*- Completely Finite Quadrilateral (A, B, C, D) and the Range of $\boldsymbol{\delta}_{A B C D}(X)$

Noor Emadeuldean ${ }^{1 *}$ Buthainah Ahmead ${ }^{2}$
1. Department of mathematic, college of science, Baghdad University, Iraq.
2. Department of mathematic, college of science, Baghdad University, Iraq.

Abstract

: In this paper, we define *-finite quadrilaterals and *-completely finite quadrilaterals for the operator equation $$
\delta_{A B C C D}(X)=A X B-C X^{*} D,
$$ where $A, B, C, D \in \mathcal{B}(\mathcal{H})$. Also, we prove the following: 1- If (A, B, C, D) is *-finite quadeteirial and U is unitary operator then $\left(U A U^{*}, U B U^{*}, U C U^{*}, U D U^{*}\right)$ is *finite quadeteirial.

2- Let A, B, C and $\mathrm{D} \in \mathcal{B}(\mathcal{H})$, and (A, B, C, D) is *- finite quadrilateral, then no nonzero scalar operators contains in $\overline{R\left(\delta_{A B C D}(X)\right.}$.

3- The quadrilateral (A, B, C, D) is *-completely finite iff for every normal operator N satisfies $A N B=C N^{*} D$, $\|N\| \leq\left\|N+A X B-C X^{*} D\right\|$.

Keywords: Operator equation, *_ finite operators.

Introduction:

Let $\mathcal{B}(\mathcal{H})$ be the space of all bounded linear operators on the Hilbert space \mathcal{H}. Let $\delta_{A}(X)=A X-X A$ be the inner derivation. In this paper we deal with two basic concepts, first concept related to the concept that defined by Williams which is finite operator. The operator A is finite if the distance between range $\delta_{A}(X)$ and the identity operator is equal or more than 1 as in [5]. In recent years many authors modified the concept of finite operators one of them which introduce by Hammad in 2002 as follows: an operator $A \in \mathcal{B}(\mathcal{H})$ is $*$ - finite operator if $0 \in \overline{W\left(A X-X^{*} A\right)}$ for $X \in \mathcal{B}(\mathcal{H})$. While, the second concept is completely finite operators which first defined by Elilami S. N. in [3], an operator $A \in \mathcal{B}(\mathcal{H})$ is called completely finite operator if $A_{\mid E}$ is finite for every nonzero reducing subspace E of A.

This paper contains two sections: In §1 we motivate the definition of *-finite operators and give some properties. While in $\S 2$ we motivate the definition of completely finite operators and we omits the normal operators from the range of $\delta_{A B C D}(\mathrm{X})$ as in theorems (2.5).

§1 *- Finite quadrilaterals

Definition: (1.1)
For A, B, C and $D \in \mathcal{B}(\mathcal{H})$. The quadrilateral (A, B, C, D) is *-finite quadrilateral if $0 \in \overline{W\left(A X B-C X^{*} D\right)}$ for each $X \in \mathcal{B}(\mathcal{H})$.

The following theorem is equivalent to definition of $*$ - finite quadrilaterals.

Preposition: (1.2)

Let $A, B, C, D \in \mathcal{B}(\mathcal{H})$. Then (A, B, C, D) is *-finite quadrilateral iff $\left\|A X B-C X^{*} D-\lambda I\right\| \geq|\lambda|$ for each $X \in \mathcal{B}(\mathcal{H})$, and for each $\lambda \in \mathbb{C}$.

Proof :

We can proof easily, by theorem in [5] put the operator $A X B-C X^{*} D$ instead of A. We get that

$$
\begin{aligned}
& 0 \in W_{\circ}\left(A X B-C X^{*} D\right) \text { iff }\left\|A X B-C X^{*} D-\lambda I\right\| \geq|\lambda| \text { for each } X \in \mathcal{B}(\mathcal{H}) \text {, and } \lambda \in \mathbb{C} \text {. By [3] we get } \\
& W_{\circ}\left(A X B-C X^{*} D\right)=\overline{W\left(A X B-C X^{*} D\right) .}
\end{aligned}
$$

We will denoted to the set of all *- finite quadrilaterals by K^{*}.

Theorem: (1.3)

Let A, B, C and $\mathrm{D} \in \mathcal{B}(\mathcal{H})$. The following statements are equivalent

1) $(A, B, C, D) \in K^{*}$.
2) $\operatorname{Inf}_{X}\left\|A X B-C X^{*} D-I\right\|=1$.
3) There exists $f \in \rho$ such that $f(A X B)=f\left(C X^{*} D\right) \forall X \in \mathcal{B}(\mathcal{H})$.

Proof :

(1) and (2) are equivalent by proposition (1.2) by taking $\lambda=1$, then $\left\|A X B-C X^{*} D-I\right\| \geq 1$. Now, to prove (2) equivalent to (3), define a linear functional f such that $f(I)=1, \quad\|f\|=\frac{1}{\operatorname{Inff}\left\|A X B-C X^{*} D-I\right\|}$ and $f\left(A X B-C X^{*} D\right)=0$. So, by Hahn- Banach theorem this functional can be extend to all $\mathcal{B}(\mathcal{H})$.Finaly to prove that (3) give (1) by the assumption $f(A X B)=f\left(C X^{*} D\right)$ then $f\left(A X B-C X^{*} D\right)=0$. i.e., 0 $\in \overline{W\left(A X B-C X^{*} D\right)}$.

Proposition : (1.4)

$$
\text { If }(A, B, C, D) \in \mathrm{K}^{*} \text { then }\left(B^{*}, A^{*}, D^{*}, C^{*}\right) \in K^{*} .
$$

Poof :

Since for any operator $A \in \mathcal{B}(\mathcal{H}),\left(A^{*}\right)^{*}=A$. And $\left\|A X B-C X^{*} D-I\right\| \geq 1, \forall X \in \mathcal{B}(\mathcal{H})$. The map $f(X$ $)=X^{*}$ is surjective so, $\left\|A X^{*} B-C X D-I\right\| \geq 1, \forall X \in \mathcal{B}(\mathcal{H})$.

Therefore
$\left\|B^{*} X A^{*}-D^{*} X^{*} C^{*}-I\right\|=\left\|\left(A X^{*} B-C X D\right)^{*}-I\right\| \geq 1 \forall X \in \mathcal{B}(\mathcal{H})$.

Proposition : (1.5)

If (A, B, C, D) is a *-finite quadrilateral then $(\lambda A, B, \lambda C, D)$ is also *-finite quadrilateral for each $\lambda \in$ \mathbb{C}.

Proof :

If $\lambda=0$ then it is clear that $(\lambda A, B, \lambda C, D)$ is a *- finite quadrilateral.
Now, let $0 \neq \lambda \in \mathbb{C}$ given nonzero number ε then for each operator $X \in \mathcal{B}(\mathcal{H})$ there exist vector $y \in \mathcal{H}$ such that

$$
\left|\left\langle\left(A X B-C X^{*} D\right) y, y\right\rangle\right|<(\varepsilon / \lambda)
$$

So,
$\left|\left\langle\left(\lambda A X B-\lambda C X^{*} D\right) y, y\right\rangle\right|<\varepsilon$. i.e., $0 \in \overline{W\left(\lambda A X B-\lambda C X^{*} D\right)}$.
Proposition: (1.6)
Let A, B, C and $\mathrm{D} \in \mathcal{B}(\mathcal{H})$ are defined in following form:
$A=\left[\begin{array}{cc}A_{1} & 0 \\ 0 & A_{2}\end{array}\right], B=\left[\begin{array}{cc}B_{1} & 0 \\ 0 & B_{2}\end{array}\right], C=\left[\begin{array}{cc}C_{1} & 0 \\ 0 & C_{2}\end{array}\right]$ and $\mathrm{D}=\left[\begin{array}{cc}D_{1} & 0 \\ 0 & D_{2}\end{array}\right]$ on $\mathcal{H}=\mathcal{H}_{1}+\mathcal{H}_{2}$. Such that $\left(A_{1}, B_{1}, C_{1}, D_{1}\right) \in K_{\mathcal{H}_{1}}^{*}$ or $\left(A_{2} B_{2}, C_{2} D_{2}\right) \in K^{*} \mathcal{H}_{2}$ then $(A, B, C, D) \in K_{\mathcal{H}}^{*}$.

Proof :

$$
\begin{aligned}
& {\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right]\left[\begin{array}{ll}
X_{1} & X_{2} \\
X_{3} & X_{4}
\end{array}\right]\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right]-\left[\begin{array}{cc}
C_{1} & 0 \\
0 & C_{2}
\end{array}\right]\left[\begin{array}{ll}
X_{1}{ }^{*} & X_{3}{ }^{*} \\
X_{2}{ }^{*} & X_{4}{ }^{*}
\end{array}\right]\left[\begin{array}{cc}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right]-\left[\begin{array}{cc}
I_{1} & 0 \\
0 & I_{2}
\end{array}\right] } \\
&=\left[\begin{array}{cc}
A_{1} X_{1} B_{1} & A_{1} X_{2} B_{2} \\
A_{2} X_{3} B_{1} & A_{2} X_{4} B_{2}
\end{array}\right]-\left[\begin{array}{cc}
C_{1} X_{1}{ }^{*} D_{1} & C_{1} X_{3}{ }^{*} D_{2} \\
A_{2} X_{2}{ }^{*} B_{1} & C_{4} X_{4}{ }^{*} D_{2}
\end{array}\right]-\left[\begin{array}{cc}
I_{1} & 0 \\
0 & I_{2}
\end{array}\right] \\
&=\left[\begin{array}{cc}
A_{1} X_{1} B_{1}-C_{1} X_{1}{ }^{*} D_{1}-I_{1} & A_{1} X_{2} B_{2}-C_{1} X_{3}{ }^{*} D_{2} \\
A_{2} X_{3} B_{1}-A_{2} X_{2}{ }^{*} B_{1} & A_{2} X_{4} B_{2}-C_{4} X_{4}{ }^{*} D_{2}-I_{2}
\end{array}\right]
\end{aligned}
$$

Then

$$
\begin{gathered}
\left\|A X B-C X^{*} D-I\right\|= \\
\left\|\left[\begin{array}{cc}
A_{1} X_{1} B_{1}-C_{1} X_{1}{ }^{*} D_{1}-I_{1} & A_{1} X_{2} B_{2}-C_{1} X_{3}{ }^{*} D_{2} \\
A_{2} X_{3} B_{1}-A_{2} X_{2}{ }^{*} B_{1} & A_{2} X_{4} B_{2}-C_{4} X_{4}{ }^{*} D_{2}-I_{2}
\end{array}\right]\right\|,
\end{gathered}
$$

Then

$$
\left\|A X B-C X^{*} D-I\right\| \geq\left\|A_{1} X_{1} B_{1}-C_{1} X_{1}{ }^{*} D_{1}-I_{1}\right\| \geq 1
$$

or
$\left\|A X B-C X^{*} D-I\right\| \geq\left\|A_{2} X_{4} B_{2}-C_{4} X_{4}{ }^{*} D_{2}-I_{2}\right\| \geq 1$.
Therefore, $\left\|A X B-C X^{*} D-I\right\| \geq 1$.
Theorem : (1.7)
If (A, B, C, D) is *-finite quadeteirial and U is unitary operator then $\left(U A U^{*}, U B U^{*}, U C U^{*}, U D U^{*}\right)$ is *-finite quadeteirial.

Proof:

Suppose $A, B, C, D \in \mathcal{B}(\mathcal{H})$, let U be a unitary operator and $X \in \mathcal{B}(\mathcal{H})$ then by assumption $0 \in \overline{W\left(A\left(U^{*} X U\right) B-C\left(U^{*} X U\right)^{*} D\right)}$. Thus there exists a sequence $\left\{y_{n}\right\}$ in \mathcal{H} such that

$$
\begin{align*}
&\left\langle\left(A\left(U^{*} X U\right) B-C\left(U^{*} X U\right)^{*} D\right) y_{n}, y_{n}\right\rangle \longrightarrow 0, \\
&\left\langle A\left(U^{*} X U\right) B y_{n}, y_{n}\right\rangle-\left\langle C\left(U^{*} X U\right)^{*} D y_{n}, \not y_{n}\right\rangle \longrightarrow 0, \\
&\left\langle X\left(U B U^{*}\right) U y_{n},\left(U A^{*} U^{*}\right) U y_{n}\right\rangle-\left\langle X^{*}\left(U D U^{*}\right) U y_{n},\left(U C^{*} U^{*}\right) U y_{n}\right\rangle \tag{0.}
\end{align*}
$$

Thus,

$$
\left\langle\left(\left(U A U^{*}\right) X\left(U B U^{*}\right)-\left(U C U^{*}\right) X^{*}\left(U D U^{*}\right)\right) U y_{n}, U y_{n}\right\rangle \longrightarrow 0 .
$$

Which means that $0 \in \overline{\left.W\left(U A U^{*}\right) X\left(U B U^{*}\right)-\left(U C U^{*}\right) X^{*}\left(U D U^{*}\right)\right)}$ for each $X \in \mathcal{B}(\mathcal{H})$, note that $\left\|U y_{n}\right\|=1$ for all n when $\left\|y_{n}\right\|=1$.

Now, we give the relation between *-finite quadrilateral (A, B, C, D) and range $\delta_{A B C D}(X)$.

Proposition: (1.8)

Let A, B, C and $\mathrm{D} \in \mathcal{B}(\mathcal{H})$, and (A, B, C, D) is *- finite quadrilateral, then no nonzero scalar operators contains in $\overline{R\left(\delta_{A B C D}(X)\right.}$.

Proof:

Suppose that $\lambda I \in \overline{R\left(\delta_{A B C D}(X)\right)}$ then $\exists X_{n} \in \mathcal{B}(\mathcal{H})$ such that

$$
\left\|A X_{n} B-C X_{n}{ }^{*} D-\lambda I\right\| \rightarrow 0
$$

but (A, B, C, D) is *- finite quadrilateral then

$$
|\lambda| \leq\left\|A X_{n} B-C X_{n}{ }^{*} D-\lambda I\right\| \rightarrow 0
$$

This is a contradiction.

Proposition: (1.9)

Let A, B, C and $\mathrm{D} \in \mathcal{B}(\mathcal{H})$ and $R\left(\delta_{A B C D}(X)\right)$ has no invertible operator then (A, B, C, D) is *- finite quadrilateral.

Proof:

Let $F \in R\left(\delta_{A B C D}(X)\right)$ then by assumption F is not invertible then $\|F-I\| \geq 1$ then by definition ($A, B, C, D)$ is *- finite quadrilateral.

Proposition: (1.10)
If the bounded linear operators A, B, C, and D are compact operators then (A, B, C, D) is *-finite quadrilateral.

Proof:

Let A, B, C, D be a compact operators then clearly $R\left(\delta_{A B C D}(X)\right)$ consists of compact operators. Since any compact operator defined on an infinite dimensional Hilbert space is not invertible . Hence by proposition (1.9), we deduce that (A, B, C, D) is *-finite quadrilateral.

§ 2 *- Finite quadrilateral and range $\delta_{A B C D}(\mathbf{X})$

Definition: (2.1)

An quadrilateral (A, B, C, D) is *-completely finite quadrilateral if $\left(A_{\mid M}, B_{\mid M}, C_{\mid M}, D_{\mid M}\right)$ is *-finite quadrilateral for every nonzero reducing subspace M of A, B, C and D.

Lemma : (2.2)

For $A, B, C, D \in \mathcal{B}(\mathcal{H})$, the quadrilateral (A, B, C, D) is *-completely finite quadrilateral if $\left\{P_{1}, \ldots, P_{n}\right\}$ is a set of projection that satisfied $A P B=C P D$ and $\lambda_{1}, \ldots, \lambda_{n}$ are scalars, then

$$
\max \left\{\left|\lambda_{i}\right|: i=1, \ldots, n\right\} \leq\left\|\sum_{i=1}^{n} \lambda_{i} P_{i}+A X B-C X^{*} D\right\|
$$

Proof :

Let $P=\lambda_{1} P_{1}+\cdots+\lambda_{n} P_{n}$, let m in $\{1, \ldots, n\}$ and $X \in \mathcal{B}(\mathcal{H})$ the orthogonal projection $P_{m} \quad$ commute with each A, B, C, D and P. So on $\mathcal{H}=R\left(P_{m}\right) \oplus R\left(P_{m}\right)^{\perp}$, we can write

$$
A=\left[\begin{array}{ll}
T & 0 \\
0 & *
\end{array}\right], B=\left[\begin{array}{ll}
T & 0 \\
0 & *
\end{array}\right], C=\left[\begin{array}{ll}
T & 0 \\
0 & *
\end{array}\right], D=\left[\begin{array}{cc}
T & 0 \\
0 & *
\end{array}\right] \text { and } X=\left[\begin{array}{ll}
Y & * \\
* & *
\end{array}\right] \text {. }
$$

So, we get

$$
\begin{aligned}
\left\|P+\left(A X B-C X^{*} D\right)\right\| & =\left\|\left[\begin{array}{cc}
\lambda_{m}+T Y T-T Y^{*} T & * \\
* & *
\end{array}\right]\right\| \\
& \geq\left\|\lambda_{m}+T Y T-T Y^{*} T\right\| \geq\left|\lambda_{m}\right| .
\end{aligned}
$$

The last inequality is true since T is the restriction of A, B, C, D to $R\left(P_{m}\right)$ therefore (T, T, T, T) is a *-finite quadrilateral.

Theorem : (2.3)

The quadrilateral (A, B, C, D) is *-completely finite iff for every normal operator N satisfies $A N B=C N^{*} D$, $\|N\| \leq\left\|N+A X B-C X^{*} D\right\|$.

Proof :

Suppose that the quadrilateral (A, B, C, D) is *-completely finite and let E be the resolution of identity of the normal operator N where N satisfies $A N B=C N^{*} D$. if $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ is a family of Borel sets that form a partition of the spectrum of N , and if $\lambda_{i} \in \sigma_{i}$ for $i=1, \ldots, n$, by lemma (2.2) we get
$\max \left\{\left|\lambda_{i}\right|: i=1, \ldots, n\right\} \leq\left\|\sum_{i=1}^{n} \lambda_{i} E_{i}+A X B-C X^{*} D\right\|$ where $X \in \mathcal{B}(\mathcal{H})$. But we can always choose $\lambda=\lambda_{1} \in$ σ_{1} with $\lambda \in \partial \sigma(N)$ and $|\lambda|=\|N\|$. Hence
$\|N\| \leq\left\|\lambda_{1} E_{1}+\cdots+\lambda_{n} E_{n}+A X B-C X^{*} D\right\|$. By spectral theorem for normal operator, we get that

$$
\|N\| \leq\left\|N+A X B-C X^{*} D\right\| .
$$

Conversely, let E be a nonzero reducing subspace of A, B, C and D. Since E is closed subspace of \mathcal{H}, so $\mathcal{H}=$ $E \oplus E^{\perp}$ according to the decomposition of \mathcal{H}, we can write $A=F \oplus G, B=F \oplus M, C=F \oplus U, D=F \oplus L$ where $F=A_{\mid E}=B_{\mid E}=C_{\mid E}=D_{\mid E}$ and $N=I_{\mid E} \oplus 0$ is normal on \mathcal{H} and commutes with A, B, C and D. So, the operator $X=Y \oplus 0$ and $X^{*}=Y^{*} \oplus 0$ on \mathcal{H}, therefore

$$
\begin{aligned}
1=\|N\| \leq\left\|N+A X B-C X^{*} D\right\| & =\left\|\left(I_{\mid E}+F X F-F X^{*} F\right) \oplus 0\right\| \\
& =\|\left(I_{\mid E}+F X F-F X^{*} F \|\right.
\end{aligned}
$$

argument lead to (F, F, F, F) is *-finite quadrilateral in E which means that the quadrilateral $\left(A_{\mid E}, B_{\mid E}, C_{\mid E}, D_{\mid E}\right)$ is *-completely finite quadrilateral.

As a view of the concept kernel orthogonal that first introduce by Anderson see [1], we give the following.

Proposition : (2.4)
If (A, B, C, D) be *-finite quadrilateral, then $R\left(\delta_{A B C D}(X)\right)$ is orthogonal to set of scalars operators.
Proof:
Since (A, B, C, D) be * finite quadrilateral. So, $\left\|A X B-C X^{*} D-\lambda I\right\|$
$\geq\|\lambda I\|, \forall \lambda \in \mathbb{C}, X \in \mathcal{B}(\mathcal{H})$. thus by [1] we deduce that $R\left(\delta_{A B C D}(X)\right)$ is orthogonal to set of scalars operators.

For considering the property of kernel orthogonal on the operator equation $A X B-C X^{*} D=F$ we used the introduced tool which is * -completely finite as in the following.

Remark : (2.5)

Theorem (2.3) can be rewritten in the following form:
Let $A, B \in \mathcal{B}(\mathcal{H})$ and N be normal operator then the following be equivalent
1- The quadrilateral (A, B, C, D) is *-completely finite,
2- kernel $\delta_{A B C D}(X)$ is orthogonal to range $\delta_{A B C D}(X)$.

References :

[1] Anderson J. H. (1973). 'On normal derivations'. Proceedings of the American Mathematical Society, vol. 38, no. 1, pp. 135-140
[2] Elalami S. N. (2014), Completely finite operators, viewed 27 March 2014, http://www.researchgate.net/publication/261133538 Completely finite_operators
[3] Stampfli J. G. \& Williams J.P.(1968), 'Growth conditions and the numerical range in a Banach algebra', Tôhoku Math. Journ., vol. 20, pp. 417-424.
[4] Hamada N. H. (2002), Jordan *-derivations on $\mathcal{B}(\mathcal{H})$, Ph.D. thesis, Department of Mathematics College of science, University of Baghdad, Baghdad, Iraq.
[5] Wiliams J.P., (1970), 'Finite operators', Proceedings of the American Mathematical Society, vol. 26, pp. 129-136.

