

(ii)         it has a tendency to be too diffusive near viscous shock waves.  

(iii)  the scalar COS method is to use wave structure from the convection step to identify where the   

nonlinear splitting error (or entropy loss) occurs.   

(iv)  the potential error is compensated for in the diffusion step (or in a separate correction step).  

(v) in case of scalar case, the splitting error is closely related to the local linearization introduced 

implicitly in the convection steps due to the use of an entropy condition.   

(vi) a COS method has been proposed.  

 (vii)     the numerical results demonstrate that the COS method is significantly more accurate than the 

corresponding OS method when the splitting step is large and the solution consists of (moving) 

viscous shock waves.  
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Caption to the Figure 1. (a) A single shock solution from a convection step; (b) the corresponding residual flux 

function f (solid), convex envelop fc  i.e. local linearization (dash), and residual flux  fres (dash-dot). 
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