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Abstract 

     In this paper a prey-predator model involving Holling type IV functional 

response is is proposed and studied. The existence of all possible equilibrium 

points is carried out.  The local stability analysis of the system is carried out. 

The global dynamics of the system is investigated with the help of the Lyapunov 

function.  Finally, the numerical simulation is used to study the global 

dynamical behavior of the system. It is observed that, the system has either 

stable point or periodic dynamics.                                   

Keywords: prey-predator model, Holling type IV functional response, stability 

analysis, Lyapunov function. 

 

1. Introduction 

    Variety of the mathematical models for interacting species incorporating 

different factors to suit the varied requirements are available in literature, a 

successful model is one that meets the objectives, explains what is currently 

happening and predicts what will happen in future. The first major attempt to 

predict the evolution and existence of species mathematically is due to the 

American physical chemist Lotka (1925) and independently by the Italian 

mathematician Volterra (1926), see [1], which constitute the main theme of the 

deterministic theory of population-dynamics in theoretical biology even today. 

Over the last few decades, many models for two or more interacting species 

have been proposed on the basis of Lotka-Volterra models by taking into 

account the effects of crowding, age structure, time delay, functional response, 

switching, etc. [2,3,4].  

     Keeping the above in view, in this paper consideration is given to analyze 

and study the dynamical behavior and persistence of prey-predator model with 

Holling type-IV functional response have been proposed and studied. 

 

2. Mathematical model formulation 

Let )(tx  and )(ty  are the density of  two predator species  at time t ,  tz  be 

the density of prey species  at time t  that consumes the prey species according 

to Holling type IV functional response then the dynamics of a prey–predator 

model can be represented by the following system of ordinary differential 

equations. 
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where 
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2
  zz , with 0)0( x , 0)0( y  and 

0)0( z . 

Note that all the parameters of system (1) are assumed to be positive constants 

and can be described as following: a  is the intrinsic growth rate of the prey 

population; 2,1, ii  are the death rates of the predator population; the 

parameter b  is the strength of intra-specific competition among the prey species; 

the parameter 2,1, ii  can be interpreted as the half-saturation constant in the 

absence of any inhibitory effect;  the parameter 2,1, ii  are a direct measure of 

the predator immunity from the prey; 2,1, iwi are the maximum attack rate of 

the prey by a predator; 2,1, iei  represent the conversion rate. Finally, 

2,1, ii are the strength of intra-specific competition among the predator 

species . The initial condition for system (1) may be taken as any point in the 

region  0,0,0:),,( 2121
3  yyxyyxR .  Obviously, the interaction 

functions in the right hand side of system (1) are continuously differentiable 

functions on R3
 , hence they are Lipschitizian. Therefore the solution of system 

(1) exists and is unique. Further, all the solutions of system (1) with non-

negative initial condition are uniformly bounded as shown in the following 

theorem. 

Theorem 1. System (1) is dissipative system on R3
 . 

Proof. It is well known that the dynamical system is dissipative if and only if it 

is uniformly bounded. Now according to the first equation of system (1) we have 
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Wm
dt

dW   

where 1 am  and  21,,1min   . Therefore, by solving the last 

differential inequality it is observed that 

          0,)()(.lim  ttWtWSup mm
t 

 

Thus all solutions of system (1) are uniformly bounded, and hence the system is 

dissipative.                                                                                                                   

 

3. Existence of equilibrium points and stability analysis. 
      The system (1) have at most five non-negative equilibrium points, two of 

them namely )0,0,0(0 E , ),0,0(
b
a

zE   always exist. While the existence of 

other equilibrium points are shown in the following: 

The second predator free equilibrium point )ˆ,0,ˆ( zxExz   exists in 2. RInt  of 

xz plane, where 
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ˆˆˆ   zz , while ẑ  represents the positive root to the following 

equation: 
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where 011  bh  , )2( 112  bah  , ])(2[ 11113  bbah  , 

)]2()2([ 111111114 wbah   , 

)]()2([ 11111111
2
15   ewwbah  and 0)][ 11111116  wah  . 

Obviously, Eq. (3.2) has a unique positive root say ẑ   provided that one set of 

the following sets of conditions hold.   

00,0 532  handhh                                                                   (3.3a) 

         00,0 542  handhh                                                                   (3.3c) 

Therefore, by substituting ẑ  in Eq. (3.1), system (1) has a unique equilibrium 

point in the 2. RInt  of -xz plane given by )ˆ,0,ˆ( zxExz  , provided that 
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The first predator free equilibrium point )~,~,0( zyEyz   exists in RInt 2.   of 
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where 021  bd  , )2( 222  bad  , ])(2[ 22223  bbad  , 

)]2()2([ 222222224 wbad  

)]()2([ 22222222
2
25   ewwbad   and 

0)][ 22222226  wad  . Obviously, Eq. (3.6) has a unique positive 

root say z~   provided that one set of the following sets of conditions hold.   

00,0 532  danddd                                                                (3.7a) 

00,0 542  danddd                                                         (3.7b) 

Therefore, by substituting z~  in Eq. (3.5), system (1) has a unique equilibrium 

point in the 2. RInt  of -yz plane given by )~,~,0( zyEyz  , provided that 
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       Finally, the coexistence equilibrium point ),,(  zyxExyz  exists in 

3. RInt , where 
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So by using Descartes rule of signs, Eq. (3.11)has a unique positive root say x  

provided that one set of the following sets of conditions hold:  

 0Qand0Q0,Q 0,Q0,Q, 0Q0,Q 8765432                      (3.12a) 

     0Qand0Q0,Q 0,Q0,Q, 0Q0,Q 9765432                       (3.12b) 

    0Q and0Q0,Q 0,Q0,Q, 0Q0,Q 9865432                     (3.12c) 

    0Qand0Q0,Q 0,Q0,Q, 0Q0,Q 9875432                      (3.12d)   

   0Q 0andQ0,Q 0,Q0,Q, 0Q0,Q 9876432                      (3.12e) 

    0Q and0Q0,Q 0,Q0,Q, 0Q0,Q 9876532                      (3.12f) 

    0Qand0Q0,Q 0,Q0,Q, 0Q0,Q 9876542                     (3.12g) 

    0Q and0Q0,Q 0,Q0,Q, 0Q0,Q 9876543                    (3.12h) 

   Therefore, by substituting z  in Eqs. (3.9) and (3.10), system (1) has a unique 

equilibrium point in the 3. RInt   by ),,(  zyxExyz , provided that 

1
1

111 







zwe
                                                                                     (3.13a)                               

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.12, 2015 

 

 98 

2
2

222 







zwe
                                                                                     (3.13b) 

4. Local stability analysis of system (1): 

   In this section the stability analysis of the above mentioned equilibrium points 

of system (1) are investigated analytically.  

     The Jacobian matrix of system (1) at the equilibrium point )0,0,0(0 E  can 

be written as 3,2,1,;][)( 3300   jicEJJ ij , where 111 c , 222 c , 
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Clearly, zE  is locally asymptotically stable in the 
3
R   if the following two 
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However, zE  is a saddle point in the 
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       So, the Jacobian matrix of system (1) at the equilibrium point )ˆ,0,ˆ( zxExz   

in xz plane, can be written in the form: 3,2,1,;][)( 33   jifEJJ ijxzxz , 

where 
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b                                                                              (4.2a)   

        2
11 ẑ                                                                                           (4.2b)                                                                                             

       2ˆ

ˆ

2

222 





zwe
                                                                                    (4.2c) 

However, xzE  will be unstable point in the 
3
R  if we reversed any one of the 

above conditions. 

 

      The Jacobian matrix of system (1) at the equilibrium point )~,~,0( zyEyz   in 

yz plane, can be written in the form: 3,2,1,;][)( 33   jigEJJ ijyzyz , where 

1~

~

11
1

111 





zwe
g , yg ~

222  , 
2
2

2
22222

~

)~(~

23


 zywe
g


 , 

1

11
~

~

31 

 zw
g


 , 

2

22
~

~

32 

 zw
g


 , 












2
2

222

~

)~2(~

33
~



 zyw
bzg  and zero otherwise. Clearly the 

eigenvalues of yzJ  are given by: 

       1~

~

1
1

111~







zwe
 

      











2
2

222

~

)~2(~

222
~~~~






zyw
bzy                                                                       

     



















2
2

2
22222

2

22

2
2

222

~

)~(~

~

~

~

)~2(~

232
~~ˆ.ˆ














zywezwzyw
bzy                              
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        Consequently, yzE  is locally asymptotically stable in the 
3
R  if the 

following conditions are satisfied: 

         1~

~

1

111 





zwe
                                                                                     (4.3a) 

2
2

222

~

)~2(~



 


zyw
b                                                                              (4.3b)                         

2
22

~z                                                                                         (4.3c) 

Moreover, yzE  is unstable point in the 
3
R  if we reversed any one of the above 

conditions. 

 

        

      Finally, the Jacobian matrix of the system (1) at the coexistence equilibrium 

point ),,(  zyxExyz  in the RInt 3.   can be written as: 

           3,2,1,;)(
33




jiaEJJ ijxyzxyz                                                  (4.4) 

where  xa 111  , 
2

1

2

11111 )(
13 

 




 zxwe
a ,  ya 222  , 

2
2

2

22222 )(
23 

 




 zywe
a , 






1

11
31



 zw
a , 






2

22
32



 zw
a , 

















 
2

2

222

2
1

111 )2()2(
33







 zywzyw
bza  and zero otherwise. Therefore 

the characteristic equation of xyzJ  is 

032
2

1
3  AAA                                                                (4.5)  

where  

 3322111 aaaA      

3223332231133113331122112 aaaaaaaaaaaaA       

  31221333223223113 aaaaaaaaA     

And 

           

)(][

)]()[(    

  

3322322333113113

3322113322112211

321

aaaaaaaa

aaaaaaaa

AAA







 

Therefore, in the following theorem, the local stability conditions for the 

positive equilibrium point xyzE  in the RInt 3.   are established. 

Theorem 2. Assume that xyzE  exists in the RInt 3.   and the following 

conditions are satisfied;   
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2
2

222

2
1

111 )2()2(







 








 zywzyw
b                                      (4.6a) 

 2211

2
,.min 


z                                          (4.6b) 

Then it is locally asymptotically stable. 

Proof: According to the Routh-Hawirtiz criterion the characteristic equation 

(4.5)  has roots with negative real parts if and only if 01 A , 03 A  and 0 . 

 Note that, it is easy to verify that, condition (4.6a) guarantees that 

01 A ; while conditions (4.6a)and (4.6b) ensure the positivity of 3A  (i.e. 

03 A ) and  . Hence, all the roots (eigenvalues) of the xyzJ  have negative real 

parts. Therefore xyzE  is locally asymptotically stable in the RInt 3.   and hence 

the proof is complete.                             ■ 

        Now, before go further to study the global dynamical behavior of system 

(1) in the RInt 3.  , we will discuss the dynamical behavior of system (1) in the 

interior of the boundary planes as shown in the following theorems. 

 

Theorem 3. Suppose that the equilibrium points xzE  and yzE  are locally 

asymptotically stable in the 2. RInt  of  xz  and yz planes provided that  

       
2
1

111 )2(



 


zxw
b                                                                      (4.7a) 

      
2
2

222 )2(



 


zyw
b                                                                      (4.7b) 

respectively, then xzE  and yzE  are a globally asymptotically stable in 2. RInt  of  

xz  and yz planes respectively. 

Proof. The proof follows directly by using Bendixson-Dulic criterion with Dulic 

function xz/1  and yz/1 ,  then by using Poincare-Bendixson theorem. 

 

5. Global dynamical behavior of system (1). 

    In this section the global dynamics of system (1) near the equilibrium points 

xyzyzxzz EEEE  and, , are investigated with the help of Lyapunov function as 

shown in the following theorems. 

   In the following theorem the global stability condition of ),0,0( zEz


  with 

b

a
z 


 is established. 

Theorem  4. Suppose that the equilibrium point ),0,0( zEz


  is locally 

asymptotically stable and let the following condition holds.  
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   
22

22

11

11 ,.min
wewe

z





                                                              (5.1)                                                

Then it is a globally asymptotically stable point.  

Proof: Consider the following positive definite Lyapunov function about zE               

         









z

z
zzzzyxV

e

y

e
x




ln),,(
21

1  

Clearly, 1V  is a continuously differentiable real valued function defined on 3
R . 

Further, we have 

2

22

22

11

11 )(
2

2

1

11 zzby
zw

x
zw

eedt

dV 



























 
 

Therefore, 01 
dt

dV
 under condition (5.1), and hence 1V  is strictly Lyapunov 

function. Therefore, zE  is globally asymptotically stable in the
3
R .  

 

Theorem 5. Suppose that the equilibrium point )ˆ,0,ˆ( zxExz   is locally 

asymptotically stable and let the following condition holds.  

  
11

111

ˆ

)ˆ(ˆ



 


zzxw
b                                                                   (5.2a) 

         




 





 



11

111

1

11

11

11111

ˆ

)ˆ(ˆ
1

2

ˆ

)ˆ(














zzxwwzzwe
b                    (5.2b) 

          
2

2 ˆ

2

2



 zw
e

                                                                             (5.2c)   

Then it is a globally asymptotically stable point.  

Proof. Consider the following positive definite Lyapunov function about xzE               

        


















z

z
zzz

x

x
xxxzyxV

e

y

ˆ
lnˆˆ

ˆ
lnˆˆ),,(

2
2  

Clearly, 2V  is a continuously differentiable real valued function defined on 3
R . 

Further, we have 

       y
zw

zzbxx
e

zzxw

dt

dV























2

2
2

ˆ

)ˆ(ˆ
1

ˆ
)ˆ()ˆ(

2

2

11

1112









 

    According to the above, conditions (5.2a)-(5.2c) guarantee that 02 
dt

dV
 for 

any point in 
3
R , and hence xzE  is globally asymptotically stable in 

3
R .                                        

■ 
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Theorem 6. Suppose that the equilibrium point )~,~,0( zyEyz   is locally 

asymptotically stable and let the following condition holds.  

  
22

222
~

)~(~



 


zzyw
b                                                               (5.3a) 

           




 





 



22

222

2

22

22

22222
~

)~(~

2

2

~
)~(














zzywwzzwe
b          (5.3b) 

         
1

1
~

1

1



 zw
e
                                                                             (5.3c)   

Then it is a globally asymptotically stable point.  

Proof. Consider the following positive definite Lyapunov function about yzE   

        


















z

z
zzz

y

y
yyyzyxV

e
x

~ln~~
~ln~~),,(

1
3                                             

Clearly, 3V  is a continuously differentiable real valued function defined on 3
R . 

Further, we have 

       x
zw

zzbyy
e

zzyw

dt

dV























1

1
2

~
)~(~

2

~
)~()~(

1

1

22

2223









 

  According to the above, conditions (5.3a)-(5.3c) guarantee that 03 
dt

dV
 for 

any point in 
3
R , and hence yzE  is globally asymptotically stable in 

3
R .                                        

■ 

 

   Finally the global stability of the coexistence equilibrium point of system (1) 

is investigated in the following theorem. 

 

Theorem 7. Suppose that the equilibrium point ),,(  zyxExyz  is locally 

asymptotically stable and let the following condition holds.  

  033 r                                                                                  (5.6a) 

         3311
2

13 rrr                                                                        (5.6b)   

          3322
2
23 rrr                                                                      (5.6c)  

here we have: 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.12, 2015 

 

 104 

       





























22

222

11

111

2

22

22

22222

1

11

11

11111

)()(
33

)(
23222

)(
13111

,,

,,





























zzywzzxw

wzzwe

wzzwe

br

rr

rr

 

Then it is a globally asymptotically stable point.  

Proof: Consider the following positive definite Lyapunov function about xyzE               

       













































z

z
zzz

y

y
yyy

x

x
xxxzyxV lnlnln),,(4  

Clearly, 4V  is a continuously differentiable real valued function defined on 

3. RInt . Further, we have 

      
2

3323

2
2213

2
11

)())((

)())(()(4









zzrzzyyr

yyrzzxxrxxr
dt

dV

 

Obviously, due to conditions (5.6a)-(5.6c), we get that 

   
2

222

2

211 )()()()( 33334
















  zzyyrzzxxr

rr

dt

dV
 

Clearly 04 
dt

dV
 , therefore the origin and then xyzE  is locally asymptotically 

stable point in the 3. RInt   and hence the proof is complete.                                                       

■ 

 

6. Persistence Analysis 

        In this section, the persistence of system (1) is studied. It is well known that 

the system is said to be persistence if and only if each species persists. 

Mathematically this is meaning that the solution of system (1) do not have 

omega limit set in the boundaries of 3
R  [5]. Therefore, in the following 

theorem, the necessary and sufficient conditions for the uniform persistence of 

the system (1) are derived. 

Theorem 8.  Assume that there are no periodic dynamics in the boundary planes 

yzandxz    respectively. Further, if in addition to conditions (4.1c), (4.1d) the 

following conditions are hold. 

      2ˆ

ˆ

2

222 





zwe
                                                                               (6.1) 
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      1~

~

1

111 





zwe
                                                                               (6.2) 

Then, system (1) is uniformly persistence. 

Proof: Consider the function 321),,(
ppp

zyxzyx  , where 3,2,1; ipi  are an 

undetermined positive constants. Obviously ),,( zyx  is a 1C  positive function 

defined in 3
R ,  and 0),,( zyx  if  0x  or 0y  or 0z . Consequently 

we obtain 

332211
),,(

),,(
),,( fpfpfp

zyx

zyx
zyx 






 

Here 3,2,1; ifi  are given in system (1). Therefore 






 






 






 

2

22

1

11

2

222

1

111

3

222

111),,(





















ywxw

zwe

zwe

bzap

yp

xpzyx

 

 Now, since it is assumed that there are no periodic attractors in the boundary 

planes, then the only possible omega limit sets of the system (1) are the 

equilibrium points .,,0 yzxzz EandEEE  Thus according to the Gard technique 

[5] the proof is follows and the system is uniformly persists if we can proof that 

0(.)  at each of these points. Since  

112230)( ppapE                                                      (6.3a) 

22
)(

11
)( 22

2

222

11
2

111  )( ppE
bbaa

bwae

bbaa

bwae
z 





























  (6.3b) 

22ˆ

ˆ

2

222)( pE
zwe

xz 




  




                                                   (6.3c) 

11~

~

1

111)( pE
zwe

yz 




  




                                                     (6.3d) 

Obviously, 0)( 0  E  for the value of 03 p  sufficiently large than 2,1; ipi . 

0)(  zE  for any positive constants 2,1; ipi  provided that conditions 

(4.1c)and (4.1d) hold. However, )( xzE  and )( yzE  are positive provided that 

the conditions (6.1) and (6.2) are satisfied respectively. Then strictly positive 

solution of system (1) do not have omega limit set and hence, system (1) is 

uniformly persistence.                      ■                                   

 

7. Numerical Simulation 

     In this section the global dynamics of system (1) is investigated numerically. 

The system is solved numerically for different sets of parameters values and for 
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different sets of initial conditions, and then the attracting sets and their time 

series are drown. 

For the following set of parameters 

                
0.02.= , 0.02= , 0.08= , 0.03= 0.4,=e 0.35,=e 

2,= 2,= 0.75,= 0.75,= 1,= w1,= w0.2,=b 0.25,=a

212121

212121




                      

(7.1) 

The attracting sets along with their time series of system (1) are drown in Fig 

(1). Note that from now onward, in the time series figures, we will use the 

following representation: blue color represents the trajectory of the first 

predator, green color represents the trajectory of the second predator and the 

red color represents the trajectory of the prey. 
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Fig. (1): The phase plot of system (1). (a) The solution of system (1) approaches 

asymptotically to stable positive point initiated at different initial points. (b) Time series 

of the attractor in (a) initiated at (0.85,0.75,0.65). (c)  Time series of the attractor in (a) 

initiated at (0.65,0.55,0.45). (d) Time series of the attractor in (a) initiated at 

(0.45,0.35,0.25). 

    

     Obviously, these figure show that, the system (1) approaches to the globally 

asymptotically to coexistence equilibrium point )18.0,16.0,30.0(xyzE  in the 
3. RInt  starting from different sets of initial conditions. However, for the set of 

parameters values (7.1) with 5.0a , system (1) approaches to the globally 

asymptotically stable limit cycle in the 3. RInt  starting from different sets of 

initial conditions, see Fig. (2). 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.5, No.12, 2015 

 

 107 

 

 

                                
0.4

0.6
0.8

1
1.2

1.4

0

0.2

0.4

0.6

0.8
0

0.5

1

1.5

2

First predator

(a)

Second predator

P
re

y

    initial point
(0.65,0.55,0.45)

    initial point
(0.85,0.75,0.65)

 

          
2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time

P
o
p

u
la

ti
o

n
s

(b)

2 2.5 3 3.5 4 4.5 5

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time

P
o
p

u
la

ti
o

n
s

(c)

 
Fig. (2): The phase plot of system (1). (a) The solution of system (1) approaches 

asymptotically to stable limit cycle initiated at different initial points. (b) Time series of 

the attractor in (a) initiated at (0.85,0.75,0.65). (c)  Time series of the attractor in (a) 

initiated at (0.65,0.55,0.45). 

 

    Further analysis for the role of changing in the value of the parameter a  

keeping the rest of parameters values as in Eq. (7.1), it observed that for 02.0a  

and  72.2a , system (1) approaches asymptotically to stable point ),0,0(
b
a

zE  , 

as shown in Fig.(3), while for 43.005.0  a , the solution of system (1) has a 

globally asymptotically stable positive point, however for 67.044.0  a  the 

solution approaches to periodic dynamic in the 3. RInt , further for 35.268.0  a  

the solution of system (1) approaches asymptotically to positive point, finally 

71.243.2  a , the solution of system (1) approaches to )~,~,0( zyEyz   in the 

interior of positive quadrant of yz plane. 
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Fig. (3):  The phase plot of system (1). (a) The solution of system (1) approaches 

asymptotically to stable equilibrium point zE  initiated at different initial points. (b) 

Time series of the attractor in (a) initiated at (0.85,0.75,0.65). (c)  Time series of the 

attractor in (a) initiated at (0.65,0.55,0.45). (d) Time series of the attractor in (a) initiated 

at (0.45,0.35,0.25). 

 

   For the parameters values given in Eq. (7.1) with varying 1e  in the range 

14.01 e , the solution approaches to )~,~,0( zyEyz   in  the interior of positive 

quadrant of yz plane, as shown in Fig.(4), however for 66.015.0 1  e , the 

solution approaches to a positive equilibrium point, finally for 67.01 e , system 

(1) approaches asymptotically to the equilibrium point )ˆ,0,ˆ( zxExz   in the  

interior of positive quadrant of xz plane, as shown in Fig.(5). 
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   Fig. 4: The phase plot of system (1) with 0.14=e1  . (a) The solution of system (1) 

approaches asymptotically to )35.0,45.0,0(yzE  initiated at different initial points. (b) 

Time series of the attractor in (a) initiated at (0.85,0.75,0.65). (c)  Time series of the 

attractor in (a) initiated at (0.65,0.55,0.45). (d) Time series of the attractor in (a) initiated 

at (0.45,0.35,0.25). 
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   Fig. 5: The phase plot of system (1) with 0.75=e 1  . (a) The solution of system (1) 

approaches asymptotically to )09.0,0,48.0(xzE  initiated at different initial points. (b) 

Time series of the attractor in (a) initiated at (0.85,0.75,0.65). (c)  Time series of the 

attractor in (a) initiated at (0.65,0.55,0.45). (d) Time series of the attractor in (a) initiated 

at (0.45,0.35,0.25). 

 

8. Conclusions and Discussion 

       In this paper, a mathematical model consisting of a Holling type IV prey 

predator model has proposed and analyzed.  The model consists of  three non-

linear autonomous differential equations that describe the dynamics of three 

different population namely first predator x , second predator y , prey z . The 

boundedness of the system (1) has been discussed. The dynamical behavior of 

system (1) has been investigated locally as well as globally.  

     To understand the effect of varying parameter on the global dynamics of 

system (1) and to confirm our obtained analytical results, system (1) has been 

solved numerically and the following results are obtained: 

1. For the set of hypothetical parameters values given Eq. (7.1), the system 

(1) approaches asymptotically to globally stable positive equilibrium 

point ),,(  zyxExyz . 

2. The intrinsic growth rate of system (1) plays a vital role on the persistence 

of the system. In fact, for the small values and large values of the 

parameter a  the predator facing extinction. However for suitable choice of 
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this parameter, the system (1) still persists and has either stable point or 

else periodic dynamics. 

3. Finally, the conversion rate 1e  decreases keeping other parameters as in 

Eq. (7.1) then the first predator will faces extinction and the solution of 

system (1) approaches asymptotically to the equilibrium point 

)~,~,0( zyEyz  . However, increasing 1e  causes extinction in the second 

predator and the solution of system (1) approaches to the equilibrium 

point )ˆ,0,ˆ( zxExz  . 
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