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Abstract

In this paper a prey-predator model involving Holling type IV functional
response is is proposed and studied. The existence of all possible equilibrium
points is carried out. The local stability analysis of the system is carried out.
The global dynamics of the system is investigated with the help of the Lyapunov
function.  Finally, the numerical simulation is used to study the global
dynamical behavior of the system. It is observed that, the system has either
stable point or periodic dynamics.
Keywords: prey-predator model, Holling type IV functional response, stability
analysis, Lyapunov function.

1. Introduction

Variety of the mathematical models for interacting species incorporating
different factors to suit the varied requirements are available in literature, a
successful model is one that meets the objectives, explains what is currently
happening and predicts what will happen in future. The first major attempt to
predict the evolution and existence of species mathematically is due to the
American physical chemist Lotka (1925) and independently by the Italian
mathematician Volterra (1926), see [1], which constitute the main theme of the
deterministic theory of population-dynamics in theoretical biology even today.
Over the last few decades, many models for two or more interacting species
have been proposed on the basis of Lotka-Volterra models by taking into
account the effects of crowding, age structure, time delay, functional response,
switching, etc. [2,3,4].

Keeping the above in view, in this paper consideration is given to analyze
and study the dynamical behavior and persistence of prey-predator model with
Holling type-IV functional response have been proposed and studied.

2. Mathematical model formulation
Let x(t) and y(t) are the density of two predator species at time t, z(t) be
the density of prey species at time t that consumes the prey species according
to Holling type IV functional response then the dynamics of a prey—predator
model can be represented by the following system of ordinary differential
equations.
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% _ €1 Wy 71 XZ

— X — 6x% =xfy(x,,2)

dt_ (24]
d
G B = gy = 8% = Y (% Y.2) (1)

dz _ (4 _Winxz  Wayayz _
it = (a—hz)z o ) 2f3(X,y,2)

where o, =2° +y,z+y,8, and a, =2° +y,2+y,4,, with x(0)>0, y(0)>0 and
z(0)>0.
Note that all the parameters of system (1) are assumed to be positive constants
and can be described as following: a is the intrinsic growth rate of the prey
population; 44,1=12 are the death rates of the predator population; the

parameter b is the strength of intra-specific competition among the prey species;
the parameter f;,i1 =12 can be interpreted as the half-saturation constant in the

absence of any inhibitory effect; the parameter y;,i =12 are a direct measure of
the predator immunity from the prey; w;,i=1,2are the maximum attack rate of
the prey by a predator; e;,i=12 represent the conversion rate. Finally,
oj,i=12are the strength of intra-specific competition among the predator
species . The initial condition for system (1) may be taken as any point in the
region R>=1{(x,y1,y»):x>0,y; >0,y, >0}.  Obviously, the interaction
functions in the right hand side of system (1) are continuously differentiable
functions on r3, hence they are Lipschitizian. Therefore the solution of system

(1) exists and is unique. Further, all the solutions of system (1) with non-
negative initial condition are uniformly bounded as shown in the following
theorem.

Theorem 1. System (1) is dissipative system on R§r.

Proof. It is well known that the dynamical system is dissipative if and only if it
is uniformly bounded. Now according to the first equation of system (1) we have
dz
—<(a—hz)z
o ( )

Thus by solving the differential inequality:

lim_, ., Sup.z(t) < :>z(t)_"6‘,Vt>0

Now, consider the functlon.
W=2>x+ly+z
e e,
Then

dW _t
dt_az elx e,

y

H)

aw _ My o
it <(a+1)z (z+e1x+e2 y)
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%—Vtv <m-—awW
where m=a+1 and @=min{l,zq,1,}. Therefore, by solving the last
differential inequality it is observed that

lim_,q, SUpW(t) <P =>wW(t) <, vt>0
Thus all solutions of system (1) are uniformly bounded, and hence the system is
dissipative.

3. Existence of equilibrium points and stability analysis.
The system (1) have at most five non-negative equilibrium points, two of

them namely E, =(0,0,0), E, =(0,0,2) always exist. While the existence of
other equilibrium points are shown in the following:

The second predator free equilibrium point E,, =(X,0,2) exists in Int.Rf of
Xz —plane, where

)A(:L(el""_ﬂ’lz_lul) (3.1)

o\ o
where g, =2% +y,2+ 7,4, While 2 represents the positive root to the following
equation:

5 4 3 2 _

hlz +h22 +h3Z +h4Z +h52+h6 =0 (32)

where hl = —51b <0, h2 = 51(8. - 2b]/1) , h3 = 51]/1[2(8. - bﬂl) — bj/l] ,
hy =61[a(2B1 + 1) — (2by1 B — )],
hs =y [618,(2a b)) —wi(wie; — 141)] and hg =Sy Bilay B+ taw)]>0.
Obviously, Eg. (3.2) has a unique positive root say 2 provided that one set of

the following sets of conditions hold.
h, <0, hs <0and hs >0 (3.33)

h2 < O, h4 >0 and h5 >0 (33C)
Therefore, by substituting 2 in Eqg. (3.1), system (1) has a unique equilibrium
point in the Int.Rf of xz -plane given by E,, =(X,0,2), provided that

eiWy 12
e > (3.4)

The first predator free equilibrium point E, =(0,y,Z) exists in Int.RJzr of
yz -plane, where

y:é(M_ ﬂZJ (3.5)

ap
where @, =7° + y,7 + 7,/3,, While Z represents the positive root to the following
equation:
d. 75 4 3 2 _
127 +dyz" +d3z° +dyz° +d5z+dg =0 (3.6)
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where d1=—52b<0, d2 252(3—2b}/2), d3 25272[2(a—bﬁ2)—b}/2],
dq =2y2[a(2B; +y2) — (2by2By — ppWs)]

ds = 75[5,8,(2a—bf3,) — Wy (Waep — 1155)] and
dg =0oyobo[ayo o + tioWo)]>0. Obviously, Eg. (3.6) has a unique positive

root say z provided that one set of the following sets of conditions hold.
d, <0,d3<0and ds >0 (3.78)
d, <0,d, >0andds >0 (3.7b)
Therefore, by substituting zZ in Eq. (3.5), system (1) has a unique equilibrium
point in the Int.Rf of yz-plane given by Ey, =(0,Y,Z), provided that

> iy (3.8)

Finally, the coexistence equilibrium point E,, =(x",y",z") exists in

€aWoyoZ
a;

Int.Rf, where

x_ 1 [ ewinz’
_ _ 3.9
and
* 1 92W27/22*
_ _ 3.10

While, z* represents the positive root of each of the following equation:

Quz° + Q2% + Qa2 +Qyz°% + Qsz® + Qg2 + Q2% + Qgz2 + Qgz + Qg =0
(3.11)
where:

Q =-bd0,

Qy =5102[a—2b(yy + y5]
Q3 =0107[2a(y1 +72) —b(n[28 + 11 +4r2]+ v2[28; +72])]

Qq =102[a(nl28 + 11 +4r2]+y2[282 +72])
—26( LB+ r1yal2By + 1 + 20 + v2]+ V5 B)]
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Qs = 815,02a(r1 B + 72028 + 71+ 282 + 72+ 75 B2) — b B
+27172021B1 + 28182+ 112 + 2P+ 1172 + 27221+ 72 BE)]
—Wyy16z[eWiyy — 142y + y1)]— Woyadi[eaWoyn — 12 (251 + 72)]
Qe = 102[a0 B +2m720201 81+ 2182 + 11Ba + Vo Py + 1172 + 272 Bl + 73 BE)
—2b(r 7287 + LB+ 28182 + 1B + B51)]

—Wyy17202[2(80Wyy1 + Bo i) — 111 (72 +21)]
—Woy27101[2(€Woy o + Bratn) — pp (11 +272)]

Q; = 816,2[2ay172 (B + yalyiB+ 28182 + 1B + B51)
—by172 (BuBalAys + 2m B + 4y1y2 + 272821+ iyl BE + B3 1)]
—Wiy17202[0Wiy1 (282 +72) =t (2Bl + 21+ lya + 25111
—Woy17261[82Wo12 (281 + 1) — o Sl + 721+ 72l +28,])]
Qs = 5165 (1227172 A2+ Al + 7L VLA +4P1B2 + P31+ 27175 Pr5 ]
—2by2y5 BBl By + Bal)— W1y 285072 B2 (2e1Wiyy — [ B +271]1)
— 1711 (2B +72)1=Woyry281[y151(260Wo 0 — pio[ B + 2y 21) = o2 B2 (281 + 71)]
Qo = 155[2a71 75 BB (By+ B2) — {5 BL B3
— Wiyt 73 B3 Salenwy + 1]~ Woyf v3 B Sileaws + 5]
Quo = 1{73[62 885 (QS1B1 +Wupny) +Wad1 B Bo ]

So by using Descartes rule of signs, Eq. (3.11)has a unique positive root say X"
provided that one set of the following sets of conditions hold:

Q,<0,Q3<0,Q4 <0,Q5 <0,Qg <0,Q; <0andQg <0 (3.12a)
Q,<0,Q3<0,Q4 <0,Q5 <0,Qg <0,Q7 <0andQg >0 (3.12b)
Q,<0,Q3<0,Q4<0,Q5<0,Q6 <0,Qg >0and Qg >0 (3.12¢)
Q5 <0,Q3<0,Q4<0,Q5<0,Q7; >0,Qg >0andQqg >0 (3.12d)
Q,<0,Q3<0,Q4<0,Qg >0,Q7 >0,Qg >0and Qg >0 (3.12¢)
Q,<0,Q3<0,Q5>0,Q6 >0,Q7 >0,Qg >0and Qg >0 (3.12f)
Q,<0,Q4>0,Q5>0,Q6 >0,Q; >0,Qg >0andQqg >0 (3.129)
Q3>0,Q4>0,Q5>0,Q6 >0,Q7 >0,Qg >0and Qg >0 (3.12h)

Therefore, by substituting z* in Egs. (3.9) and (3.10), system (1) has a unique
equilibrium point in the IntR> by Eyyz =(x",y",2"), provided that

atnz s oy (3.13a)

*
a
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o > o (3.13b)
2

4. Local stability analysis of system (1):
In this section the stability analysis of the above mentioned equilibrium points

of system (1) are investigated analytically.
The Jacobian matrix of system (1) at the equilibrium point Ey =(0,0,0) can

be written as Jg =J(Eg) =I[Cjjlaxs:i, ] =123, where ¢y =—z4, Cop=—pp>,
C33 =a and zero otherwise. Then the eigenvalues of J are:
Aor=—44 <0, Adgp =—41, <0, Ag3=2a>0
Therefore, the equilibrium point E is a saddle point.
The Jacobian matrix of system (1) at the equilibrium point g, =(0,0,2) can

. Leon ae]_Wl}/lb
be written as J, = J(E;) =[ljjlsx3;i, 1 =123, where lj;=— — I,
a®+(a+pb)by,
., —__ 2€2Wayob iy [y —___ awnb lon — —__ Way2D
2 ali@ipbb, 0 o0 alr@epbby’ 0 al+(arfabbry
I35 =—a and zero otherwise. Hence, the eigenvalues of J, are:
7 agWw,y,b 7 ae,w,y,b 7
= — y - - ’ =—a
A= F@poin M 2 T @y, 20

Clearly, E, is locally asymptotically stable in the Rf if the following two
conditions are satisfied

aew, b

1= 7 G+ Bb)by, (4.12)
ae,w,y,b

H2 = 37 s pbyby, (4.1b)

However, E, is a saddle point in the Rf if at least one of the following two
conditions are satisfied

aew,y,b

= 7 (@ pb)b, (4.1c)
ae,w,y,b

H2 = 37 ar p,b)br,s (4.1d)

So, the Jacobian matrix of system (1) at the equilibrium point E,, =(X,0,2)
in xz—plane, can be written in the form: J,, =J(E,;) =[fjjls«3:i, 1 =123,
where
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_ s _ e X(71 1 —2°7) _ EaWayp? _ —Wyyy?
fli=—6%,  fi3= v o T =y T =

xq

fy = _Wgzz , fa3= 2(— b +m22““)j and zero otherwise. Clearly, the
2 ay
eigenvalues of J,, are given by:

/;11\1+/’1,:3 :—512+2(—b+%]
1

My Ag = —51?(2[— b+ W171)A((22+71)j+ W12 (91W171>?(71ﬂ1—22)j

A €oWo ¥ o2
12237/2 _
(2]

H2

Consequently, E,, is locally asymptotically stable in the Rf if the following
conditions are satisfied.

b> W1y1>15222+71) (4.2a)
il

by > 12" (4.2b)

L < (4.20)

However, E,, will be unstable point in the Rf:’ If we reversed any one of the
above conditions.

The Jacobian matrix of system (1) at the equilibrium point Ey, = (0, y,Z) in
yz —plane, can be written in the form: J,, = J(E,;) =[0jjIax3:i, j =1,2,3, where

~ ~ ~2 ~
_ Wiz s _ eaWoypY (7282 -77) _ ~WinZ
Oi1==75 ——HM, O922=-02Y, Op3= " v O31=—5
1 a, 1

aj 2

Ogp = —272%  gog= 'z'(— b+ W272y£2“y2)) and zero otherwise. Clearly the
i)

eigenvalues of Jy, are given by:

;1 _ elwg;/lf _

ay H

~2
)

ZZ + ZZ = —52-}7 + Z(— b+ W27/2y(22+7/2))

2 o
a2 2

Ay Ay =—6, yf(— b+ W27/2V(27+72)]+ WaypZ [92W272)7(72ﬂ2—72)]
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Consequently, Ey, is locally asymptotically stable in the Rf if the
following conditions are satisfied:

elvgi/lz < (4.3a)
S(07

b>W272y£22+7/2) (43b)
P

7/252 > 72 (4.30)

Moreover, E,, is unstable point in the Ri’ iIf we reversed any one of the above
conditions.

Finally, the Jacobian matrix of the system (1) at the coexistence equilibrium
point Eyy, =(x",y",z") inthe Int. R3 can be written as:

Iz =I(Bxyz) = laij J3X3ii, J=123 (4.4)
* %2
Wy 1 X -z
where ayy =—x", a5 =" 171 (gﬁl )’ 8y =—5,Y",
a
1
eaWaray" (raBa-2"") Wz .
2Woy2Y (Y22 - _—win —Woyo
a23: *2 ] a31— * y a32_ " ,
) 21 an

*2 *2

Wiy (22" + Woyoy " (22" +
ag3=2"| —b+ 11y (22 +71) | Wayay (22 +72)

j and zero otherwise. Therefore

the characteristic equation of J,,, is

B +AA+AA+A; =0 (4.5)
where

A =—(8q1 +ap; +ag3)

Ag =ay185; + 811833 — 813831 — 8138371 + App833 — Ap3a32

Ag = ay1(p3830—829833) + 313820831
And

A=MA;, - Ag

=—(a11 +apz)[a1182 + azz(@11 +azs + azs)]

+ay3831[811 + A33] + 8p3832 (822 + 833)
Therefore, in the following theorem, the local stability conditions for the

positive equilibrium point E,y, in the Int. RS’; are established.

Theorem 2. Assume that E,y, exists in the Int.R§r and the following
conditions are satisfied;
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b > 11 - n)  Marz - 2 (4.6a)
) )
2
* .
2" <mindnfrraB2) (4.6b)

Then it is locally asymptotically stable.
Proof: According to the Routh-Hawirtiz criterion the characteristic equation
(4.5) has roots with negative real parts if and only if A, >0, A3 >0 and A>0.

Note that, it is easy to verify that, condition (4.6a) guarantees that
A; >0; while conditions (4.6a)and (4.6b) ensure the positivity of Az (i.e.

Az >0)and A. Hence, all the roots (eigenvalues) of the J,,, have negative real

parts. Therefore E,y, is locally asymptotically stable in the Int. R-3|- and hence

the proof is complete. u
Now, before go further to study the global dynamical behavior of system

(1) in the Int.R§F, we will discuss the dynamical behavior of system (1) in the
interior of the boundary planes as shown in the following theorems.

Theorem 3. Suppose that the equilibrium points E,, and E,, are locally

asymptotically stable in the Int.Rf of xz— and yz —planes provided that

b >W (4.73)
1

b> W272y05§2+72) (47b)
2

respectively, then E,, and E,, are a globally asymptotically stable in Int.Rf of

xz — and yz —planes respectively.

Proof. The proof follows directly by using Bendixson-Dulic criterion with Dulic
function 1/xz and 1/yz, then by using Poincare-Bendixson theorem.

5. Global dynamical behavior of system (1).
In this section the global dynamics of system (1) near the equilibrium points
E; Ey. Ey; and E,y,are investigated with the help of Lyapunov function as

shown in the following theorems.
In the following theorem the global stability condition of E, =(0,0,Z) with

7 =% is established.

Theorem 4. Suppose that the equilibrium point E, =(0,0,Z) is locally
asymptotically stable and let the following condition holds.
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7 < min {42 k2l | (5.1)
ALIALY)

Then it is a globally asymptotically stable point.
Proof: Consider the following positive definite Lyapunov function about E,

Vl(x,y,z):é+%+(z—7—iln§j

Clearly, V; is a continuously differentiable real valued function defined on Rf.
Further, we have

MS_[ﬂ_Wﬂqf)x (#2 Wszz)y b(z — 7)°
dt “ nh 2 b

Therefore, %<O under condition (5.1), and hence V; is strictly Lyapunov

function. Therefore, E, is globally asymptotically stable in the Rf.

Theorem 5. Suppose that the equilibrium point E,, =(X,0,2) is locally
asymptotically stable and let the following condition holds.

b > lelf((z+2+7/1) (5 2a)
alo?l .
(elwlyl(ylﬁl—zi) _ W]_]/ljz < 5 (b _ W171)2(Z+2+71)) (5 2b)
ooy aq 1 a1y .
&ZW_ZZ (5.2c)
2 B

Then it is a globally asymptotically stable point.
Proof. Consider the following positive definite Lyapunov function about E,,

s e X y yA
Vo(X,y,2)=| X—X=XIn=|+2>+|z2-2-72Inh—
2632 ( x) e ( z)

2

Clearly, V, is a continuously differentiable real valued function defined on Rf.
Further, we have

dVZ < |:\/§1(X R) — \/b W171X(Z+12+71)( 2)i| (_Z_W_Zsz

According to the above, conditions (5.2a)-(5.2¢) guarantee that %<O for

any point in R3, and hence E,, is globally asymptotically stable in Rf.
|
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Theorem 6. Suppose that the equilibrium point EyZ:(O,V,'z“) Is locally
asymptotically stable and let the following condition holds.

b> Woy oY (2+Z+y7) (5.3a)
a2, |
[ezwz?fz (r2B2-72) _ Way, )2 <5 (b _ W27237(Z+7+72)) (5.3b)
0[252 ar 2 a2&2 |
m oy WZ (5.3c)
“ B

Then it is a globally asymptotically stable point.
Proof. Consider the following positive definite Lyapunov function about E,,

V3(x,y,z):é+(y—7—?In%)+(z—i—iln§j

Clearly, V5 is a continuously differentiable real valued function defined on Rf.
Further, we have

2 ~
dv- ~ y 7 ~ Wq Z
%< {9 - b (2 M),

H

According to the above, conditions (5.3a)-(5.3c) guarantee that %<0 for

any point in Rf, and hence E,, is globally asymptotically stable in Rf.

Finally the global stability of the coexistence equilibrium point of system (1)
is investigated in the following theorem.

Theorem 7. Suppose that the equilibrium point E,y, =(x",y",z") is locally
asymptotically stable and let the following condition holds.

r33>0 (5.6a)
% <Mafa3 (5.6b)
r223 < I’22r33 (56C)

here we have:
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e (fi-22°)  wyy
_ _ Wy (- 171
f1=01, hg= ; -
a10q 1
For = On oo = €Wy (72f2—22")  Waysp
22 =02, 3= S P
aray 2

WX (242 471)  Woppy (242 +75)
oo 0p0;
Then it is a globally asymptotically stable point.
Proof: Consider the following positive definite Lyapunov function about E,,,

V4(x,y,z):(x—x* —x*lni*j+£y—y*—y*lnl*]+(z—z*—z*lni*j
X y

4
Clearly, V, is a continuously differentiable real valued function defined on

r33=bh—

Int. Rf. Further, we have
dv * * * *
G <X =X —ra(x = x") (2 - 2") — 1 (y - ¥7)?
—roa(y -y )z - 2") —r33(z - 2")?
Obviously, due to conditions (5.6a)-(5.6¢), we get that
av . 2 - 2
d—;‘s—{@(x— X*) =2 (z- z*)} —[x/rzz(y— Y -y (z- z*)}
Clearly %<0 , therefore the origin and then E,y, is locally asymptotically

stable point in the Int.Rf and hence the proof is complete.
|

6. Persistence Analysis

In this section, the persistence of system (1) is studied. It is well known that
the system is said to be persistence if and only if each species persists.
Mathematically this is meaning that the solution of system (1) do not have

omega limit set in the boundaries of Rf [5]. Therefore, in the following

theorem, the necessary and sufficient conditions for the uniform persistence of
the system (1) are derived.

Theorem 8. Assume that there are no periodic dynamics in the boundary planes
xz and yz respectively. Further, if in addition to conditions (4.1c), (4.1d) the

following conditions are hold.
€oWoyo2
c2Woras 1y (6.1)

ay
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A > (6.2)

Then, system (1) is uniformly persistence.

Proof: Consider the function o(x,y,z)=xPtyP2zP3 where p;;i =123 are an
undetermined positive constants. Obviously o(X,Y,z) is a ct positive function
defined in Rf, and o(x,y,2) >0 if x—>0 or y—0 or z— 0. Consequently
we obtain

o'(XY,2)
V(X y,2)=——=p f+ pofy+ paf
(x,y,2) o(%.7,2) Py + Pty + p3ts
Here f;;i=1,2,3 are given in system (1). Therefore
W(x,y,7) = pl(elwlhz 1 _51)()

aq B

EoWpy2Z
+ Ioz[—a2 — M2 —52YJ
_hy M X Wayoy
+ p3[a bz o ” )

Now, since it is assumed that there are no periodic attractors in the boundary
planes, then the only possible omega limit sets of the system (1) are the
equilibrium points Eg,E,,E,, and Ey,. Thus according to the Gard technique

[5] the proof is follows and the system is uniformly persists if we can proof that
W(.)> 0 at each of these points. Since

W(Eg)=aps — 202 — 4Py (6.3a)
Y(E.)= aegwyyib aepWyyob 6.3b
(E;) (32 +(a+/b)by; Mo |Pp+ a2+ (a+ Bob)oyy H P2 ( )
V4
FE)= (ezvzl;zyz - “2) P2 (6.3¢)
\P(EYZ):(%_PQJ P1 (6.3d)

Obviously, Y(Eq) >0 for the value of p3 >0 sufficiently large than p;;i=12.
Y(E,)>0 for any positive constants p;;i=12 provided that conditions
(4.1c)and (4.1d) hold. However, Y(E,,) and ¥(E,) are positive provided that
the conditions (6.1) and (6.2) are satisfied respectively. Then strictly positive

solution of system (1) do not have omega limit set and hence, system (1) is
uniformly persistence. u

7. Numerical Simulation

In this section the global dynamics of system (1) is investigated numerically.
The system is solved numerically for different sets of parameters values and for
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different sets of initial conditions, and then the attracting sets and their time
series are drown.
For the following set of parameters

a=0.25b=0.2,w,=1,w, =1,7, =0.75,v, =0.75,B, = 2,8, = 2,

e, =0.35,e, =0.4,8, =0.03,5, = 0.08,u, = 0.02,u, = 0.02.

(7.1)
The attracting sets along with their time series of system (1) are drown in Fig
(1). Note that from now onward, in the time series figures, we will use the
following representation: blue color represents the trajectory of the first
predator, green color represents the trajectory of the second predator and the
red color represents the trajectory of the prey.

(a) 09
initial point
(0.85,0.75,0.65)
initial point
(0.65,0.55,0.45)
initial point
(0.45,0.35,0.

Stable point
(0.30,0.16,0.18)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

first predator
(©) (d)
T T T

(b)

0.8

Populations

0.8

0.6

second
predator 0-4

0.2

Populations

Populations
o o
[
(& N (5 w

o
[

o
o
a

c c c c 0 c c c c
1 2 3 4 5 0 1 2 3 4 5
X X s
Time Time x10

5
x10

Fig. (1): The phase plot of system (1). (a) The solution of system (1) approaches
asymptotically to stable positive point initiated at different initial points. (b) Time series
of the attractor in (a) initiated at (0.85,0.75,0.65). (c) Time series of the attractor in (a)
initiated at (0.65,0.55,0.45). (d) Time series of the attractor in (a) initiated at

(0.45,0.35,0.25).

Obviously, these figure show that, the system (1) approaches to the globally
asymptotically to coexistence equilibrium point E,, =(0.30,0.16,0.18) in the

Int.R? starting from different sets of initial conditions. However, for the set of

parameters values (7.1) with a=05, system (1) approaches to the globally
asymptotically stable limit cycle in the Int.R® starting from different sets of

initial conditions, see Fig. (2).
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Fig. (2): The phase plot of system (1) (@) The solution of system (1) approaches
asymptotically to stable limit cycle initiated at different initial points. (b) Time series of
the attractor in (a) initiated at (0.85,0.75,0.65). (¢) Time series of the attractor in (a)
initiated at (0.65,0.55,0.45).

o I o
o N > =

N
It
o

Further analysis for the role of changing in the value of the parameter @
keeping the rest of parameters values as in Eq. (7.1), it observed that for a <0.02
and a>272, system (1) approaches asymptotically to stable point E, =(0,0,2),
as shown in Fig.(3), while for 0.05<a<0.43, the solution of system (1) has a
globally asymptotically stable positive point, however for 0.44<a<0.67 the
solution approaches to periodic dynamic in the Int.R?, further for 0.68<a<2.35
the solution of system (1) approaches asymptotically to positive point, finally
243<a<271, the solution of system (1) approaches to E, =(0,y,Z) in the

interior of positive quadrant of yz —plane.
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Fig. (3): The phase plot of system (1). (a) The solution of system (1) approaches
asymptotically to stable equilibrium point E, initiated at different initial points. (b)

Time series of the attractor in (a) initiated at (0.85,0.75,0.65). (¢) Time series of the
attractor in (a) initiated at (0.65,0.55,0.45). (d) Time series of the attractor in (a) initiated
at (0.45,0.35,0.25).

For the parameters values given in Eq. (7.1) with varying e, in the range
e, <0.14, the solution approaches to E, =(0,y,Z) in the interior of positive
quadrant of yz-plane, as shown in Fig.(4), however for 0.15<e, <0.66, the
solution approaches to a positive equilibrium point, finally for e, >0.67, system
(1) approaches asymptotically to the equilibrium point E_, =(%,0,2) in the
interior of positive quadrant of xz —plane, as shown in Fig.(5).
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Fig. 4: The phase plot of system (1) with e, =0.14 . (a) The solution of system (1)
approaches asymptotically to E, =(0,0.45,0.35) initiated at different initial points. (b)

Time series of the attractor in (a) initiated at (0.85,0.75,0.65). (c) Time series of the
attractor in (a) initiated at (0.65,0.55,0.45). (d) Time series of the attractor in (a) initiated
at (0.45,0.35,0.25).
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Fig. 5: The phase plot of system (1) with e, =0.75 . (a) The solution of system (1)
approaches asymptotically to E,, =(0.48,0,0.09) initiated at different initial points. (b)

Time series of the attractor in (a) initiated at (0.85,0.75,0.65). (c) Time series of the
attractor in (a) initiated at (0.65,0.55,0.45). (d) Time series of the attractor in (a) initiated
at (0.45,0.35,0.25).

8. Conclusions and Discussion

In this paper, a mathematical model consisting of a Holling type IV prey
predator model has proposed and analyzed. The model consists of three non-
linear autonomous differential equations that describe the dynamics of three
different population namely first predator x, second predator y, prey z. The
boundedness of the system (1) has been discussed. The dynamical behavior of
system (1) has been investigated locally as well as globally.

To understand the effect of varying parameter on the global dynamics of
system (1) and to confirm our obtained analytical results, system (1) has been
solved numerically and the following results are obtained:

1. For the set of hypothetical parameters values given Eq. (7.1), the system
(1) approaches asymptotically to globally stable positive equilibrium
point E,, =(x",y",z").

2. The intrinsic growth rate of system (1) plays a vital role on the persistence
of the system. In fact, for the small values and large values of the
parameter a the predator facing extinction. However for suitable choice of
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this parameter, the system (1) still persists and has either stable point or
else periodic dynamics.
3. Finally, the conversion rate e, decreases keeping other parameters as in

Eq. (7.1) then the first predator will faces extinction and the solution of
system (1) approaches asymptotically to the equilibrium point
E.=(0,y,Z). However, increasing e, causes extinction in the second

predator and the solution of system (1) approaches to the equilibrium
point E_, =(,0,2).
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