*- **Completely Finite Quadrilateral** (A, B, C, D) and the Range of $\delta_{ABCD}(X)$

Noor Emadeuldean 1^* Buthainah Ahmead²

- 1. Department of mathematic, college of science, Baghdad University, Iraq.
- 2. Department of mathematic, college of science, Baghdad University, Iraq.

Abstract:

In this paper, we define *-finite quadrilaterals and *-completely finite quadrilaterals for the operator equation

$$
\delta_{ABCCD}(X) = A X B - C X^* D,
$$

where $A, B, C, D \in \mathcal{B}(\mathcal{H})$. Also, we prove the following:

- 1- If (A, B, C, D) is *-finite quadeteirial and U is unitary operator then $(UAU^*, UBU^*, UCU^*, UDU^*)$ is *finite quadeteirial .
- 2**-** Let A, B, C and $D \in \mathcal{B}(\mathcal{H})$, and (A, B, C, D) is $*$ finite quadrilateral, then no nonzero scalar operators contains in $\overline{R(\delta_{ABCD}(X))}$.
- 3- The quadrilateral (A, B, C, D) is *-completely finite iff for every normal operator N satisfies $ANB = CN^*D$, $||N|| \leq ||N + AXB - CX^*D||.$

Keywords: Operator equation, *_ finite operators.

Introduction:

Let $\mathcal{B}(\mathcal{H})$ be the space of all bounded linear operators on the Hilbert space \mathcal{H} . Let $\delta_A(X) = AX -XA$ be the inner derivation. In this paper we deal with two basic concepts, first concept related to the concept that defined by Williams which is finite operator. The operator A is finite if the distance between range $\delta_A(X)$ and the identity operator is equal or more than 1as in [5]. In recent years many authors modified the concept of finite operators one of them which introduce by Hammad in 2002 as follows: an operator $A \in \mathcal{B}(\mathcal{H})$ is *- finite operator if $0 \in \overline{W(AX - X^*A)}$ for $X \in \mathcal{B}(\mathcal{H})$. While, the second concept is completely finite operators which first defined by Elilami S. N. in [3], an operator $A \in \mathcal{B}(\mathcal{H})$ is called completely finite operator if $A_{|E}$ is finite for every nonzero reducing subspace E of A .

This paper contains two sections: In §1 we motivate the definition of *-finite operators and give some properties. While in §2 we motivate the definition of completely finite operators and we omits the normal operators from the range of $\delta_{ABCD}(X)$ as in theorems (2.5).

§1 *- Finite quadrilaterals

Definition: (1.1)

For A, B, C and $D \in \mathcal{B}(\mathcal{H})$. The quadrilateral (A, B, C, D) is *-finite quadrilateral if $0 \in \overline{W(AXB - CX^*D)}$ for each $X \in \mathcal{B}(\mathcal{H})$.

The following theorem is equivalent to definition of $*$ -finite quadrilaterals.

Preposition: (1.2)

Let $A, B, C, D \in \mathcal{B}(\mathcal{H})$. Then (A, B, C, D) is *-finite quadrilateral iff $||AXB - CX^*D - \lambda I|| \ge |\lambda|$ for each $X \in \mathcal{B}(\mathcal{H})$, and for each $\lambda \in \mathbb{C}$.

We can proof easily, by theorem in [5] put the operator $AXB - CX^*D$ instead of A. We get that

0 ∈ $W_0(AXB - CX^*D)$ iff $||AXB - CX^*D - \lambda I|| \ge |\lambda|$ for each $X \in \mathcal{B}(\mathcal{H})$, and $\lambda \in \mathbb{C}$. By [3] we get $W_0(AXB-CX^*D)=\overline{W(AXB-CX^*D)}.$

m

We will denoted to the set of all $*$ -finite quadrilaterals by K^* .

Theorem: (1.3)

Let A, B, C and $D \in \mathcal{B}(\mathcal{H})$. The following statements are equivalent

- 1) $(A, B, C, D) \in K^*$.
- 2) $\text{Inf}_X || A X B C X^* D I || = 1.$
- 3) There exists $f \in \rho$ such that $f(A \times B) = f(C X^* D) \ \forall X \in \mathcal{B}(\mathcal{H})$.

Proof :

(1) and (2) are equivalent by proposition (1.2) by taking $\lambda = 1$, then $||AXB - CX^*D - I|| \ge 1$. Now, to prove (2) equivalent to (3), define a linear functional f such that $f(I) = 1$, $||f|| = \frac{1}{\ln |I||^2}$ $\frac{1}{\ln f \|A X B - C X^* D - I\|}$ and $f(A X B - C X^* D) = 0$. So, by Hahn-Banach theorem this functional can be extend to all $B(H)$. Finaly to prove that (3) give (1) by the assumption $f(A \times B) = f(C X^* D)$ then $f(A \times B - C X^* D) = 0$. i.e., 0 $\in \overline{W(A \times B - C \times^* D)}.$

Proposition : (1.4)

If $(A, B, C, D) \in K^*$ then $(B^*, A^*, D^*, C^*) \in K^*$.

Poof :

Since for any operator $A \in \mathcal{B}(\mathcal{H})$, $(A^*)^* = A$. And $||A X B - C X^* D - I|| \ge 1$, $\forall X \in \mathcal{B}(\mathcal{H})$. The map $f(X)$ $= X^*$ is surjective so, $||A X^* B - C X D - I|| \ge 1, \forall X \in \mathcal{B}(\mathcal{H}).$

Therefore

$$
||B^* X A^* - D^* X^* C^* - I|| = ||(A X^* B - C X D)^* - I|| \ge 1 \,\forall X \in \mathcal{B}(\mathcal{H}).
$$

Proposition : (1.5)

If (A, B, C, D) is a *- finite quadrilateral then $(\lambda A, B, \lambda C, D)$ is also *-finite quadrilateral for each $\lambda \in$

Proof :

ℂ.

If $\lambda = 0$ then it is clear that $(\lambda A, B, \lambda C, D)$ is a *-finite quadrilateral.

Now, let $0 \neq \lambda \in \mathbb{C}$ given nonzero number ε then for each operator $X \in \mathcal{B}(\mathcal{H})$ there exist vector $\gamma \in \mathcal{H}$ such that

$$
|\langle (AX B - C X^* D)y, y \rangle| < \left(\frac{\varepsilon}{\lambda}\right)
$$

So,

 $|\{(\lambda \land X \ B - \lambda \ C \ X^* \ D)y, y \}| \leq \varepsilon$. i.e., $0 \in \overline{W(\lambda \ A \ X \ B - \lambda \ C \ X^* \ D)}$.

Proposition : (1.6)

Let A, B, C and $D \in \mathcal{B}(\mathcal{H})$ are defined in following form:

$$
A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, B = \begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix}, C = \begin{bmatrix} C_1 & 0 \\ 0 & C_2 \end{bmatrix} \text{ and } D = \begin{bmatrix} D_1 & 0 \\ 0 & D_2 \end{bmatrix} \text{ on } \mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2. \text{ Such that}
$$

$$
(A_1, B_1, C_1, D_1) \in K^*_{\mathcal{H}_1} \text{ or } (A_2 B_2, C_2 D_2) \in K^*_{\mathcal{H}_2} \text{ then } (A, B, C, D) \in K^*_{\mathcal{H}}.
$$

Proof :

$$
\begin{bmatrix} A_1 & 0 \ 0 & A_2 \end{bmatrix} \begin{bmatrix} X_1 & X_2 \ X_3 & X_4 \end{bmatrix} \begin{bmatrix} B_1 & 0 \ 0 & B_2 \end{bmatrix} - \begin{bmatrix} C_1 & 0 \ 0 & C_2 \end{bmatrix} \begin{bmatrix} X_1^* & X_3^* \ X_2^* & X_4^* \end{bmatrix} \begin{bmatrix} D_1 & 0 \ 0 & D_2 \end{bmatrix} - \begin{bmatrix} I_1 & 0 \ 0 & I_2 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} A_1 X_1 B_1 & A_1 X_2 B_2 \\ A_2 X_3 B_1 & A_2 X_4 B_2 \end{bmatrix} - \begin{bmatrix} C_1 X_1^* D_1 & C_1 X_3^* D_2 \\ A_2 X_2^* B_1 & C_4 X_4^* D_2 \end{bmatrix} - \begin{bmatrix} I_1 & 0 \\ 0 & I_2 \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} A_1 X_1 B_1 - C_1 X_1^* D_1 - I_1 & A_1 X_2 B_2 - C_1 X_3^* D_2 \\ A_2 X_3 B_1 - A_2 X_2^* B_1 & A_2 X_4 B_2 - C_4 X_4^* D_2 - I_2 \end{bmatrix}
$$

Then

$$
||A X B - C X^* D - I|| =
$$

\n
$$
||A X B - C X^* D - I|| =
$$

\n
$$
||A X B - C X^* D - I|| =
$$

\n
$$
A_1 X_2 B_2 - C_1 X_3^* D_2
$$

\n
$$
A_2 X_3 B_1 - A_2 X_2^* B_1
$$

\n
$$
A_2 X_4 B_2 - C_4 X_4^* D_2 - I_2
$$

Then

$$
||A X B - C X^* D - I|| \ge ||A_1 X_1 B_1 - C_1 X_1^* D_1 - I_1|| \ge 1,
$$

or

$$
||A X B - C X^* D - I|| \ge ||A_2 X_4 B_2 - C_4 X_4^* D_2 - I_2|| \ge 1.
$$

Therefore, $||A X B - C X^* D - I|| \ge 1$.

Theorem : (1.7)

If (A, B, C, D) is *-finite quadeteirial and U is unitary operator then $(UAU^*, UBU^*, UCU^*, UDU^*)$ is *-finite quadeteirial.

Proof :

Suppose $A, B, C, D \in \mathcal{B}(\mathcal{H})$, let U be a unitary operator and $X \in \mathcal{B}(\mathcal{H})$ then by assumption 0 ∈ $\overline{W(A(U^*XU)B - C(U^*XU)^*D)}$. Thus there exists a sequence $\{y_n\}$ in $\mathcal H$ such that

$$
\langle (A(U^*XU)B - C(U^*XU)^*D)y_n, y_n \rangle \longrightarrow 0,
$$

\n
$$
\langle A(U^*XU)By_n, y_n \rangle - \langle C(U^*XU)^*Dy_n, y_n \rangle \longrightarrow 0,
$$

\n
$$
\langle X(UBU^*)Uy_n, (UA^*U^*)Uy_n \rangle - \langle X^*(UDU^*)Uy_n, (U C^*U^*)Uy_n \rangle \longrightarrow 0.
$$

Thus,

$$
\langle ((UAU^*)X(UBU^*)-(UCU^*)X^*(UDU^*))Uy_n,Uy_n\rangle \longrightarrow 0.
$$

Which means that $0 \in \overline{W(UAU^*)X(UBU^*)-(UCU^*)X^*(UDU^*))}$ for each $X \in \mathcal{B}(\mathcal{H})$, note that $||Uy_n|| = 1$ for all *n* when $||y_n|| = 1$.

Now, we give the relation between *-finite quadrilateral (A, B, C, D) and range $\delta_{ABCD}(X)$.

Proposition: (1.8)

Let A, B, C and $D \in \mathcal{B}(\mathcal{H})$, and (A, B, C, D) is *- finite quadrilateral, then no nonzero scalar operators contains in $\overline{R(\delta_{ABCD}(X))}$.

Proof:

Suppose that
$$
\lambda I \in \overline{R(\delta_{ABCD}(X))}
$$
 then $\exists X_n \in \mathcal{B}(\mathcal{H})$ such that

$$
||A X_n B - C X_n^* D - \lambda I || \rightarrow 0
$$

but (A, B, C, D) is $*$ - finite quadrilateral then

$$
|\lambda| \leq ||A X_n B - C X_n^* D - \lambda I || \rightarrow 0
$$

This is a contradiction. □

Proposition: (1.9)

Let A, B, C and $D \in \mathcal{B}(\mathcal{H})$ and R $(\delta_{ABCD}(X))$ has no invertible operator then (A, B, C, D) is *- finite quadrilateral**.**

Proof:

Let $F ∈ R(\delta_{ABCD}(X))$ then by assumption *F* is not invertible then $||F - I|| \ge 1$ then by definition ((A, B, C, D) is *- finite quadrilateral. □

Proposition: (1.10)

If the bounded linear operators A, B, C , and D are compact operators then (A, B, C, D) is *-finite quadrilateral.

Proof:

Let A, B, C, D be a compact operators then clearly $R(\delta_{ABCD}(X))$ consists of compact operators. Since any compact operator defined on an infinite dimensional Hilbert space is not invertible . Hence by proposition (1.9), we deduce that (A, B, C, D) is *-finite quadrilateral.

§ 2 $*$ - **Finite** quadrilateral and range $\delta_{ABCD}(X)$

Definition: (2. 1)

An quadrilateral (A, B, C, D) is *-completely finite quadrilateral if $(A_{1M}, B_{1M}, C_{1M}, D_{1M})$ is *-finite quadrilateral for every nonzero reducing subspace M of A, B, C and D .

Lemma : (2.2)

For $A, B, C, D \in \mathcal{B}(\mathcal{H})$, the quadrilateral (A, B, C, D) is *-completely finite quadrilateral if $\{P_1, ..., P_n\}$ is a set of projection that satisfied $APB = CPD$ and $\lambda_1, ..., \lambda_n$ are scalars, then

$$
\max \{ | \lambda_i | : i = 1, ..., n \} \le || \sum_{i=1}^n \lambda_i P_i + AXB - CX^*D ||
$$

Proof :

Let $P = \lambda_1 P_1 + \dots + \lambda_n P_n$, let m in $\{1, \dots, n\}$ and $X \in \mathcal{B}(\mathcal{H})$ the orthogonal projection P_m commute with each A, B, C, D and P. So on $\mathcal{H} = R(P_m) \oplus R(P_m)^{\perp}$, we can write

$$
A = \begin{bmatrix} T & 0 \\ 0 & * \end{bmatrix}, B = \begin{bmatrix} T & 0 \\ 0 & * \end{bmatrix}, C = \begin{bmatrix} T & 0 \\ 0 & * \end{bmatrix}, D = \begin{bmatrix} T & 0 \\ 0 & * \end{bmatrix} \text{ and } X = \begin{bmatrix} Y & * \\ * & * \end{bmatrix}.
$$

So, we get

$$
||P + (AXB - CX^*D)|| = ||\begin{bmatrix} \lambda_m + TYT - TY^*T & * \\ * & * \end{bmatrix}||
$$

\n
$$
\ge ||\lambda_m + TYT - TY^*T|| \ge |\lambda_m|.
$$

The last inequality is true since T is the restriction of A, B, C, D to $R(P_m)$ therefore (T, T, T, T) is a *-finite quadrilateral. □

Theorem : (2.3)

The quadrilateral (A, B, C, D) is *-completely finite iff for every normal operator N satisfies $ANB = CN^*D$, $||N|| \leq ||N + AXB - CX^*D||.$

Proof :

Suppose that the quadrilateral (A, B, C, D) is *-completely finite and let E be the resolution of identity of the normal operator N where N satisfies $AND = CN^*D$. if $\{\sigma_1, ..., \sigma_n\}$ is a family of Borel sets that form a partition of the spectrum of N, and if $\lambda_i \in \sigma_i$ for $i = 1, ..., n$, by lemma (2.2) we get

max $\{|\lambda_i|: i = 1, ..., n\} \leq ||\sum_{i=1}^n \lambda_i E_i + AXB - CX^*D||$ where $X \in \mathcal{B}(\mathcal{H})$. But we can always choose $\lambda = \lambda_1 \in \mathcal{H}(\mathcal{H})$ σ_1 with $\lambda \in \partial \sigma(N)$ and $|\lambda| = ||N||$. Hence

 $\|N\| \leq \|\lambda_1 E_1 + \dots + \lambda_n E_n + AXB - CX^*D\|$. By spectral theorem for normal operator, we get that

$$
||N|| \leq ||N + AXB - CX^*D||.
$$

Conversely, let E be a nonzero reducing subspace of A, B, C and D. Since E is closed subspace of \mathcal{H} , so \mathcal{H} = $E \oplus E^{\perp}$ according to the decomposition of H , we can write $A = F \oplus G$, $B = F \oplus M$, $C = F \oplus U$, $D = F \oplus L$ where $F = A_{1E} = B_{1E} = C_{1E} = D_{1E}$ and $N = I_{1E} \oplus 0$ is normal on *H* and commutes with *A*, *B*, *C* and *D*. So, the operator $X = Y \oplus 0$ and $X^* = Y^* \oplus 0$ on H , therefore

$$
1 = ||N|| \le ||N + AXB - CX^*D|| = ||(I_{|E} + FXF - FX^*F) \oplus 0||
$$

= ||(I_{|E} + FXF - FX^*F ||).

argument lead to (F, F, F, F) is *-finite quadrilateral in E which means that the quadrilateral $(A_{|E}, B_{|E}, C_{|E}, D_{|E})$ is *-completely finite quadrilateral. □

As a view of the concept kernel orthogonal that first introduce by Anderson see [1], we give the

following.

Proposition : (2.4)

If (A, B, C, D) be *-finite quadrilateral, then $R(\delta_{ABCD}(X))$ is orthogonal to set of scalars operators.

Proof :

Since (A, B, C, D) be *-finite quadrilateral. So, $||AXB - CX^*D - \lambda I||$

그 사람들은 그 사람들은 그 사람들을 지나가고 있다. 그 사람들은 그 사람들은 그 사람들은 그 사람들을 지나가고 있다.

 \geq $\|\lambda I\|$, $\forall \lambda \in \mathbb{C}$, $X \in \mathcal{B}(\mathcal{H})$. thus by [1] we deduce that $R(\delta_{ABCD}(X))$ is orthogonal to set of scalars operators.

For considering the property of kernel orthogonal on the operator equation $AXB - CX^*D = F$ we used the introduced tool which is * -completely finite as in the following.

Remark : (2.5)

Theorem (2.3) can be rewritten in the following form:

Let $A, B \in \mathcal{B}(\mathcal{H})$ and N be normal operator then the following be equivalent

- 1- The quadrilateral (A, B, C, D) is *-completely finite,
- 2- kernel $\delta_{ABCD}(X)$ is orthogonal to range $\delta_{ABCD}(X)$.

References :

[1] Anderson J. H. (1973). 'On normal derivations'. *Proceedings of the American Mathematical Society*, vol. 38, no. 1, pp. 135-140

[2] Elalami S. N. (2014), Completely finite operators , viewed 27 March 2014, http://www.researchgate.net/publication/261133538_Completely_finite_operators

[3] Stampfli J. G. & Williams J.P.(1968), 'Growth conditions and the numerical range in a Banach algebra', *Tôhoku Math*. Journ. , vol. 20, pp. 417-424.

[4] Hamada N. H. (2002), Jordan *-derivations on $\mathcal{B}(\mathcal{H})$, Ph.D. thesis, Department of Mathematics College of science, University of Baghdad, Baghdad, Iraq.

[5] Wiliams J.P., (1970), 'Finite operators', *Proceedings of the American Mathematical Society*, vol. 26, pp. 129-136.