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Abstract
The control of HIV/AIDS is not yet over. Recently, the main method of control is the use of counseling and
antiretroviral therapy (ART). In this study, a mathematical model of HIV/AIDS transmission dynamics
considering counseling, vaccination and ART is formulated and the existence of its unique solution is
investigated.
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1. Introduction

For more than three decades now, the human immunodeficiency virus (HIV) which causes acquired immune
deficiency syndrome (AIDS) has remained one of the world’s serious health challenges. Since the initial
reporting of the AIDS pandemic in 1981 in the United States of America (USA) by the Centers for Disease
Control and prevention (CDC, 1982), the worldwide spread of the pandemic has been far reaching. Global and
regional estimates of HIV have been provided by the Joint United Nations Programme on HIV/AIDS
(UNAIDS) and the World Health Organization (WHO) since the late 1980s and country specific estimates since
1996 (UNAIDS, 2009; Garcia-Calleja et al., 2006). While the early 1980s AIDS cases were confined mostly to
the homosexual men, hemophiliacs, and intravenous (1V) drug users in North America and Europe (CDC, 1982),
today there is no geographical area, class, and cultural group of the world untouched by this pandemic (Koob
and Harvan, 2003). It is common to the young and adults. Individuals aged 15 years and above are the most
susceptible group. This is because they are more sexually active.

HIV is associated with severe break down of the immune system of the affected person, rendering the body to be
immune-deficient, resulting into catastrophic susceptibility of the infected person to opportunistic infections like
Tuberculosis (TB), Pneumonia, meningitis, cancers and the gastrointestinal tract infections, which may result
into illness and death (Putzel, 2003; Mugisha, 2005). Without treatment, the average survival time after infection
with HIV is estimated to be 9 to 11 years, depending on the HIV subtype (UNAIDS/ WHO, 2007).

The African Continent is the worst hit by the HIV pandemic, with Sub- Saharan Africa remaining the most
severely affected, with nearly 1 in every 20 adults (4.9%) living with HIV and accounting for 69% of the people
living with HIV worldwide (UNAIDS, 2012). The impact of the epidemic has also badly affected households,
schools, working places and economies (UNAIDS, 2008; AVERT, 2010).

After Sub—Saharan Africa, the regions most heavily affected are the Caribean and Eastern Europe and Central
Asia, where 1.0% of adults were living with HIV in 2011 (UNAIDS 2012).

Since the start of the epidemic in 1981, about 75 million people have become infected with HIV; and out of this
number, about 36 million people have died of AIDS — related illnesses. In 2012 alone, about 1.6 million people
died from AIDS - related causes worldwide (UNAIDS, 2013). Similarly, as at the end of 2012, surveillance data
compiled by the Joint United Nations Programme on HIV/AIDS estimates that about 35.3 million people were
living with HIV globally (UNAIDS, 2013); although the burden of the epidemic continues to vary considerably
between countries and regions.
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Although the number of people newly infected with HIV is declining worldwide, the number of people (adults
and children) who acquired HIV infection in 2012 was about 2.3 million (UNAIDS, 2013), lower than that of
2011, which stood at about 2.5 million people (UNAIDS, 2012). The sharpest declines in the number of people
acquiring HIV infection have occurred in the Caribean (42%) and Sub-Saharan Africa (25%). Despite these
gains, Sub—Saharan Africa accounted for 71% of the adults and children newly infected in 2012 (UNAIDS,
2013), underscoring the importance of continuing and strengthening prevention efforts in the region and other
regions of the world.

Global solidarity in the HIVV/AIDS response during the past decade has continued to generate extraordinary
health gains, with the emergence of powerful new tools to prevent people from becoming infected and from
dying from AIDS - related causes. Although much of the news on the successes against HIV/AIDS is
encouraging, challenges remain. National epidemics continue to expand in many parts of the world. Further,
declines in the numbers of children dying from AIDS-related causes and acquiring HIV infection, although
substantial, need to be accelerated to achieve global AIDS target.

The virus (HIV) can be transmitted in the following ways: horizontal transmission (from one adult to another
adult through heterosexual, bisexual or homosexual contact), vertical transmission (that is, from an infected
mother to fetus), or during childbirth, or during breastfeeding, and exposure to contaminated needles/blood
products. However, large scale prevention of Mother to Child Transmission Programmes have greatly reduced
the number of new infections globally through this route (Omar and Naresh, 2010; UNAIDS, 2008). Out of these
modes of HIV transmission, heterosexual contact is the major mode of transmission, contributing about more
than 75% of all the world’s HIV infections (UNAIDS, 2009).

Presently, there is no known medical cure for HIV infection nor is there a vaccine to prevent HIV infection. The
most plausible HIV control measure involves prevention. These include condom use, abstinence, male
circumcision and faithfulness. Condom use and male circumcision were shown to have a big impact on HIV with
male circumcision alone reducing HIV transmission rate by 37% (Williams et al., 2006; Mukandavire et al.,
2007). Treatment of HIV consists of a combination of antiretroviral therapies (ARTS). ART blocks the
replication of the virus and thus increases the life-span of HIV-infected individuals. It does not lead to viral
eradication within individuals and hence does not cure (Miranda et al., 2007; Velasco-Hernandez et al., 2002).
The effect of ART on HIV largely depends on the stage of infection at which treatment is initiated, levels of
coverage, and the scale and stage of HIV epidemic that the community is experiencing. ART has been shown to
have a big impact on HIV if the coverage is high (Velasco-Hernandez et al., 2002; Udoo, 2010).

Presently, extensive researches for the discovery of anti-HIV preventive and therapeutic vaccines are currently
going on in different parts of the world. However, of the over 190 vaccine trials that have been completed to date
against HIV/AIDS disease (EGPAF, 2013), only the results from the phase-3 clinical trials in Thailand of an
anti-HIV preventive vaccine was released in late 2009 (UNAIDS, 2010; Kai Sun et. al., 2010). It revealed 31.2%
reduction in the risk of HIV infection, making this the first HIV vaccine to have a statistically significant effect.
The results showed that this vaccine may be valuable in a community setting with largely heterosexual risk (Kai
Sun et. al., 2010).

The spreading of diseases has been the subject of intense research for some time now. On the other hand,
epidemiologists have developed mathematical models for the spread of infectious diseases in human populations
that can be used to gain insights into the spread and control of specific infectious diseases and to design
control/prevention, immunization and vaccination policies (see, for example, Gomez-Gardenes et al., 2008;
Anderson et al., 1992; Daley, Gani et al., 1999; Murray, 2002) dating back to the pioneering work of Bernoulli
(1760) and the likes of Ross (1911), Kermack and McKendrick (1927) and others (see, for example, Anderson
and May, 1991; Hethcote, 2000). The basic reference is the book by Bailey (1957), which contains a description
of both stochastic and deterministic models (Hethcote and Waltman, 1973). According to Bailey (1975), disease
modeling started as far back as the ancient Greeks with the epidemic of Hippocrates [459 — 377 BC].

In this direction, mathematical models for the control of HIVV/AIDS have been formulated as far back as 1987,
when Medley et al. (1987), developed simple mathematical functions for the growth in the number of individuals
who will ultimately develop AIDS and for the distribution of incubation period of those individuals. Other
models for the control of HIV include the following aspects: random screening, contact tracing, use of the
condom etc. (see, for example, Greenhalgh et al., 2001; Hyman and Stanley, 2003; Kimbir and Aboiyar, 2003;
Kimbir, 2005; Kimbir et al., 2006). Mathematical models to investigate the effect of treatment and vaccination
on the spread of HIV/AIDS can be found (see, for example, Swanson et al., 1994; Velasco-Hernandez and
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Hsieh, 1994; Hsieh, 1996; Yang and Ferreira, 1999; Hsu-Schmitz, 2000; Gumel et al., 2002; Corbett et al., 2004;
Kgosimore and Lungu, 2004; Kimbir and Oduwole, 2008; Udoo, 2010).

An important aspect of controlling HIVV/AIDS is the combined strategies of Counseling, vaccination and ART.
Evidence for counseling and ART modelling studies has already been reported (see, for example, Kimbir and
Oduwole, 2008; Udoo, 2010). In particular, Udoo (2010) proposed and studied a deterministic mathematical
model of HIV/AIDS transmission dynamics considering counseling and antiretroviral therapy (ART) on a
heterosexual (two-sex) population. The analysis of his model, qualitatively and numerically, revealed that the
control and eradication of HIV/AIDS in heterosexual populations is feasible and is dependent on the net
transmission rates of infection, the effectiveness of counseling and efficacy of ART, and the proportion of
infected people receiving ART for each sex. In this study, however, the counselling and ART model by Udoo
(2010) is being extended by incorporating vaccination of susceptible males and females against the acquisition
and spread of HIV infection in heterosexual populations; and the existence of its unique solution is investigated.
Vaccination has been found to have induced permanent immunity against infectious diseases, like Measles,
Smallpox, Rubella, to name but a few. Moreover, it is believed that a vaccine against HIVV/AIDS, even one that
is partially effective, could have a tremendous impact on the control of the infection in developing countries
(1AVI, 2011; Anzala, 2012). Furthermore, a number of mathematical models have been developed specifically to
estimate the impact of a vaccine on the AIDS epidemic (IAVI, 2005).

This study is organized as follows. The model assumptions, formulation and the basic properties of the model are
presented in the following subsections. The proof of the existence and uniqueness of solutions is carried out, and
the concluding remarks in section 2.

1.1 Assumptions of the Model
The following assumptions are made for our modeling activity in this research.

i) The population is a homogeneously-mixing heterosexual one.
i) Recruitment into the infected sub-populations is through heterosexual contacts only.
iii) An effective proportion each of susceptible males and females are vaccinated

against HIV infection.

iv) A proportion each of infected males and females receive ART.
V) Infected individuals apart from dying naturally, die due to the disease.
Vi) No recovery from the disease, that is, infected individuals remain

infected till death as the disease has no known medical cure for now.

vii) Individuals in the different sub-populations are actively engaged in
reproduction.

viii) Vertical transmission and Age-structure are ignored.

1.2 Formulation of the Model: Parameters and Variables of the Model
The functions (parameters/variables) used in the model are defined below.

S, (t) = Number of susceptible males at time t;
S (t) = Number of susceptible females at time t;
V., (t) = Number of vaccinated susceptible males at time t;

V, (t) = Number of vaccinated susceptible females at time t;
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I, (t) =Number of infected males at time t;

I, (t) =Number of infected females at time t;

R, (t) = Number of infected males receiving ART at time t;

R; (t) = Number of infected females receiving ART at time t;
N,({t)=S,{t)+V, )+, (t)+R,(t)=Total population of males at time t;
N, (t) =S, (t)+V, (t)+1, (t) + R (t) = Total population of females at time t;
B,, (t) = The rate at which males are infected per unit time (incidence rate);

B, (t) = The rate at which females are infected per unit time (incidence rate);

b = Natural birth rate for both Sexes, b >0;

M = Natural death rate for both sexes, f >0;

o, = Death rate of infected individuals not receiving ART of both sexes;

0

o = Death rate of infected individuals receiving ART of both sexes, &, >« ;

5m = The effective proportion of vaccinated susceptible males per unit time;

0, = The effective proportion of vaccinated susceptible females per unit time;

= Average number of sexual contacts by infected males with females per unit time;

C; = Average number of sexual contacts by infected females with males per unit time;

= Average number of sexual contacts by infected males receiving ART with females
per unit time;

C: = Average number of sexual contacts by infected females receiving ART with males

per unit time;

ﬁm = Probability of transmission by an infected male not receiving ART;

[ = Probability of transmission by an infected female not receiving ART;
ﬂ; = Probability of transmission by an infected male receiving ART;

ﬁ: = Probability of transmission by an infected female receiving ART,;
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O, = Proportion of infected males receiving ART per unit time;
O ; = Proportion of infected females receiving ART per unit time;

T = Maximum life span after infection;

k = Efficacy of ART.

1.3 Flow diagram

As a consequence of the model assumptions, the model will be of eight compartments. These compartments and
the movement of individuals from one compartment to the other are presented in figure 1. All
parameters/variables are as defined in sub-section 1.2.

Figure 1. The Model Flow Diagram

1.4 Model Equations
Using the flow diagram we formulate the following model equations:

Sn=bN, —B,S, —(u+5,)S, (1)
S, =bN, -B.S,; —(u+5,)S; (1.2)
Iy =B.Sy, —(u+a, +o,)1, (1.3)
I, =B;S; —(u+a, +o,)l;, (1.4)
Vi = 6,80 = iV, (15)
V. =6,S, — iV, (1.6)
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R, =oc,l,—(u+a)R, 1.7)
R, =c.l, —(u+a)R, (1.8)
where
N,=S,+I,+V,+R, (1.9)
N; =S; +1; +V; +R; (1.10)
c.B: 1, +C.BR
Bm= mﬂf f mﬂf f (1.11)
N
¢ Bl +C; BR
Bf _ fﬁm m fﬂm m (1“12)
Nm
a=a, ™ <a, (1.13)

1.5 Model Equations in Proportions
The above model equations are now transformed into proportions. These equations into proportions have
biological meaning, as they define prevalence of infection. They are also the governing equations of the model.

Let,
S . | \Y/ R
sz_m,|m=_m,vm=_m,rm=_m, (1.14)
Nm Nm Nm Nm
and
Sf . If Vf Rf
Sf :_llf :_!Vf :_’rf =—, (115)
Nf Nf Nf Nf

From the first equation in (1.14), we have

Sm :N_[Sm _SmNm]

m

1
=N_[bNm—Bmsm—(y+5m)sm—sm{(b—ﬂ)Nm—aolm—aRm}]

m

or
Sn =b—(CoBii; +Cn i1 )5 —(D+3, ) Sy + QS +ATyS,- (1.16)
A similar approach gives the following equations in proportions,
-t - * * - .2 -
i =(CoBiis +Co BT )5y — (bt + 0y, )iy + i+t (1.17)

Vi =68 — bV, + (i, +aly )V,

(1.18)
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h, =0nin —(b+a)r, + i, +ar;. (1.19)
S =b—(C; Bl +C; Bl )5 —(0+3; )5, +axgi S, +ars,, (1.20)
- - * * - .2 -
iy =(C Buin +Ci Bat )1 —(b+ g+ 0 )i +aif +ariy, (1.21)
Vi =85 —bv, +(ai +ar; v, (1.22)
: . ) 5
r, =oyi; —(b+a)r, +ai, +ar;. (1.23)
Since
Sy +iy +V, +1, =1, (1.24)
and
S¢ +ip +V, +1, =1, (1.25)

we have the following governing equations of the model in proportions:
i, = (CuBid; +Cufir )1, v, 1) i, [b+o, —a-i,) ~ar, ]
i\ =(C, By +Ci Bar)A—i, —v, —1,) =i, [p+o, —a,A-i,)—ar, ]
v, =8, A—i —v, —r)-v, [b—(ai, +ar,)]
V, =8, =i, —v; —=1,) =V, b= (ai; +ar,)] (1.26)
r=o,i, —r [b-ai, +al-r,)]
r=oi; —r [ b-agi; +al-r)].

2. Existence and Uniqueness of Solution of the Model

In this section we establish conditions for the existence and uniqueness of a solution of our model. We shall
apply Picard’s theorem to achieve this.

Theorem 2.1: Picard’s Theorem

Suppose

y'=f(ty)ylt) =Y, 1)

is given system of ordinary differential equations and suppose f (t,X) is continuous and satisfies a
Lipschitz condition in the closed and bounded domain”X—XO” <@, ||t—t0||Sz'. Let” f (t,X)”S M there.

Then the IVP (2.1) has a unique solution in the interval ||t -1, || <h, where h =min {Z’, % } .

For more on Picard’s theorem, see for example, Hu and Li (2004) and Muscat (2008).
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Consider our transformed system of equations (1.26) above. Let
x=[im,if NV Vi My 1y ]T

f(x)=[f,(X), F,(X), (%), f,(x), fs(x), T, (O], (2.2)

where, on expanding each equation in the system of equations (1.26), we get
fl(t! X) = Cmﬂfif +Co i1 _Cmﬂfifim —Cpn /i rfim _Cmﬁfifvm —Co BV, _Cmﬂfifrm

—C, Bir 1. —bi —o.i, +ayi, —aii+ari,

m

fz(t’x) :Cfﬂmim +C ﬂmrm —C ﬂmimi _Cfﬁmrmif _Cfﬂmimvf _Cfﬁmrmvf _Cfﬁmimrf
—C. B r.r.—bi. —ci. +a, - acoif2 +ari,

f3(t,X) =S, — Oy — OV — Ol — OV, + gl V,, + IV,

m™m?
f,(t,X) =0, =i, —O,V, =3I, —bV, + i,V +ar,V,,
f.(t,X)=0,i —br +aji r —ar +ar?,
and
fy(t,X) =i, —br, + i, r, —ar, +ar’,
so that our system of equations has the form (i.e., the vector-valued functional form)

X =f(t,x)=1(x), X(t,) = X, . (2.3)

Define

D= {x (i Vo, Ve, ) VARTAN N & gl}, (2.49)

m’f’m’ m!fama

and let

”X Xo” <o, ”t” <7, with t,=0,% = ( mori£01 Vo Veor o rfo)
We shall prove using Picard’s theorem that (2.3) has a unique solution, by proving the following:

(1) f iscontinuous;
(2) f satisfies a Lipschitz condition; and

@ |f]<M.
Now, by the assumptions in our model, the vector-valued function f (t,X) is continuous as each component
f.,1=1,2,3,4,5,6 of f(t,x) isa continuous function of the variable

X=( i,V ,V,r,r).

Let us establish the Lipschitz condition. We do this by showing that each component of fi,i =12,..6
satisfies a Lipschitz condition.
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Let Y = (g 15 Vings Vegs Fogs Fer)

Then f(y)=(f,(y), f,(¥), f2(¥), F,(¥), fs(¥), T (V)"

Now, noting that i_,1,V_,V,, I, I <1, we have
| f,() - fl(y)| = ‘(Cmﬂf (i —ig)+Co B (r —riy)+ (_Cmﬂf){im(if —igy) +ig(, _iml)}
+(_C;ﬂ:){im(rf —r0) + ey (i — iml)} + (_Cmﬂf){vm (i —ig) +ip (v, _le)}
HECBD V(=12 + Py Uy Vi) (6B )y —50) +ia (7 = )}
B (= 11) + (= 1)+ (D) iy — ) + (03, ) (i — i)
+ao(im - iml) + (_aO)(im + iml)(im - iml) + a{rm (im - iml) + iml(rm - IFm1)})|
<C,f; ‘if _ifl‘+c;ﬂ: ‘rf _rfl‘_'_cmﬂf |im”if _ifl‘+cmﬂf ‘ileim _iml|
+C:1/3: |im”rf _rfl""c;ﬁ: ‘rfluim _im1|+cm:3f |Vm”if _ifl‘—'_cmﬁf ‘iuHVm _Vm1|
+C;ﬂ: |Vm”rf - rf1‘+c;ﬂ: ‘ruHVm _Vm1|+cmﬂf |rm”if _ifl‘+cmﬂf ‘ifIHrm - rm1|
+C;ﬂ: |rm”rf - rfl‘+c;ﬂ: ‘rlerm - rm1|+b|im - im1| +o_m|im _im1|
0ty [y =g+ [y [l — Tt + | [l = |+ X[ |y = Mo
= (CofBs +CfB; +b+ 0y, 30+ )iy — |+ 4,5, i — i
H(CnB1 +Cn 37 ) Vi = Vi + O =V |+ (€3 + 37 +@)r =1
+4C;ﬂ:‘rf - rfl‘
= I11|im _im1|+ IZl‘if _if1‘+ |31|Vm _Vm1|+ |41‘Vf _Vfl‘ + |51|rm - rm1| + |61‘rf - rfl‘
Therefore,

[£.00- ()| <L [x-VY] (2.4.1)
where L =max{l;,l,,, 1.1, ks, 1.}, and

l, = (Cmﬂf +Cpf; +b+0o, +3a, +a)' |y =4¢, By 1y = (Cmﬂf +Cp By )' l,, =0,
Iy = (CoBs +CoBi +a), Iy =4c, 55,
are constants depending on the parameters of the model.

Similarly,
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| fz(X) - fz(y)| < 4Cfﬂm |im _im1|+(CfIBm +C:ﬂ; +b+af +3ao +a)‘if _if1‘+o|vm _Vm1|
+(C S, +C:ﬂ;)‘vf _Vf1‘+4c:ﬂ; |rm - rml|+ (€ B +Ci By +0‘)‘rf - rfl‘

= I12|im _im1|+|22‘if _if1‘+|32 |Vm _le|+|42 ‘Vf _Vf1‘+|52|rm _rm1|+|62‘rf _rfl‘
<L, [x-y| (2.4.2)
where L, =max{l,,,1,,,1;,,1,,. 5,15, } and

l,, = 4c; B, |22=(Cfﬁm+c:ﬂ:1+b+o-f +3ao+a)’ l;, =0, |4z=(0fﬁm+ciﬂ;),
l;, = 4¢; B,

l, = (¢ By +¢ B+ ),
[ £300) = T3 (V)| < (S + @) fim g + O =]+ (S + b+ g + @)V = Via| + OV, =V
+(S, +a)|r, - rml|+0‘rf — rfl‘
= g iy = |+ Ly i 1] L Vi = Vi | i [V = Vo] e [l = |+ s | =71
<Lfx-y| (2.4.3)
where Ly = max {l, b, L, Lg, leg, s |+ and
L, =(S,+a,), 1y =0, l=(5, +b+a,+a), 1,,=0, l;=(5, +a), I, =0,
[ £, = £ (V)] < Olipy |+ (5 + )i —igy| + OV Vi |+ (5 +b+ g + @) v =V
+0[r, —r |+ (5 Jroz)‘rf —rfl‘
=Ly i = |+ L [i ¢ = |+ D [Vin = Vo] + D [V = V|l = |+ D 1 =)
<L, x-y]| (2.4.4)
where L, =max {l,, byl Loy logs I, ) and
l, =0, 1, =(5f +a0), l,, =0, 1, =(5f +b+ao+a), l, =0, I, =(5f +a),
[ £5(X) = £ (V)] < (0 + o) fim | +Ofi =i 5|+ 0y =V |+ Oy =V
+b+a, +3a)]r,, —rml|+0‘rf —rfl‘

= I15|im _im1|+|25‘if _if1‘+|35 |Vm _le|+|45 ‘Vf _Vf1‘+|55|rm _rm1|+|65‘rf _rfl‘
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< Lg|x—y]| (2.4.5)

where L =max {lg, Ls, bys, Lis, Iss Igs |+ and
ls =(0n+,), bs=0, l;=0, l,;=0, l;=(b+e, +3a), I =0,
and

|f5(x)_ fa(Y)|§O|im _iml|+(o_f +a0)‘if _if1‘+0|vm _le|+o‘vf _Vfl‘

+0[r, — 1|+ (b + +3oz)‘rf — rfl‘.

= |16|im _iml|+ |2e ‘if _if1‘+|36 |Vm _Vm1|+ |46 ‘Vf _Vfl‘_'_ |56|rm

<Lx-y]

where Lg = mMax {Li, L, lss, g Isg lgg | and
b =0, Ly=(07 +ct,), b =0, g =0, ls=0, Iy, =(b+a,+a).
Therefore,

[T 0=y <Lfx-y].

where L:max{Ll, L, L, L, L, Le}

To obtain the bound for  f (t,X) , and noting that i,1;,V,,,V,I,, Iy <1, we have

| .00 < CaB; fic|+ CoBT 1|+ CaBBy i ] + 57

+C B, ‘if Hrm|+cfn,8:‘rf Hrm|+b|im|+o-m|im|+0¢0|im|+050|im|2 +alr[fi.]

<4c B, +4c, fB; +b+o, +2a,+a

r-f Him|+cmﬂf ‘If va|+cr:1ﬂ:

- rm1|+ Iee ‘rf —I

(2.4.6)

(2.4.7)

r-f va|

=M,.

Similarly,

| f,(¥)| <4c, B, +4c; B +b+o; + 20+ [ f,(X)| <o, +b+a,+2a
=M,, = My,

| f,(x)| <45, +b+a, +a [fs(¥)|<o; +b+a,+2a
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|f,(X)|[<45; +b+a,+a
=M,
Therefore,
| T 09 = max{M,,M,, M ,M,, Mg, M}
<M.

Thus, there exists a unique solution for the IVP (2.3) in the domain, |X—XO|Sg0 and |t|£h, where

h:min{r,%l}.

This completes the proof.

3. Conclusion

In this paper, we have formulated and presented an HIV/AIDS transmission dynamics mathematical model that
incorporates vaccination of susceptibles against HIV infection with counseling and ART; and have shown that
our system of equations represent a useful mathematical model of a physical system by carrying out a classical
qualitative proof of the existence and uniqueness of a solution to the governing system of model equations.
Hence the title of paper.
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